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This article examines local and global approximation methods which have been used 
or have potential future value in economic and econometric analysis. While these 
methods are familiar, they are seldom developed within a general, formal analytical 
framework, a fact which has hindered understanding of these techniques and limited 
their application. We attempt to review and unify this literature, showing connections 
which have been ignored, and pointing out potential new directions. We first re- 
view the foundations of basic asymptotic, or, perturbation, methods, and discuss their 
applications to economic modelling and econometrics. We next discuss global ap- 
proximation methods, including orthogonal polynomials, interpolation theory, shape- 
preserving splines, and neural networks. We present the related projection method for 
solving operator equations, and illustrate its application to dynamic economic analysis, 
dynamic games, and asset market equilibrium with asymmetric information. Finally, 
we discuss how the hybrid perturbation-projection method combines the complemen- 
tary strengths of local approximation procedures and the projection method to produce 
a promising new method. 

1. Introduction 

The key technical problem in much of economic analysis is the determination of 
some unknown function. Important examples include the optimal policy functions of 
economic agents (such as the consumption function in macroeconomics), equilibrium 
price functions dynamic models, equilibrium strategies in games, and inference rules 
and price functions in asymmetric information problems. The usual approach is to 
make functional form assumptions on the structural elements of a model which lead 
to closed-form solutions for these functions; prominent examples of this approach 
are the linear-quadratic competitive structures discussed in Hansen and Sargent [60], 
the linear-quadratic dynamic game structure exposited in Kydland [82, 83], the linear 
risk tolerance and Gaussian returns assumptions in Merton [96], and the exponential- 
Gaussian structure in Grossman [54]. Unfortunately, the desire for a closed-form 
solution often restricts the analysis. While these special cases may suffice for some 
purposes, they are often inadequate for a robust analysis. Such robustness is important 
for both theoretical analysis, where important elements may be ignored in cases with 
closed-form solutions, and in empirical work where misspecification of tastes and 
technology can ruin an otherwise valid approach. 

The alternative is to assume more general and flexible functional forms and use 
approximation ideas to compute functions which are "close" to the true solution. In 
the first section we remind the reader of a variety of theoretical and empirical prob- 
lems for which these methods are useful. In the rest of the paper, we will review 
the two basic approaches to the approximation of functions and the approximate so-. 
lution of operator equations, representing two different kinds of data and objectives, 
and introduce a third which combines the strengths of the first two methods. Loca l  
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approximations take as data the value of the unknown function f and its derivatives 
at a point x0 and constructs a function which matches those properties at x0. These 
constructions rely on Taylor's theorem, the implicit function theorem, and bifurcation 
theory, and lead to the construction of Taylor or Pad6 series, or other approximations 
of a simple form. These methods are called perturbation, or asymptotic, methods. The 
basic idea of asymptotic methods is to formulate a general problem, find a particular 
case which has a known solution, and then use that particular case and its solution 
as a starting point for computing approximate solutions to "nearby" problems. These 
methods are widely used in mathematical physics, particularly in quantum mechanics 
and general relativity theory, with much success. While economists have often used 
special versions of perturbation and asymptotic techniques, such as linearizing around 
a steady state, they often provide little formal justifications for their procedures, and 
sometimes proceed in ad hoc and potentially invalid fashions. This has lead to some 
coniusion as to the differences among various procedures. This is plausibly one rea- 
son why economists have generally not exploited the full range and power of these 
approximation techniques. 

We will give simple examples of the perturbation methods and indicate the more 
substantive uses which have appeared in the economics literature. These applications 
include theoretical analyses of sunspot equilibria as well as quantitative analyses of 
economic policies and business cycles. We will interpret the phrase "computational 
economics" broadly in this chapter. The perturbation analyses which theorists have 
done has been viewed as pure theory, and the authors made no apparent use of a com- 
puter. However, much of this work is really the outcome of algebraic manipulations 
which could be automated by symbolic mathematics software, such as Mathematica, 
Maple, or Macsyma. We take the view that in the future such theoretical analyses will 
be done by computer software, and is an interesting new avenue for computational 
economics. This literature is included here also because the linear approximations 
which these authors compute do have value as numerical approximations, and it 
is instructive to compare these methods with other "linear approximation" methods 
used in economics. Furthermore, these linear approximations are just the first step in 
higher-order Taylor series expansions which themselves may have substantial numer- 
ical value, even though this fact is generally not utilized in either the theoretical or 
applied literatures. 

The other approaches to approximation are more global in nature. L p approximation 

takes a given function f and finds a "nice" function 9 which is "close to" f in 
the sense of some L p norm. To compute an L p approximation of f ,  one ideally 
needs the entire function, whereas we generally have information about f at only a 
finite number of values. Interpolation is any procedure which finds a "nice" function 
which exactly fits a finite set of prescribed conditions. Regression is similar to L p 

approximation in that a some L p norm is minimized, an L 2 norm in the case of 
least squares and L ~ in the case of minimum absolute deviation. Regression also 
lies between L p approximation and interpolation in that it uses n points of data to 
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produce an approximation with m < n free parameters which "nearly" satisfies the 
data. These approximation methods form the basis for projection methods, also known 
as weighted residual methods, for solving functional equations. Projection methods 
have been increasingly used in the physical sciences over the past twenty years. They 
have been used to solve various economic problems, ranging from dynamic growth 
models, dynamic games, and asset market equilibria with incomplete information. 

Both perturbation and L p approximation methods are important because of the in- 
creasing role of computation in economic analysis. Many computational economists 
eschew sophisticated approximation techniques, believing that simple methods of ap- 
proximation combined with supercomputer technology will solve any problem they 
might have. This is not the attitude taken in other computationally intensive fields. 
In fact, an examination of the numerical analysis literature shows that over the past 
fifty years advances in numerical analysis have improved algorithm speed as much as 
hardware advances. Rice [108] presents a formal and substantive discussion of this 
issue for the problem of solving two- and three-dimensional elliptic partial differen- 
tial equations, a class of numerical problems which arise naturally in continuous-time 
stochastic economic modelling. He argues that we were able to solve these problems 
4 million to 50 billion times faster in 1978 than in 1945, of which a factor of 2,000 
to 25 million can be attributed to software improvements, and a factor of 2,000 to 
hardware improvements. One reason for this improvement has been the application 
of the basic approximation ideas we present below. It is clear from examination of 
the mathematical and economic literature that even a modest application of modern 
approximation techniques can substantially improve the efficiency of most computa- 
tional methods in economics. The objective of this review is to be retrospective and 
review actual applications, but also to be prospective and indicate where a more in- 
tensive use of well-known mathematical techniques can expand the range and quality 
of these applications in economics. 

After discussing perturbation and projection methods, we move to a third approach 
to approximation which combines perturbation and projection methods. The perturba- 
tion and projection methods of solution differ substantially in their focus and proce- 
dures. However, we shall see that their strengths and weaknesses are complementary. 
This complementarity implies that a combined analysis using both methods will al- 
low economists to analyze many economic problems in a robust and reliable fashion. 
This combined method is called the hybrid perturbation-Galerkin procedure. We will 
illustrate its advantages and potential in a simple example. 

2. The uses of approximation ideas: An overview 

Economic modelling problems have used a variety of approximation methods. In dy- 
namic programming problems, one wants to solve out for the value function and the 
corresponding policy rule, which in turn are needed for an empirical analysis of the 
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data. The closed-form approach l to this problem is exemplified in Sargent's [116] 
analysis of  dynamic labor demand. However, the linear-quadratic approach has limi- 
tations. Rust [111] exemplifies the alternative approach where one assumes arbitrary 
tastes and technology and approximately solves the dynamic programming problem 
of the agents and for likelihood models for the data. However, Rust uses the very 
conservative discrete-state approximation method which is reliable but slow. The ap- 
proximation ideas we discuss below have been successful in solving many dynamic 
programming problems which are more general than the linear-quadratic case but with 
substantially greater efficiency than the discrete-space approximation method. These 
solutions could also be used in maximum likelihood econometric procedures where 
such an increase in speed would be important. 

The approximation ideas we discuss below have also been used in rational expec- 
tations equilibrium analysis. Closed-form solutions are rare; agricultural economists 
realized the futility of this back in 1958 with Gustafson's [56] work on grain stock- 
piling. A critical aspect of that problem is the nonnegativity constraint on grain stock- 
piles. This constraint leads to kinks in the storage rules and price functions. Gustafson 
used piecewise linear functions to approximate the relation between current price and 
the current total grain stock. Williams and Wright [123-125] extended the Gustafson 
analysis to include elastic supply. An important innovation in their solution was their 
observation that the conditional expectation of  the future grain price is a smooth func- 
tion of  the current state of  the market, and that this conditional expectation function 
characterizes equilibrium. This observation suggests that equilibrium can be approxi- 
mated by low-order polynomial approximation of  the conditional expectation function 
which characterizes equilibrium. This leads to a considerable improvement in effi- 
ciency over the alternative of  using discrete-state or piecewise linear approximations 
of  the current price law. Helmburger and Miranda [98] also use this approximation 
idea to solve equilibrium. More recently, Christiano and Fisher [32] use the same idea 
to model general equilibrium where a nonnegativity constraint on gross investment 
will occasionally bind. 

These approximation methods are also important in empirical work on structural 
models of  commodity markets. Deaton and Laroque [43] used approximations of  the 
rational expectations equilibrium to compute methods of  moments estimates in a fully 
structural model of  several commodity markets, 

Dynamic games also have a similar dichotomy. Kydland exemplifies the closed- 
form approach to linear-quadratic games, whereas Kotlikoff, Shoven, and Spivak [80] 

l Some may argue that the linear-quadratic model typically does not have a closed-form solution because 
it is generally necessary to solve a Riccati equation, or, as in the case of dynamic games, a coupled system 
of Riccati equations. While there are nontrivial problems associated with solving Riccati equations, we 
currently have methods which are so reliable and accurate that the solutions are treated as if they were 
closed-form solutions with no computational error. Since the approximation problems are much worse when 
we leave the linear-quadratic paradigm, linear-quadratic modelling is, for the purposes of this review, more 
like closed-form modelling than the approximate solutions we will discuss. 
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take a smooth approximation approach to solving a more general dynamic game. 
Judd [71] and Miranda and Rui [99] use modern approximation theory to solve non- 
linear dynamic games. 

The most common use of perturbation methods is the method of "linearizing around 
a steady state". Such linearizations tell us how a dynamical system evolves near a 
steady state, and we can also use them to compute how a system reacts to shocks 
which move the steady state, such as tax policy or monetary policy changes. A 
particularly important case of this was Magill [93], who suggested that the linear 
approximations of stochastic growth models be used in macroeconometric analysis. 
Kydland and Prescott [85], and many later macroeconomists have successfully used a 
linear approximation computational approach to examine the empirical strength of the 
Real Business Cycle hypothesis. Similarly, many authors used linearization methods 
to analyze the impact of macroeconomic policy on dynamic equilibrium. 

The key fact is that perturbation methods are just ways to take derivatives in com- 
plex problems. This implies that they have a variety of uses. For example, in maximum 
likelihood estimation, one must repeatedly compute derivatives of the likelihood func- 
tion. Zadrozny [127] discusses how to compute such derivatives analytically in the 
case of linear quadratic models. For more general models, computing such derivatives 
is generally done numerically. However, perturbation methods could be used to solve 
for these derivatives analytically with considerable gains in accuracy and speed. 

These are just a few examples of how approximation ideas are important in com- 
putational aspects of both theory and econometrics. We shall now discuss the formal 
mathematics behind these approximation ideas and illustrate their applications in sim- 
ple examples. 

3. The mathematical foundations of regular perturbation methods 

The most basic local approximation techniques are called regular perturbation meth- 
ods. They are based on a few basic theorems including the well-known Taylor's 
theorem and the implicit function theorem for/~n as well as extensions to operators 
on infinite-dimensional spaces. We will first state the basic theorems which provide 
the foundation for regular perturbation methods in this section, and give examples of 
their use in the next section. 

3.1. The meaning of "approximation" 

We often use the phrase " f (x )  approximates 9(z) for z near z0", but the meaning of 
this phrase is seldom made clear. One trivial sense of the term is that f(zo) =- 9(zo). 
While this is certainly a necessary condition, it is generally too weak to be a useful 
concept. Approximation usually means at least that f~(zo) = 91(zo) as well. In this 
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case, we say that " f  is a first-order (or linear) approximation to 9 at x = x0". In 
general, " f  is an nth order approximation of  9 at x = xo" if and only if 

lim I] f ( x ) - g ( x )  = O. 
~ "  I l x - x o [ I  n 

3.2. Taylor series approximation 

The most basic local approximation is described by Taylor's theorem: 

THEOREM 1 (Taylor's theorem). Suppose f • R n --+ R 1, and is C k+l. Then for x ° c 
R n I f  f E C n+l [a, b] and x, xo E [a, b], then 

f ( x )  = f ( x  °) + ~x~ (x°) (x~ - x °) 
i=l  

1 ov 

M7 ~,, " ' "  ~ X i l , , . ~ X i  k (X0)(X~I--xOi)' ' '(Xik--,~7Ok) 
i1=I ik=l 

+ O (ll x -  x ° Ilk+l). (1) 

The Taylor series approximation of f ( x )  based at x °, (1), uses derivative informa- 
tion at x ° to construct a polynomial approximation, f is analytic on [a, b] exactly 
when this approximation converges to f on [a, b] as k increases. Generally, this ap- 
proximation is good only near x ° and decays rapidly away from x °. 

3.3. Rational approximation 

Padd approximation uses the same derivative information as does a Taylor series 
approximation, but instead constructs a rational function to approximate f .  The (m, n) 
Pad6 approximant of f at x0 is a rational function 

r ( x ) -  p(x) (2) 
q(x) 

where p(x) and q(x) are polynomials of degree m and n, and 

d k 
0 =  - d - x ~ ( p - f q )  (x0), k = 0 , . . . , m + n .  (3) 
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The m + n + 1 derivative conditions in (3) suffice since q(xo) can be normalized to 
be I. The problem of computing the coefficients of p and q is a (generally nonsingular) 
linear problem, 

The experience is that Pad6 approximants are better global approximants than Taylor 
series approximations, that is, the error grows less rapidly as we move away from 
x0. There are strong theorems confirming this for some functions; see Bender and 
Orszag [8] for an accessible treatment. 

Rational approximation ideas have not been as widely used in economic analysis as 
Taylor series methods. Pad6 approximation has proved useful in econometric analysis. 
See Phillips [103] for a discussion of various generalizations of Pad6 expansions; in 
particular, he discusses the idea of using information at several points, not just one. 
Phillips also reviews applications to finite sample distribution theory. Below we will 
discuss another kind of  application of Pad6 approximations. 

3.4. Implicit function theorem 

The next important tool is the Implicit function theorem in Euclidean spaces. 

THEOREM 2 (Implicit function theorem). I f  H ( x ,  y) : R ';~ x R "~ --+ R "~ is C j and 
Hv(xo,  fro) is not singular, then there is a unique function C° function h : R n -+ R m 
such that for  (x, y) near (xo, Yo) 

H(x, h(x)) = o. 

Furthermore, i f  H is C k then h is C k - j  and its derivatives can be computed by 
implicit differentiation o f  the identity H ( x ,  h(x)  ) -~ O. 

The Implicit function theorcm states that h can be uniquely defined for x near zero 
by a relation of  the form H ( x ,  h(x))  = 0 whenever Hy(0,  h(0)) is not singular. This 
allows us to implicitly compute the derivatives of  h with respect to x as a functions 
of  x. When we combine Taylor's theorem and the Implicit function theorem, we have 
a way to compute a locally valid degree k polynomial approximation of  the implicit 
function h(x)  whenever H is sufficiently differentiable. The derivative information 
could also be used to compute a Pad6 approximant. 

The previous theorem applied to finite-dimensional problems. Frequently in eco- 
nomics we need to solve for unknown functions which are solutions to some operator 
equations. In these cases we need implicit function theorem for infinite dimensional 
spaces. 

3.5. Generalizations to function spaces 

To solve dynamic economic problems, we need generalizations of these theorems to 
functional spaces. It is necessary, therefore, to first introduce some terminology from 
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functional analysis, and state a generalization of the implicit function theorem which 
has a straightforward computational implementation. 

Suppose that X and Y are Banach spaces, i.e., normed complete vector spaces. A 
map M : X k -+ Y is k-linear if it is linear in each of its k arguments. It is a power map 
if it is symmetric and k-linear, in which case it is denoted by M:C k = M ( x ,  x , . . . ,  x). 
The norm of M is constructed from the norms on X and Y, and is defined by 

IIMII : sup IIM(xl , :C2, . . . ,  xk)ll. 
I I : ~ d l = l ,  i = 1 , 2  . . . . .  k 

For any fixed :Co in X ,  consider the infinite sum in Y 

O<3 

Tx : Z - 

k = l  

(4) 

where each of the Mk is a k-linear power map from X to Y. When the infinite series 
in (4) converges, T is a map from X to Y. The majorant series for T is 

IIMk[I - x01l k. 
k = 0  

The important fact is that T will converge whenever its majorant series does. 

DEFINITION 3. r is analytic at xo if and only if, for some neighborhood of x0, it is 
defined and its majorant series converges. 

With these definitions, we can now state an analytic operator version of the Implicit 
Function Theorem, taken from Zeidler [128]. 

THEOREM 4 (Implicit function theorem for analytic operators). Suppose that 

O4) 

=  "M,j 

n,k=O 

(5) 

defines an analytic operator, F : U C R × X -+ Y,  where U is a neighborhood 
o f  (0, O) in R × X .  Furthermore, assume that F(0,  0) = 0 and that the operator 
Mol : X --+ Y,  representing the Frechet cross-partial derivative at (0, 0), is invertible. 
Consider the equation 

F(e ,  x(e)) = 0 (6) 

implicitly defining a function x(e) : R --~ X .  The following are true: 

1. There is a neighborhood of  0 E R,  V, and a positive number, r > O, such that 
(6) has a unique solution x(e) with [Ix(c)ll < r for  each e E V. 
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2. The solution, x(e), of(6) is analytic at e = O, and, ]or some sequence of x~ in X ,  
can be expressed as 

oo 
: n (7) 

where the coefficients xn can be determined by substituting (7) into (6) and equating 
coefficients of like powers of e. 

3. The radius of convergence of  the power series representation in (7) is no less than 
that o f  the analytic map, z(e) : R --+ R, defined implicitly for some neighborhood 
of  O by 

o o  

o : Z IIMnkll <8) 
n , k = O  

Furthermore, fbr some sequence Zn of real numbers, 

o o  

n=O 

represents the solution to (8) and IZnl > [IX,~ll. 

See Zeidler [128] for a proof and discussion of this implicit function theorem. The 
mathematics of applying this method turns out to be elementary since the task is 
reduced to recursive computation of xn terms, in term-by-term approach described 
above. The only requirement is to set up the problem so that it is expressed as an 
analytic operator with a nondegenerate radius of convergence. This theorem shows 
that the logic and intuition from the finite-dimensional implicit function theorem 
generalizes naturally and straightforwardly for analytic operators. 

4. Applications of regular perturbation methods to economics 

There have been many uses of local approximations in economics, implicit and ex- 
plicit. The topic of comparative statics is nothing more than applications of the implicit 
function theorem. Comparative dynamics are technically more difficult problems, but 
fit into the same general framework. Recognizing these similarities will help us solve 
difficult problems. We will review some basic applications which have appeared and 
give examples of some possible future uses. 
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4.1. Comparative statics: A simple rule of thumb in tax theory 

Comparative statics are just basic applications of the implicit function theorem. One 
simple example of applying perturbation ideas is the impact of  a tax on equilibrium. 
Suppose that D(p) is demand at consumer price p, that S(p) is supply at producer 
price p, and that a per unit tax of  r is applied. Then the equilibrium consumer price 
at tax rate ~- can be expressed as the function p( r )  which is implicitly defined by 
D(p(r) )  = S(p(r)  - r). We can expand this relation around r = 0, the tax-free 
equilibrium case, to study the impact of the tax on equilibrium. This analysis leads, 
for example, to the useful rule of thumb that the efficiency cost of a tax equals 
l(r/D + r /s)r  2 where rlD and Us are the demand and supply elasticities at the r = 0 
case. This quadratic approximation has been used extensively to intuitively discuss tax 
policies and as the formal basis for some quantitative tax analysis, as in the Barro [5] 
analysis of  optimal tax policy. 

This tax example is just one simple case where simple perturbation formulas, more 
commonly described as comparative statics, are useful approximations. We next ex- 
amine dynamic applications of these perturbation ideas. 

4.2. Comparative dynamics: A canonical problem 

Since it will be frequently used below, we will now describe a simple continuous- 
time 2 model of  economic growth. Let k be the capital stock, e the rate of consumption, 
and f ( k )  the rate of output. Assume that the intertemporal utility function of the 
representative agent is f ~  e-ptu(c(t))  dr, and that the capital stock evolves according 

to k, = f ( k )  - e. The corresponding optimal growth problem is 

V(ko) ~ max foo e -pt u(c) dt, 
~(t) Jo 

= f ( k )  - c (9) 

k(0)- k0 

where V(k)  is the value function. Our examples will study the solution to this op- 
timal growth problem. We will also examine the representative agent version of this 
problem. The competitive equilibrium will correspond to the social planning prob- 
lem in the perfectly competitive, distortion free case, but not otherwise. We will also 
examine the equilibrium problem when taxes are present. While this model and its 
stochastic generalization appears to be special, it is in the same general family of 
dynamic optimization problems investigated by the papers of Sargent and Rust. 

2It will be obvious that all of these methods can be applied in the same way to discrete-time models. 
Since there is no substantive distinction between the discrete-time and continuous-time literatures, I will 
discuss continuous-time and discrete-time papers together. 
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4.3. Perturbing dynamic equilibria 

To illustrate the essential features of  perturbation methods applied to dynamic equi- 
libria, we apply them to study the effects of  policy changes in a dynamic model of 
equilibrium with taxation. Brock and Turnovsky [21] shows that if we take the simple 
growth model behind (9) and add a tax on capital income, the resulting equilibrium 
solves the system of differential equations 

~=3'(c) c (p - f ' ( k ) (1  - r ) ) ,  

k = f ( k )  - e -  g 
(10) 

where 3@) ~ u'(c)/(cu"(c)) is the rate of intertemporal substitution in consumption, 
r(t) is the tax on capital income at time t, 9(t) is government expenditure (on goods 
which do not affect utility) at t. The tax rates are exogenous, and c and k are the 
unknowns to be determined. Note that this includes the special case of r = g = 0, 
which characterizes (9). The boundary conditions for (10) are the initial condition on 
the capital stock 

k(O) = too (11) 

and a stability condition on consumption 

0 <  lim c(t) < o c .  
t--+oo 

(12) 

The conceptual experiment is as follows. We assume that the "old" tax policy was 
constant, r ( t )  = f ,  and that it has been in place so long that, at t = 0, the economy 
is at the steady state corresponding to ¢. Note that this also assumes that for t < 0, 
agents assumed that r ( t )  = ? for all t, even t > 0. Hence, at t = 0, k(0) = k *s. 
Suppose, however, that at t = 0, agents are told that future tax policy will be different. 
Say that they find out that the new tax rates are ? + r ( t ) ,  t />  0, that is r ( t )  will be 
the change in the tax rate at time t. Similarly, they are told that the new expenditure 
policy is ~0 + 9(@ We also allow the possibility that the capital stock at t = 0 is 
changed by n. The new system is 

d=7(c)c(p - ft(h)(¢ + -r(t))), 

]c=f(k)  - c - (~ + 9(t)) 
(13) 

together with k(0) = k s* + ~, and (12). We will use perturbation methods to approx- 
imate the effects of the new policies r and g on the dynamic paths for k and c. 
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We need to parameterize the new policy so that it fits the perturbation approach; 
that is, we need to imbed the shocked system (13) in a parameterized collection set 
of  problems of the form F(c ,  k, t, e) = 0. We do this by defining 

~(t,  ~) = e + ~ ( t ) ,  g( t ,  ~) = o + ~9(t), k(o, ~) = k ss + ~ 

and the corresponding continuum of BVP's  

ct(t,  e) = 7(c(t ,  e)) c(t, e) (p - f ' ( k ( t ,  e))(1 - T(t, e))), 

kt( t ,  e) = f ( k ( t ,  e)) - c(t, e) - g(t,  e), (14) 

k (0, e) = k ss + e~ 

plus (12). 
The system (14) implicitly defines consumption and capital paths for any value of 

e. In that way, it fits into our general implicit function framework in that we have an 
expression F(c ,  k, t, c) = 0 which implicitly defines the paths c(t) and k(t) .  As long 
as the functions involved in (14) are locally analytic, we can apply Theorem 4 above. 
With this apparatus in hand, we can now solve for the first-order perturbation of (14). 

To solve for first-order approximations of  the impact of e on c and k, we differentiate 
(14) with respect to e, evaluate the resulting differential equation at e = 0, and arrive 
at the following linear differential equation system for the unknown functions c~ (t, 0) 
and k~ (t, 0): 

c~t(t,O) = 7 ( c  s~) c s~ ( - f" (kSS)(1  - f ) k e ( t , O ) +  ( p -  f t (k~S)( -~-~( t ,O)) ) ) ,  

k~,(t, o) = f ' (k~ ' )k~( t ,  O) - c~( t ,  O) - g ( t ) ,  (15 )  

k~ (0, O) = 

plus the condition that c~ and k~ are both bounded. This is a linear boundary value 
problem with constant coefficients, which can be solved analytically. This is typical 
of  perturbation methods: differentiate a nonlinear problem and one will arrive at a 
linear problem of the same type. 

We then solve for c~(t, 0) and k~(t, 0) from (15). The result will allow us to compute 
a linear approximation for c(t, 1) and k(t ,  1), the consumption and capital paths under 
the tax and spending changes; they are 

c(t, 1) ~ f ( k  ~ )  - ~ + c~(t, 0), 

k( t ,  1) ~ k ss + k~(t, 0). 

One can also compute the derivative of  any dynamic quantity, such as lifetime utility 
and tax revenue, with respect to e, thereby computing the marginal change in the 
consumption and capital path per dollar of extra revenue, per util of extra utility, or 
relative to any other quantity. 
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The resulting solutions can be very informative. For example, the initial shock to 
net investment (denoted by the derivative of  I - f (k) - e with respect to e at t = 0) 
is 

I~(O)- 7cP T(p)+(f'(k s~)-p)ec÷pG(~)-g(O) (16) 

where 

# -- I 
2(1 - ?) 1 + 1 + crOK 

is the positive eigenvalue of  the linearized system (15), OK is capital's share of  
income, Or is labor's share, and 0c is the steady state share of  output which goes to 
consumption. G(s )  and T ( s )  are the Laplace transforms 3 of the policy perturbations 
9( t )  and ~-(t). 

Perturbation methods yield algebraic formulas for quantities of  interest. For exam- 
ple, the formula (16) tells us many things. First, future tax increases reduce investment. 
However, their effect is proportional to T(#) ,  which is essentially the average tax in- 
crease discounted at the positive eigenvalue, #. From (17) it is clear that # exceeds 
i f ( k ) ,  the marginal product of capital and p, the after-tax return. Hence, future tax 
increases are heavily discounted when determining their impact on current investment. 
Second, government spending has an ambiguous impact on investment - current gov- 
ernment spending depresses investment and future spending increases investment, but 
again the future impact is discounted at rate #. Third, since investment and output 
are related, we also know the initial impact of this policy shock on output. For ex- 
ample, if a future tax increase causes current investment to fall, then output in the 
future will also fall. Note that these shocks could be nonconstant, allowing us to 
consider partially anticipated shocks. These simple calculations address basic issues 
in macroeconomics. 

Fourth, the presence of  t~ in (14) allows us to use the same approach to compute the 
effect of changes in the initial capital stock on consumption. The effect is intuitive: an 
increase in the capital stock of  ~ will increase output by ~ f ' ( h  ss) = ~p / (1  - "~) but 
will increase consumption by #t~, but # > f ' ( k  ss) implies that the increase in con- 
sumption is greater. Therefore, this procedure also tells us that the slope of the equi- 
librium policy function for consumption is #. 

We can also use this method to approximate solutions to the optimal growth model. 
We chose the tax example to make clear that the presence of  a social planning equiv- 
alent plays no role in this procedure. However, if taxes and government spending are 

3If f( t)  : R 1 -~ R n, then the Laplace transform of f( t)  is L ( f }  : R l -+ R n, where L(f}(s) 
O o  

f ,  e-~t f ( t )  dt. 
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zero, then the problem reduces to the social planner 's  optimal growth problem. For 
example,  the presence of  the parameter ~ in (14) means that the linear approximation 
to the consumption policy function near the steady state is F~- 

4.4. The stable manifold theorem and applications to economic theory 

The analysis above is just  a simple example of  what perturbation analysis can do. 
Extending this type of  analysis to several states is important in economics. These 
additional states will arise when we include heterogeneous capital or heterogeneous 
agents to our model. In this section we review the stable manifold theorem, 4 which 
is the general statement of the linear approximation theory in dynamical  systems, 
and its applications to economics. However, we will also note that we can compute 
approximations which go beyond those derived from the stable manifold theorem. 

4.4.1. Multidimensional dynamics 

The methods used above can be extended to the case of several state variables by 
applying basic linear algebra and differential equation theory. The most used math- 
ematical  theorem in this regard is the stable manifold theorem. Suppose we have a 
dynamic system 

2 = g(z)  (18) 

with a stationary point at Z*; that is, 9(Z*) = 0. Then the local behavior of  (18) for 
Z near Z* is linearly approximated by the linear system 

= A z (19) 

where A = 9z(Z*)  and z -= Z - Z*. The solution to (19) is z(t) = e At zo .5 The 
stable manifold theorem essentially says that the local behavior of (18) near Z* is 
approximated with first-order accuracy by the local behavior of  (19). In particular, 
if  the linear system (19) has a k-dimensional  stable space near Z*, then (18) has a 
k-dimensional  stable manifold 6 near Z*. 

This is a common situation in dynamic growth models, with and without distortions. 
Let Z = (X,  Y) where X is a list of predetermined variables and Y is a list of free 
variables; we use here the terminology of  linear rational expectations models, as in 

4We shall just discuss the procedure which is .justified by the stable mmlifold theorem. An interested 
reader can find a formal statement of the stable manifold theorem in Coddington and Levinson [35]. 

SFor discrete time systems, Zt+l = 9(Zt), Z* = 9(Z*), zt+l = Azt, and zt = Atzo. 
6A stable manifold is a manifold, M, such that if z(to) is in M than Z(t) is in M for t >tl l  and 

converges to Z*. 
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Blanchard and Kahn [12], for example. The predetermined variables are the state 
variables, such the distribution of the capital stock across sectors, or the distribution 
of wealth. The free variables are the decision variables, such as consumption and labor 
supply, and prices, all of which are endogenous at each moment. Suppose that there is 
a stationary point at Z* = (X*, Y*). Then the local behavior of the system is linearly 
approximated by (19)and the solution is z(t) = e At (xo, Yo), where x - X - X*, 
y - Y - Y*, and y0 is chosen to keep z(t) bounded asymptotically. Let 3;(x0) be the 
set of all possible values for the free variables which together with the predetermined 
variables being equal to x0 will imply a bounded path for z(t). 3;(xo) may be a single 
value or a set of values. 

In many economic models, Y(x0) is a single-valued function which generates much 
valuable information, such as the dependence of prices, output, labor supply, and 
consumption on the state variables. As in the one-dimensional case, in general, they 
will allow one to compute linear approximations to the multidimensional equilibrium 
decision rules, even when the equilibrium cannot be reduced to a social planning 
problem. This procedure (which is equally valid for continuous-time and discrete- 
time systems) for computing a linear approximation is well-known; it is presented, 
for example, in detail in Chapter 6 of Stokey and Lucas [119]. Anderson [2] presents 
computer programs in Mathematica for solving such problems in discrete-time. 

4.4.2. Comparative dynamics 

The general theory of such perturbations for optimal control problems has been worked 
out in a variety of papers. Oniki [101] and Araujo and Scheinkman [3] proved that 
optimal paths were differentiable with respect to parameters. Treadway [121] and 
Mortenson [100] used a heuristic approach to derive explicit formulas for local ap- 
proximations near steady states. Lucas [92] and Otani [102] provided approximation 
formulas and formal justifications for them, the latter for the general optimal control 
problem. Caputo [25, 24] derived Slutsky - like expressions for comparative dynam- 
ics problems, and Lafrance and Barney [86] extended the analysis to the case of 
nondifferentiable constraints. 

While the tax example in (15) above was quite simple, the robustness of the method 
to dynamic equilibrium analysis is obvious. This approach has been used to analyze 
many questions in dynamic economic policy. One can add labor supply, and other 
tax instruments. Judd [66, 68, 67] used this method to calculate the marginal effi~ 
ciency cost of various tax innovations, and related impulse responses to tax changes 
for several macroeconomic variables. Laitner [87-89, 91] has written a series of pa- 
pers on comparative dynamics, and applying them to difficult problems in dynamic 
tax incidence. His work includes Overlapping generations applications of perturba- 
tion methods and large-dimension applications of the linearization procedure. Bovem 
berg [t6, 18, 17] has used these methods to analyze international economic questions. 
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He has computed the impact of taxation on capital flows, trade patterns, and terms 
of trade in dynamic models of international trade. All of these authors 7 use lineariza- 
tions around the steady state to compute quantitative estimates of the impact of policy 
shocks. It is clear that these procedures can be used to analyze models with imperfect 
competition and externalities as well. 

The linearization procedures appear to be much faster than alternative numerical 
methods, such as shooting. The disadvantage is that linearization procedures can 
produce only the first-order effects, and may miss higher-order effects. We next turn 
to that issue. 

4.4.3. Higher-order approximations 

The stable manifold theorem calculation yields just linear approximations. However, 
proceeding as we did above, one could also compute second order approximations. 
This is typically not done, but there is no theoretical difficulty. In fact, when we 
compute the second differential of (14) one finds that the differential equations for 
c~(t)  and k~(t) are the same as the differential equations for c~(t) and k~(t) in (15) 
except for different forcing terms. More specifically, if we write (15) in the form 
gc = Ax + ~(t), where x = (c~, k~), then the corresponding equation for e~(t) and 
k,~(t) has the same form except for the ~p(t) term. Since the difficult part of solving 
any linear differential equation lies in dealing with the linear operator A, we see that 
solving for c,,(t) and k,,(t) is essentially the same as solving for c,(t) and k~(t). More 
generally, the methods used in Bensoussan [ 10] presents the mathematical foundations 
for these methods in the finite-horizon case. In many models, these higher-order terms 
will be as easy to compute as the first-order effects. By adding a few higher-order 
terms to the linear term, one will end up with an accurate procedure far faster than 
standard differential equation solution methods. Below we will return to the problem 
of higher-order approximations in recursive equilibrium contexts. 

4.4.4. Determinacy of perfect foresight equilibria 

The discussion above presumed that Y(xo) is a single-valued function. There are 
many interesting cases where Y(xo) is a correspondence, indicating that there are 
many choices for Y0 which satisfy the boundedness conditions. In fact, when there 
are too few unstable eigenvalues of the Jacobian 9z(Z*), that is, the number of stable 
eigenvalues exceeds the number of predetermined variables, then Y(xo) is a linear 
space. This implies that we have indeterminacy, that is, there is a linear continuum 
of prices and/or allocations which are consistent with equilibrium. They have proven 
useful for qualitatively analyzing many issues in dynamic general equilibrium. Ke- 
hoe and Levine [79] used this approach to study indeterminacy in infinite-horizon 

7This is by no means a complete list of such analyses. 
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economic models. This, and many other papers, show that indeterminacy is possible 
in robust examples, and that the dimension of the indeterminacy can be large. Local 
determinacy of equilibrium is an important example where a key qualitative property 
of a model can be determined by straightforward computation. 

4.5. Perturbing functional equations from recursive equilibrium analyses 

A large variety of economic problems can be reduced to various kinds of functional 
equations, some more complex than the simple ordinary differential equations in time 
as in the example above. Stochastic models, in particular, do not generally reduce 
to such equations. In this section we shall take a functional approach to a simple 
growth model to illustrate the general applicability of perturbation methods to those 
functional equations arising from dynamic programming and recursive equilibrium. 

4.5.1. Stationary, deterministic growth 

We will first look at a single-sector, single good, continuous-time optimal growth 
problem, (9). The Bellman equation defining V(k)  is 

pV(k)  = max u(c)  + V ' ( k ) ( f ( k )  - c). (20) 
C 

By the concavity of u and f ,  at each k there is a unique optimal choice of c, which 
satisfies the first order condition u'(c) = V'(k) .  We will let C(k),  the policy function, 
denote that choice. (20) implies a differential equation for C(k): 

u"(C(k) )  C ' (k ) (y  - C(k))  + u ' (C(k ) ) ( f ' ( k )  - p) = O. (21) 

At the steady state, k ~ ,  f ( k  ~ )  = C(k~) ,  which, when substituted into (21) implies 
the condition p = f~(k ~)  which determines k ~.  

Our goal is to compute the Taylor series expansion of the policy function around 
the steady state. Specifically, we want to compute the coefficients of 

C(k) - C(k ~ )  + C ' ( k ~ ) ( k  - k ~)  + C " ( k ~ ) ( k  - k~)2 /2  + . . . .  (22) 

We have so far computed k ~s, C(kSS), and f '(ks~).  We next move to C'(k~s). At 
this point we must assume that C(k) is C ~ .  This assumption is clearly excessive, 
but not unrealistic if we also assume that u(c) and f ( k )  are also C ~ .  In fact, Santos 
and Vila [115] shows that if u and f are C k then the policy function is C k--z near 
any stable steady state. 
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Differentiating (21) with respect to k yields s 

0 = u" 'C 'C ' ( f  - C) + u " C " ( f  - C) + u"Ct ( f '  - C') 

+ u' t ( f '  - p) + u ' f  t' 

which holds at each k and at the steady state, k ~,  reduces to 

(23) 

0 = - u " ( C ' )  2 + u ' lCt f  ' + u ' f " .  (24) 

Hence C ~(h ss) must solve the quadratic equation (24), implying 

C' = u " f '  ± V / ( u " f ' )  2 + 4u"u t f "  

2u" 
(25) 

where all derivatives are evaluated at the steady-state levels for the capital stock and 
consumption. Since u and f are increasing and concave, (25) has two real solutions 
of  opposite signs. Since C r > 0 is known, we choose the positive root. 

To demonstrate the ease with which higher-order terms can be calculated, we next 
compute C"(kSS). Differentiating (23) with respect to k and imposing the steady state 
conditions yields an equation linear in C"(k~Q. Therefore, solving for CH(k ~)  is 
easier than solving for C'(k~) .  In fact, the solution for C"(k ~)  is 

C,,(k~s) = 2(p - C')u'"C'C'  + 3 u " C ' f "  + u ' f ' "  
u"(3C' - 2p) 

where all functions are evaluated at h ss. Note that the solution for C"(k  ~ )  involves 
C ( k ~ ) .  The critical simplifying feature is that once we have solved the quadratic 
equation for C'(k~) ,  we have a linear equation for C"(k~S). Similarly, continued 
differentiation of  (21) shows that every other derivative of C at k ~ can be defined 
linearly in terms of the steady-state derivatives of  u, f ,  and lower order derivatives. 

Judd and Guu [75] present Mathematica programs which compute arbitrary order 
Taylor and Pad6 expansions based on the derivatives of C at the steady state. Judd [74] 
shows that the 100 degree polynomial approximation to C is easily computed via a 
recursive formula. Table 1 displays the results for a variety of approximations. The 
assumptions are that u(c) = c('+'Y)/(1 + 7) and f ( k )  = pUVc~ with p = 0.04, 
7 = - 2 ,  and c~ = 0.25. To evaluate the quality of the approximations, we compute a 
normalized, unit-free version of (21), which is the Euler equation error 

E(k)  = u ' r ( c (k ) )  C' ( k ) ( f  - C(k)) + u ' (C(k) ) ( f ' ( k )  - p) 
(26) 

8We drop arguments when they can be understood from context. 
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Table 12.1 displays E(k )  for various degrees of  approximation, and types of ap- 
proximation. The notation a ( - n )  denotes a x 10 -n .  The theoretical properties of  
the Taylor and Pad6 approximations are displayed in this example. As the degree of 
approximation increases, both approximations improve at all capital stocks in [0, 2]. 
Outside of  [0, 2], the Taylor approximation is poor and getting worse; however, the 
Pad6 approximation is doing very well even at k = 3 when n = 15. 

Table 12.1 
Eulerequation errors 

k n = 6  n = 1 0  n = 1 5  
Taylor Pad6 Taylor Pad6 Taylor Pad6 

0.1 9.7(--1) 2 .7(-1)  5.2(-1) 3,0(-2) 2.6(-1) 1.5(-3) 
0.3 6.3(-2) 5.0(-3) 1.2(--2) 5,3(-5) 1.6(-3) 1.3(-5) 
0.6 6.2(--4) 1.5(-5) 1.2(--5) 5,5(-9) 1.0(-7) 6.3(-8) 
0.8 3.6(-6) 4.7(-8) 4.4(-9) 1,5(-12) 1.2(-12) 7.8(-9) 
1.0 0(0) 6.3(-16) 0(0) 6,3(16) 0(0) 0(0) 
1.3 3.6(-5) 1.5(-7) 2.3(--7) 3.8(-12) 4.6(-10) 7.9(-10) 
1.6 3.7(-3) 8.7(-6) 3.7(-4) 2.2(-9) 2.4(-5) 1.4(-9) 
2.0 1.0(-1) 1.3(-4) 7.9(-2) 1.5(.-7) 6.8(-2) 3.1(-9) 
2.5 9.6(-1) 8.7(-4) 7.9(-1) 3.0(-6) 1.7(2) 7.1(-9) 
3.0 4.3(1) 3.0(-3) 1.3(3) 2.0(-5) 7.1(5) 3.7(-8) 

Just becausethe  Euler equation error is small does not imply that the approximation 
is close to the true solution. We make two points. First, in this case, we can check for 
accuracy and we do find that the Euler equation error is a good indicator of accuracy. 
Second, if the Euler equation errors are small then the associated decision rule is one 
in which the agents are making decisions which are nearly optimal in the sense that 
the gain from doing the exactly optimal action improves the agent 's welfare slightly. 
Since computation is costly for economic agents, we can only expect them to follow 
rules which are nearly optimal, and the appropriate sense of nearly optimal is not the 
distance from their decision and the optimal decision but the value to the agent of 
determining and taking the optimal action. 

4.5.2. Non-steady state perturbations 

The examples above computes a Taylor series for C(h) around a particular capital 
stock, the steady state. There are other formulations which can also produce useful 
approximations. Recall that perturbation methods begin with a soluble case out of a 
continuum of cases, and uses differentiation to produce an approximation based on the 
soluble case. Instead of constructing an approximation based on knowing the value 
of C at some point, we can begin with a case where we know the entire solution 
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and use that case to construct approximations. An example of  this alternative is the 
continuum of problems 

0 = C' (k ,  e) ( f ( k ,  e) - C(k ,  e)) + 7C(k ,  e) (p - f ' ( k ,  e)) (27) 

where 3' is the constant relative risk aversion parameter, and 

f ( k ,  e) = (1 - c)pk + ~k°~p/oe. 

At e = 0, we hav~ a linear production function with a marginal product of  capital 
equal to p, the pure rate of time preference; in this degenerate case, the solution is 
C(k ,  e) = pk, that is, consumption equals output. At all positive values for c, the 
production function is concave and the unique steady state is k = 1. Suppose that 
we are really interested in the e = 1 case where f is the standard Cobb-Douglas 
production function. 

The first perturbation of  (27) implies that for all k and e, 

0 = Cke( f  - C) + Ck(f~ - C~) + "TCe (p - A )  + "TC ( - f a t ) .  

which at e = 0 and C = pk reduces to 

o = C k ( A  - + z C  

and implies the solution 

c (k, 0) = - '  - 7)  + ( z p  - p )k .  

Continued differentiation will yield more terms which can be use in a Taylor series 
approximation for the Cobb-Douglas production function (c -- 1) case of the form 

C ( k , l ) -  C ( k , O ) + C ~ ( k , O ) + C ~ ( k , O ) / 2 + C ~ ( k , O ) / 6 + . . . .  (28) 

Note that this approximation is an approximation at all k, and theory tells us that it 
is good only for small c. To determine how good this approximation is for C(k,  1) 
we could substitute it into the Euler equation and check to see if the Euler equation 
errors are small. They often turn out to be acceptable, but we will see below that even 
if (28) does not solve (27) well, the C~(k, 0), C~(k ,O) ,  etc., functions can still turn 
out to be very useful. 
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4.5.3. Single-sector, stochastic growth 

We next take the deterministic model above, add uncertainty, and show how to use 
the approximation to the deterministic policy function around k ss in the deterministic 
case to compute an approximate policy function in the model with a small amount of  
uncertainty. While the assumption of small shocks may seem limiting, it is sensible 
in many applications, such as macroeconomic and related financial analysis. 

The stochastic problem is 

{/o } V(k)  = s u p E  e -or u(c) dt , 

dk = ( f ( k )  - c)dt + ~ d z .  

(29) 

The Bellman equation becomes 

0 = max [ -pV(k )  + u(c) + Vk(k) ( f (h)  - c) + ec~ (k) Vkk (k)]. 
C 

It is straightforward to show that C(k) solves 

o -  ~(k)~'"(C(k))  + ¢(k) ~"(C(k)) + ,y(k) ~'(C(k)) (30) 

where 

~(k) = ~ ( k )  [c'(k)] 2, 

¢(k) = [f(h) - h(k) + ea'(k)] C'(k)  + ecr(k) C"(k) ,  

-y(k) = f ' (k)  - p. 

Formally, we are again looking for the terms of  the Taylor expansions of  C, 

C(k,  e) -- C(kSs, O) + Ck(kSS,0)(k - k ~ )  + C~(k~S,0)~ 

+ Ckk(k% 0)(k - k ~ ) 2 / 2  + C~k(k ~s , 0)~(k - k ~ )  

+ C~(k  ~,0)e2/2 + . . . .  (31) 

Before proceeding as before, we should note that the validity of these simple methods 
in this case is surprising. Note that (30) is a second order differential equation when 
e ~ 0, but that it degenerates to a first-order differential equation when e = 0. 
Changing e from zero to a nonzero value is said to induce a singular perturbation 
in the problem because of this change of order. Normally much more subtle and 
sophisticated techniques must be used to use the e = 0 case as a basis of  approximation 
for nonzero c. The remarkable feature of stochastic control problems, proved by 
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Fleming [48], is that this is not the case here, that perturbations of  e, the instantaneous 
variance, can be analyzed as a regular perturbation in e. 9 

With Fleming's analysis in hand, we will now proceed. We assume that we know 
all the k derivatives of  C at k = k 8s and e = 0. This is what the previous section on 
deterministic problems produced. We now move to computing C, by differentiating 
(30) with respect to e. When we impose the deterministic steady state conditions 
f ( k  ss) = C(kS~), f ' ( k  ~ )  = p, and c = 0, we arrive at a linear equation which 
implies that 

I t l .r"¢ 2 
C e -  u t~ k +Ckk 

u"Ck or(k) + a'(k) (32) 

where all the derivatives of  C are evaluated at k = k s8 and e = 0. Note that the 
solution for C, is a function not only of  the deterministic steady state value of u, 
u t, and u",  it also depends on u m, and Ckk, which in turn depends on fro. If  u 
were quadratic, f linear, and ~r~(k) = 0, then (32) shows that C, = 0, as we expect 
from the certainty equivalence results for linear-quadratic control. Again, continued 
differentiation of  (30) with respect to e and k leads to solutions for C~,  C~k, Ck~,, etc. 
Judd and Guu [75] present Mathematica programs for computing these coefficients. 
They also show that the approximations are valid over a substantial range of values 
for e and k. 

4.5.4. Dynamic programming 

The optimal growth examples above are just special cases of dynamic programming 
problems. Albrecht et al. [1] showed that one could differentiate the Bellman equa- 
tion with respect to an exogenous parameter. Even the higher-order aspects of the 
computations above can be justified. Blume, Easley and O'Hara  [14] discuss when 
dynamic programming solutions are smooth in the state variables. Bensoussan [10] 
also provides a general treatment. 

4.5.5. Adjustment cost models 

The problems above were based essentially on first-order conditions. We can apply 
perturbation methods to other problems which are not as simple. Dixit [44] studied 
the dynamics of  models where a controller wants to keep the state of a system close 
to some optimal value and incurs a fixed adjustment costs whenever he adjusts the 
state. This leads to (S, t, s) rules; that is, when the state moves up to S or down 
to s the controller incurs the adjustment cost and pushes the state to a target t. 

9A more modem analysis of this problem relying on viscosity methods instead of probabilistic methods 
is in Fleming and Souganides [49]. Their approach is also more general, possibly including distorted 
economies. 
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There are many models which fit this description, but they seldom have analytical 
solutions to the problem of determining S, s, and t in terms of structural parameters. 
Dixit used perturbation methods to derive algebraic formulas for S and s in terms 
of structural parameters. He also demonstrates that first-order approximations yield 
very good approximations when the adjustment cost is empirically reasonable. On 
the qualitative side, he makes rigorous the fact that the region of inaction, S - s, is 
quite large for small variance; more precisely, he proves a fourth-power law which 
states that S - s e(  c 1/4 when the adjustment cost is c. This result is quite important 
since it says that the region of inaction is quite large relative to the cost for small 
costs. Dixit [44] discusses a number of applications of this result. This is an excellent 
example of how one can use the perturbation method to get an analytically simple 
rule of thumb which provides important intuition about a problem. 

4.5 .6 .  S t o c h a s t i c  e q u i l i b r i u m  ana lys i s  w i t h o u t  P a r e t o  e f f ic iency  

Many equilibrium problems do not reduce to optimal control problems, such as dy- 
namic equilibria with taxation or money. While the discussion above concerned an 
optimal control problem, the same methods can be used to study the behavior of an 
economy distorted by taxation. The basic fact is that near the deterministic steady 
state, the linear approximation to the law of motion in the stochastic model is 

d x  = A ( x  - ( x  ~ - A ) )  d t  + 52 d z  (33) 

where A is the linearization of the deterministic model and S is the covariance 
matrix of the shocks to the state. In the deterministic model, x ss is the target state 
and A "pushes" the state towards the target. This expressions shows that the linear 
approximation to the stochastic model involves the same linear law of motion locally 
but with a new target, where the adjustment A arises due to certainty nonequivalence. 

With this observation, Balcer and Judd [4] studied the effects of taxation in a simple 
capital accumulation model where (33) reduces to 

dk = A(k - (k ss - A))dt  + Z d z  (34) 

where ~ is the negative eigenvalue of the linearization of the dynamic system de- 
scribing the taxed equilibrium (similar to (10)). Therefore, the effects of taxation on 
business cycle fluctuations reduce to its effect on ~. They show how the level and the 
composition of the effective tax rate affect important business cycle statistics. 

One can also compute equilibrium utility under distortions. If we have a tax of ~- 
on all income but have all revenues rebated in a lump-sum fashion, the equilibrium 
value function is 

. v (k )  = ~(c(k)) + Vk(k) (f(k) - C ( k ) )  + c~ (k)Vkk(k). (35) 
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An optimal policy chooses consumption to maximize the fight-hand side, but the 
equilibrium policy under taxation does not. To see the difference, recall that the de- 
terministic steady state is the k ~- which satisfies i f ( U )  = p/(1 --r) in the deterministic 
case. Then, differentiating (35) with respect to k yields 

pVk(k) = u'Ck + Vk(k) (f f  - Ck) + Vkk(f  -- C) (36) 

which reduces at k ~- to 

u ' - V k =  V k ( f ' - p )  Vk r 
Ok = P C'k 1 - ~- 

which shows that the social marginal value of capital deviates from marginal utility 
of consumption when the tax rate is not zero. 

This fact is important when we come to evaluate the impact of uncertainty on the 
equilibrium value function. Differentiating (35) at e = 0 and k = k ~- we find 

pYo = ( u ' -  v k ) c ,  +~Vkk (k )  (37) 

which implies that the true first-order approximation to V around the deterministic 
steady state is 

V(k ,  ~) - (k - k ' )Vk + ~((~' - Vk)C~ + ~ Vkk(k))/p.  (38) 

This shows that the impact of uncertainty on the equilibrium value function depends 
on the degree of certainty nonequivalence, C,, when the tax rate is nonzero, and that 
dependence increases with increasing taxation. This is an example of a question where 
certainty-equivalent methods of approximating a stochastic economy will not produce 
reliable, first-order accurate answers. 

4.5. 7. Multidimensional, high-order approximations 

The examples explored above have only one dimension. These methods can be ex- 
tended to multidimensional problems, yielding high-order approximations to multidi- 
mensional problems. Bensoussan [10] discusses these problems for the finite-horizon 
case, and Judd [74] presents these procedures for the infinite-horizon case. A nontrivial 
difficulty in dealing with the higher-order approximations is the messy notation asso- 
ciated with multivariate versions of Taylor's theorem. Judd [74] extends the Einstein 
tensor notation, which was introduced to drastically simplify expressions in general 
relativity theory, to make these higher-order approximation techniques in optimal con- 
trol contexts more tractable. Judd [74], following Fleming [48], further extends the 
multidimensional case to include uncertainty. The basic fact is that all the higher- 
order terms of the Taylor series expansion, even in the stochastic multidimensional 
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case, are solutions to linear problems once one computes the first-order term in the 
state variables. This indicates that the higher-order terms are easy to compute. Initial 
experiments indicate that they are also good approximations well beyond the steady 
state values. These procedures have not been exploited much, but can be obviously 
applied to problems in the real business cycle, finance, public finance, and dynamic 
general equilibrium literatures. 

The other development is the work of Fleming and Souganides [49]. They derive 
asymptotic results for problems written in viscosity form. One advantage of these 
problems is that they can handle infinite-horizon problems, whereas the results de- 
scribed in Bensoussan are proven mostly for finite-horizon cases. While discussing 
viscosity, a relatively recent advance in nonlinear partial differential equations, is be- 
yond the scope of this paper, we should note that these methods surely cover the 
equations which arise in dynamic programming, and might generalize to cover equi- 
librium problems. 

4.5.8. Dynamic games 

Perturbation techniques can also be used to analyze dynamic games. Because of the 
notational burden of a formal treatment, I will here just give the basic idea behind 
the perturbation approach. Suffice it to say here that we are discussing dynamic 
game equilibrium concepts which can be written as solutions to ordinary or partial 
differential equations, or some similar system of functional equations. 

As with any perturbation method, we begin with a "point" (possibly in a function 
space) where we know the solution. In game theory, such cases do arise. For example, 
suppose that we have two players who each influence their own state variables, but 
that the payoff functions and the laws of motion are such that neither player is affected 
by the actions of the other. This would, for example, be the case of two differentiated 
duopolists where the cross-elasticity of demand is zero, and the state variable of the 
game is the vector of the firm's capital stocks. Then the equilibrium of such a "game" 
is trivial, reducing to an optimal control problem for each player. Using the techniques 
above, we can compute local approximations for each player's strategy around steady 
states of the degenerate game. 

Now suppose that the payoffs and/or laws of motion are slightly perturbed so that 
each player now cares about the other's actions. By differentiating the functional 
equations which characterize equilibrium with respect to the perturbation parameter 
and imposing the implicit function theorem and Taylor's theorem, we will be able to 
compute how equilibrium is affected by the alteration. 

Another kind of starting point is to specify a game with general interactions, but 
make some parametric assumption such that the players have no interest in the dy- 
namics. This is the case when the interest rate is infinite. In such cases, the dynamic 
game reduces to a static game and, in equilibrium, neither player expends any effort to 
affect the future. With this degenerate case in hand we can then compute expansions 
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in the inverse of the interest rate to determine what happens as the firms begin to care 
about the future. There are two examples of papers using these methods. 

Judd [69] applied Theorem 4 to a patent race model. He assumed a duopoly model 
where the players had two kinds of research strategies and it is necessary to complete 
a sequence of steps. Analytic solution of such a general problem is clearly impossible. 
He began by assuming that the patent race had a zero prize for the winner, which, of 
course, implies a Nash equilibrium of no effort. This is also equivalent to the infinite 
interest rate case. He then proved local existence of equilibrium as well as constructed 
local linear and quadratic approximations. 

Budd et al. [23] contains the most complex perturbation analysis of a dynamic 
game. They analyzed a stochastic market share duopoly game. Specifically, current 
profits for each firm is a function of firm one's market share, s, which is the state of the 
game. Each player expends effort to increase his share, which moves stochastically. 
The result is a stochastic dynamic game. The two degenerate cases they use are the 
infinite interest rate case and the case of infinite instantaneous variance of random 
movements in s. In these cases the firms either don't care about future market share 
or essentially have no control over future market share, implying a Nash equilibrium 
of zero effort. They compute asymptotic expansions in the inverses of the interest 
rate and the disturbance variance. With these expansions they are able to examine the 
dynamics of competition, determining when, for example, the laggard firm will work 
hard to catch up, when the leading firm will work hard to keep its advantage, etc. 

There have been few applications of perturbation methods to game analyses thus 
far, but they do indicate the potential of the method. Srikant and Basar [118] develops 
regular perturbation methods for a large class of dynamic games different from those 
examined in Judd and Buddet al. Given the general applicability of these methods, the 
increased interest in dynamic econometric analyses, and the difficulties of game theory 
computation, one suspects that these procedures will become increasingly popular. 

4.5.9. The macroeconomic "Linear-quadratic approximation" 

The perturbation methods described have been used to approximate a wide variety 
of optimal control and economic equilibrium problems, and can be used much more 
extensively. While many macroeconomists have also studied stochastic growth models, 
many have eschewed the procedures above and instead use ad hoc procedures which 
replace nonlinear growth models with hopefully similar linear-quadratic models. Since 
the latter strategy bears some similarity to perturbation methods and often uses similar 
terminology, we will next describe it and discuss the many differences between it and 
perturbation methods. 

As discussed in Magill [93] and Kydland and Prescott [84, 85], one basic idea 
is to replace a stochastic nonlinear control problem with a "similar" linear-quadratic 
control problem which "approximates" the nonlinear model, and then apply linear- 
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quadratic methods to solve the model)  ° This procedure is described precisely in 
McGrattan [95]. 11 She takes the nonlinear stochastic optimal control problem 

V(z0) -- m a x E  tTr(u,x) , 
U t  

z~+l = g(z~, ut ,  ct) 

(39) 

where x is a vector of state variables, u is a vector of controls, and 7c is concave. She 

solves for the steady state of the deterministic version of (39), and replaces (39) with 

the linear regulator problem 

! 
V(xo) =-- max E /3 t (xtQxt + u~Rut + 2x~Wut) , 

Ut 

Xt+l = Axt  + But  + Cet 

(40) 

where x~Qx + u~Ru + 2x~Wu is the second-order Taylor expansion of 7r, and 

A x  + Bu  is the first-order Taylor expansion of 9, both taken at the deterministic 

steady state. 12 

The linear-quadratic procedure outlined in McGrattan [95] differs from the pertur- 

bation method in its approach, objective, and results. Despite using the term "lineal" 

approximation," the objective is not to compute a locally valid Taylor series for the 

equilibrium behavior rules. In fact, this procedure may produce an "approximation" 

which differs substantially from the Taylor series produced by perturbation methods. 
This is immediately seen by applying it to (29): f " ( k  ss) appears in the solution to 

C~(k ~)  in (25) but appears nowhere in (40) after we apply McGrattan's procedure 

to (29); therefore, the linear decision rule computed by McGrattan's method applied 

to (29) would not be the linear approximation of the true decision rule at the steady 

state, (22), even in the deterministic model. In fact, those who use this procedure 

raThe procedure described here is applicable only to optimal control problems, and those equilibrium 
problems which reduce to optimal control problems. 

l IWhile many have used the "linear-quadratic" method, McGrattan's is the only precise statement of 
the procedure for the general discrete-time multidimensional control problem which I have seen in the 
published literature. The Magill procedure is the correct procedure, differs from McGrattan, but has been 
largely ignored. 

12Kydland and Prescott use a slightly different procedure. They choose linear rules which satisfy the 
Euler equation at a collection of points near the steady state, where the collection is determined by the 
variance of the shocks. In this respect, their procedure is similar to the projection method we discuss below. 
They comment that in the case they examine, the differences are slight, but there is no reason to believe that 
this is always true. I include their procedure here since their stated goal is to simplify "the determination 
of the equilibrium process by reducing it to solving a linear-quadratic maximization problem". 
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generally make no claim that they are computing the linear approximation of the true 
decision rule. 

If one were to use investment instead of consumption as the decision rule in (29) 
then the result from McGrattan's procedure does yield the true linear approximation 
in many cases (further work is needed to see how general this fact is). This does 
not say that McGrattan's procedure is correct. Instead it points out an undesirable 
sensitivity to economically inessential details in the formulation of the problem. In 
contrast, perturbation methods are not sensitive to such changes. 

No matter how one proceeds, the approach in McGrattan, Magitl, and Kydland 
and Prescott, makes no adjustment for variance. The approximation is a certainty 
equivalent approximation even though the true problem is generally not certainty 
equivalent. At best, this procedure computes the first two terms of (31) above but 
drops the third and later terms. The result is only half of the true linear approximation 
at the deterministic steady state since the approximation includes the linear Taylor 
expansion term for the state variables but excludes all Taylor expansion terms for the 
variance terms. Multidimensional generalizations of the rules computed in Judd and 
Guu [75] have no such problems. 

This intuitive way of approaching the problem can lead to some conceptual prob- 
lems in thinking about approximations. The linear-quadratic intuition behind (40) 
says to replace a nonlinear problem with a similar linear-quadratic problem because 
the latter is solvable. Suppose that you wanted a higher-order approximation of the 
optimal decision rule. This approach suggests that the way to compute a quadratic 
approximate decision rule would be to take a third-order polynomial approximation 
of the objective around the deterministic steady state and solving exactly the resulting 
cubic optimal control problem. Of course, there is no exact solution in general for 
third-order problems, making it appear difficult to compute a quadratic approximation 
to the decision rule. In contrast, the perturbation methods described above show that 
the higher-order terms are in fact easy to compute. 

Christiano [30] adopts a different approach to the "linear-quadratic" approach. He 
writes down the Euler equations for the nonlinear model in the form (18), and then 
linearizes these equations around the steady state to create a linear system of the form 
(19). Two comments are in order. First, this essentially reduces the problem to a calcu- 
lus of variations problem. Since this cannot be done for all optimal control problems, 
this approach is limited. However, it is justified by the stable manifold theorem. Sec- 
ond, he also imposes certainty equivalence on his approximation to stochastic models. 
Therefore, he also ends up with only a "half-linear" approximation. 

Dotsey et al. [45], Christiano [30] and McGrattan [95] have documented the qual- 
ity of some implementations of the macroeconomic linear-quadratic approach. The 
results follow what one would expect from the perturbation analysis. The Christiano 
and McGrattan implementations of the linear-quadratic method do fairly well when it 
comes to modeling movements of quantities, but not as well with asset prices. This 
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is expected since perturbation methods show that the linear approximation of quan- 
tity movements depend on only linear-quadratic terms whereas asset pricing move- 
ments are more likely to involve higher-order terms. In particular, the extra terms 
produced in Judd and Guu [75] show that the deviations from certainty equivalence 
depend on higher-order derivatives of the utility function. The linear-quadratic ap- 
proximation also does less well as the variance of the productivity shocks increases 
since the linear-quadratic approach ignores the effects of the variance on the decision 
rules. 

The linear-quadratic scheme in (40) is used to solve for equilibria which solve a 
social planning problem. Macroeconomists have devised complex iterative schemes to 
compute equilibria of distorted economies. They also revolve around linear-quadratic 
approximations of the individual agents' problems (see, for example, Cooley and 
Hansen [37]). These procedures are offered without any rigorous justification, and 
offer no reason why they should be used instead of the earlier linearization methods 
derived from standard mathematical methods. As pointed out above, the standard 
perturbation methods used by Laitner, Judd, Bovenburg, and described in Stokey and 
Lucas will compute first-order valid linear approximations in nonlinear equilibrium 
models, and do so in a nonrecursive, hence much faster, fashion. 

Furthermore, the problems with this macroeconomic approach are even greater 
when dealing with distorted models. These approximations also ignore the impact 
of variance. The point of many of these exercises is to compute the welfare effects 
of various policies. This requires the computation of an equilibrium value function. 
We saw above that the first-order approximation to such functions, (38) includes the 
deviation from certainty equivalence when taxes are present. Therefore, their compu- 
tations of utility are not reliable. Another example of the inadequacy of an informal 
approach is in Chari et al. [27]. They show that the resulting "linear approximation" 
does poorly relative to a global nonlinear procedure. Since they do not take an explicit 
perturbation approach (that is, formulate it as an application of the implicit function 
theorem or one of its generalizations, and compute an appropriate number of terms), 
this is not evidence against the use of perturbation methods, only against the informal 
approach they use. 

4.5.10. Linear model computation 

The linear approximation approach could also be used, but has been overlooked, when 
it comes to the analysis of linear-quadratic models. The idea is simple: if one has 
a model with a deterministic steady state and globally linear equilibrium behavioral 
rules, then the linear rules which are locally valid near the steady state are the globally 
valid rules. All of the perturbation methods outlined above are direct, noniterative, 
methods in contrast to the complex, iterative procedures often used by economists to 
solve linear dynamic economic models. 
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5. Bifurcation methods 

Sometimes we will want to compute an approximation to an implicitly defined function 
at a point where the conditions of the Implicit function theorem do not hold, in 
particular when Hy(xo,  yo) is singular. In some cases, there is additional structure 
which can be exploited by bifurcation methods, to which we now turn. 

Suppose that H ( x ,  e) is C 2. One way to view the equation H ( x ,  e) = 0 is that 
for each e it defines a collection of x which solves the equation. We say that e0 is 
a bifurcation point if the number of solutions to H ( x ,  e) = 0 changes as c passes 
through co. Two situations are summarized in the following theorem. 

THEOREM 5 (Bifurcation theorem). Suppose H ( x ,  O) = O for  all x, where H : R 2 -+ 
R. Furthermore, suppose that 

H (xo,O)=O =H,(xo, O), 

f o r  some (xo, 0). Then, /f Hcc(xo, 0) ~ 0, there is an open neighborhood A/" of  (x0, 0) 
and a function h(e), h(e) 7 ~ O for  e ~ O, such that 

H ( h ( e ) , e )  = 0 on A f  

and H ( x ,  e) is" locally diffeomorphic to e ( e - x )  or e (e+x) .  Otherwise, i f  H, , (xo ,  O) = 
0 ¢ H ~ ,  (x0, 0), then there is an open neighborhood .Af of  (x0,0) and a function 
h(e), h(e) 7/= O fo r  e ~ O, such that 

H ( h ( , ) , , )  = 0 on N 

and H ( x ,  e) is locally diffeomorphic to e 3 - xe or e 3 + xe. In both cases, c = 0 is a 
bifurcation point. 

It may seem that Theorem 5 has limited applicability given its low-dimension 
character. Fortunately, there is a procedure, the Lyapunov-Schmidt  method, which is 
used to transform high dimension (even infinite dimension) problems into appropriate 
low-dimension problems at which point one applies the procedures above. This greatly 
increases the applicability of this approach. 

Theorem 5 also seems limited in that H has domain R 2. Theorem 5 generalizes 
to H : R n+1 --4 R ~. Furthermore, the Bunch theorem (see Zeidler) generalizes the 
bifurcation methods in Theorem 5 to allowing both x and e to be in Banach spaces. 
Space limitations prevent our discussing these generalizations here, but below we will 
see that economic applications are obvious. 

There are many kinds of  bifurcations; the simple ones in Theorem 5 are referred 
to as the transcritical and pitchfork bifurcations. Another, more complex, bifurcation 
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which arises naturally in economics is the Hopf bifurcation. We present the statement 
in Benhabib and Nishimura [9]. 

THEOREM 6 (Hopfbifurcation). Suppose that {c = [i'(z,#), z E G C R n, # E 
[-c, c]C R, F E C k. Suppose that there exists stationary solutions, that is, for I~1 
< c, there is ~(#) such that F(2(#),  #) = O. Suppose that the Jacobian Fx(2(#), #) 
has a parametric pair of eigenvalues which can be expressed as a(#) 4-/3(#)i where 
a(O) = O, /3(0) ¢ O, and a'(O) ¢ O. Then there exists a family of parametric so- 
lutions z(t ,  e) and #(e) of ~c (t, e) -- F(z( t ,  e), t~(e)) such that z(t,O) = "z(O) but 
z( t ,e)  7 ~ Y(#(e))for  e ¢ 0. Furthermore, #(c) is C k- '  and the period of the cycle 
is 27r/ t/3(0)t. 

The result stated above is just a first-order result; higher order approximations are 
available. There are also conditions which guarantee that the periodic solutions are 
stable orbits. There are further generalizations of the Bifurcation Theorem which cov- 
ers cases where there are many nondegenerate branches passing through a bifurcation 
point. Such cases may correspond naturally to multiple equilibria in economic models. 
For a more complete discussion of these issues see Zeidler [128], Chow and Hale [34] 
and Golubitsky and Schaeffer [53]. 

5.1. Applications of the Hopf bifurcation to dynamic economic theory 

The Hopf bifurcation has been extensively used to study the possibility of deterministic 
cycles in economic models. Benhabib and Nishimura [9] explored the possibility of 
cycles in multisector growth models. They showed how to use the Hopf bifurcation to 
check for the presence of Hopf bifurcations and offered plausible numerical examples 
of Hopf bifurcations in optimal growth models. Zhang [131] presented a simplified 
version of this analysis and also showed how to compute expressions for the period 
of such cycles and how to check their stability. 

The Hopf bifurcation has also been used in Industrial Organization theory. Feich- 
finger [46] used the Hopf bifurcation in a dynamic model of advertising to argue that 
cycles in advertising expenditure were quite plausible. The Hopf bifurcation has also 
been used to analyze general equilibrium with financial imperfections. The theme of 
these papers is that while the equilibrium dynamics of an economy may be stable 
with perfect capital markets, capital market imperfections may lead to more complex 
dynamics. Again, the Hopf bifurcation is used to demonstrate the existence of stable 
cycles. These papers include Franke [50], who investigated a Keynes-Wicksell model 
with adaptive expectations for inflation and found that periodic orbits were possible. 

There are possibly many other applications of the Hopf bifurcation. Most dynamic 
analyses examine only the steady state, not its local dynamic structure. At the least, 
one can check the local linear structure to see if the number of stable and unstable 
eigenvalues is consistent with local asymptotic stability. Since stable cycles are often 
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associated with unstable steady states, the presence of too many unstable eigenvalues 
should lead an analyst to check for the possibility of  a nearby Hopf bifurcation. Since 
this checking is purely an algebraic exercise, easily done by symbolic computation 
methods, such checks should become standard. 

5.2. Gauge functions 

The methods described above, commonly referred to as regular perturbations, compute 
Y~'~i=l aieL are where we expansions of  the form ~ " There many cases will want to 

compute different expansions. In general, a system of gauge functions is a sequence 
of  functions, {Sn(e)}~°°__ 1, such that 

lim ~n+l(e) _ 0. 
~-~o O~n (~) 

An asymptotic expansion of f (x)  near x = 0 is denoted 

f (x)  ~ f(O) + ~ a i S i ( x )  
i=1  

where, for each n, 

lim f (x)  - ( f (0)  + Y~-a ai 5~(x)) = 0. 
• -~o 6~(x)  

In regular perturbations, the sequence of  gauge functions is 5k(e) = e k. Another 
example of a gauge system is 5k(c) = c k/2. In many problems, the main task is 
determining the correct gauge system. The next sections present examples of  this 
more general problem. 

5.3. Bifurcation applications to stochastic modelling 

Whereas the Hopf  bifurcation is useful in analyzing deterministic systems, the simpler 
pitchfork and transcritical bifurcations examined above in Theorem 5 can be used to 
study stochastic problems. In this section, we will illustrate this with two examples. 
First we will discuss the details of  a simple portfolio problem. Second, we will discuss 
a much more sophisticated application. 

5.3.1. Por(olio choices with small risks 

Suppose that an investor has W in wealth to invest in two assets. The safe asset yields 
R per dollar invested and the risky asset yields Z per dollar invested. If  a proportion 
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co of  his wealth is invested in the risky asset, final wealth is Y = W((1 - c o ) R + c o Z ) .  

We assume that he chooses co to maximize E { u ( Y ) }  for some concave utility function 
~(.). 

One way in which economists have gained insight into this problem is to ap- 
proximate u with a quadratic function and solve the resulting quadratic optimization 
problem. It is argued that this is valid for small risks. The bifurcation approach allows 
us to examine this rigorously. We first create a continuum of portfolio problems by 
assuming 

= R + e5 + e2¢c. 

At e = 0, Z is degenerate and equal to R. If 7r > 0, we model the intuitive case 
of  risky assets paying a premium. Note that we multiply £ by e and 7r by e 2. Since 
the variance of  ez is e 2 a2, this models the observation that risk premia are the same 
order as the variance. 

Judd and Guu [77] applied the Bifurcation theorem to this problem, producing 
a procedure which involves solving only linear equations and which can be used 
for noncompact distributions. We will briefly outline their analysis. The first-order 
condition for co is (assuming W = 1) 

o - E{~ ' (R  + co(~z + ~2.)) (z + ~ ) }  - G(co, ~). (41) 

We want to analyze this problem for small e. We cannot apply the implicit function the- 
orem since 0 = G(co, 0) for all co implying that co is indeterminate at e_ = 0. Since we 
want to solve for co as a function of e near 0, we first need to compute which of these 
co values is the "correct" solution to the e = 0 case; specifically, we want to compute 

lira t" \ 
coo ~- co<e). 

Implicit differentiation of (41) implies 

0 = G~ co' + G~. (42) 

Differentiating G we find 

Ge = E { u " ( Y )  (coz + 2coeTr) (z + eTr) + u '(Y)zr},  

G~ : E{~" (9 )  (z + ~)2~}. 

At e = 0, G~ = 0. co'(0) can be well-defined in (42) only if G~(co, 0) = 0 also. 
Therefore, we look for a bifurcation point, coo, defined by 0 = Ge(coo, 0). At e = 0, 
this reduces to 0 = u"(R)coo~z 2 + u'(R)Tr, which implies 

c o o -  ~ ' ( R )  ~z 2" 
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This is the simple portfolio rule indicating that co is the product of risk tolerance 
and the risk premium per unit variance. If coo is well-defined, then this must be its 
value. Since the conditions of tile Bifurcation theorem are satisfied at (coo, 0), there 
is a function co(e) which satisfies (41) and goes through (w0, 0). 

Note that this is not an approximation to the portfolio choice at any particular 
variance. Instead, coo is the limiting portfolio share as the variance vanishes. Some 
authors treat this as an approximation to the true solution, co(e), for small c. That, 
however, is not the case. If we want the linear approximation of co(e) at (coo, 0), we 
must go one more step since the linear approximation is co(e) - co(0) + e w'(0). To 
calculate co'(O) we need to do one more round of implicit differentiation. Differentiat- 
ing (42) with respect to c yields 0 = G ~  colw ~ + 2G,o~ co! + G~oco" + G~. At (coo, 0), 
G~ = u'"(R)co~ E{z3},  G ~  = O, G ~  = u"(R)  E{z2}.  Therelbre, 

1 ,.'"(R) E{z 3} 
co'(o)-- 2 E{z2} cog 

This formula tells us how the share of wealth invested in the risky asset changes as 
the riskiness increases, highlighting the importance of the third and second derivatives 
of utility and the ratio of skewness to variance. If the distribution of the risky asset is 
symmetric, then E { z  3 } = O, and the constant coo is the linear approximation of co(e). 
This is also true if urn(R) -=- O, such as in the quadratic utility case. However, if the 
utility function not quadratic and the risky return is not symmetrically distributed, then 
co~(0) ~ 0, and the linear approximation is a nontrivial function. Note that this says that 
a linear approximation to co(e) requires a cubic approximation to the utility function 
and third moments of ~. This fact, also demonstrated in Samuelson [114], shows 
how the simple approach of using only a quadratic approximation to the objective 
function does not produce a valid linear approximation for co(e). The advantage of the 
bifurcation approach demonstrated here is that the structure of the problem indicates 
exactly what information is needed. 

Samuelson [114] earlier analyzed this problem in a less formal fashion. Also, his 
formal analysis was limited to Z with compact distributions, that is, random variables 
whose support goes to a point as e goes to zero, a detail which substantially limits 
practical interest. The perturbation arguments used above make no such restriction. 
While the Samuelson method worked in this example, using Theorem 5 allows us to 
proceed in a more general fashion, and provides the necessary formal justification for 
these calculations. 

One example of where the true problem has a bifurcation structure and standard 
linear approximation procedure is unacceptable is Huffman [63]. Huffman examined 
an overlapping generations model of capital accumulation, and tried to examine the 
impact of a business cycle shock on asset trading. He computed the deterministic 
steady state and computed the impulse function for individual wealth and asset trading 
arising from unanticipated shocks to endowments and output. Since this was all done 
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in an otherwise deterministic, perfect foresight model, the tacit assumption, appropriate 
for such models, was that equity was the only traded asset. However, Huffman then 
interpreted the impulse functions from the deterministic model as impulse response 
functions for a stochastic model, where all agents know that these shocks occur 
frequently. In the stochastic case, there would also be demand for trade in bonds 
as well as equity, and business cycle shocks would generate disturbances to bond 
holdings and equity holdings. This was ignored by Huffman, who implicitly assumed 
that even in the stochastic model the only asset was equity. Such a capital market 
imperfection will have important impacts on the predicted asset trading, and is not an 
appropriate approximation assumption; just because one of the deterministic equilibria 
has no bond trading does not mean that the absence of bonds is an appropriate 
approximation for the stochastic model, even one with shocks with small variance. 
The importance of including bond trading into the analysis depends on the question 
being investigated. It is likely that the welfare loss is small when the variance is 
small. However, including bond trading could have substantial impact on the volume 
of trade in assets. A bifurcation approach can include bonds and equity and analyze 
such trade. 

5.3.2. Bifurcation and sunspots 

A particularly sophisticated application of bifurcation techniques appeared in Chi- 
appori et al. [29]. They analyzed the existence of stationary sunspot equilibria near 
steady states of overlapping generations model of arbitrary dimension. They show that 
when a steady state has indeterminate local deterministic dynamics, i.e., there exists a 
continuum of perfect foresight paths converging to the steady state, then there exists 
a continuum of sunspot equilibria which have support in neighborhoods of the steady 
state. They also are able to determine the possible qualitative character of the sunspot 
equilibria. This paper displays a very sophisticated and rich application of the ideas 
behind Theorem 5. These methods will also allow researchers to assess quantitative 
aspects of sunspot equilibria. 

6. Asymptotic expansions of integrals 

In economic and econometric problems, integrals frequently take the form 

1()~) ==- JD e-Xg(x) f (x )  dx (43) 

where A is a large parameter. Simply differentiating (43)  with respect to A at A = ec 
will not work here. Laplace's method provides a useful way to approximate (43). The 
basic idea is that the major contribution of the integrand is at the minimum of 9(x). 
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Suppose g(x) is minimized at x = a. For large A, if x ¢ a then e-)'.q(x) << e-)W(a). 
As long as f ( x )  does not offset this for Ix - a I >> 0, I(),) is determined largely by 
the behavior of  the integrand, e-'Xg(x)f(x), for x near a. 

The one-dimensional case is easy to state. Assume that g and f satisfy the asymp- 
totic series 

OO 
g(x) ~ g(a) + E ai(x  - a) i+t', 

i=o 

OO 
f ( x )  "-' E b i ( x  - a) i + a - I  . 

i=0 

Under modest assumptions (see Wong [126], or Bleistein and Handelsman [13]) if 

the integral I(A) = f :  f ( x ) e  -)'9(~) dx converges absolutely for sufficiently large A, 
and if g is minimized on [a, b] at a, then 

I(A) ~ e -)'g(a) F A(i+cO/t ~ 
i=o 

(44) 

where .U(A) _= f0 ~ e - ~ x  ;~-1 dx is the gamma function, and the ci depend on the ai 
and bi. In particular 

bo ( bl 
c O -- c~/l ~ ~ Cl = 

#a o # 

(o~ +#2aol)al bo)  ao(O~+l)/.. 

To compute these coefficients and others one essentially expands the integrand in 
terms of  A and matches like powers. 13 One of  the byproducts of this theorem is the 
construction of an integrand which is close to e -xg(~) f ( x )  but also integrable. This 
approximation to the integrand is then integrated to produce Laplace's approximation. 
Note that the gauge functions of A in (44) depend on the asymptotic expansions of  f 
and g. 

One elementary application of  Laplace's method is Stirling's formula for n!. Recall 
that n! = F ( n +  1). We would like to approximate F(n)  for large n. To use Laplace's 
method, let x = yA; then 

~0 °° 
F(A) = A ~ e-)'(Y-lnY)y -1 dy. 

The minimum of y - In y is at y = 1. Break the integral into two integrals over 
[0, 1] and [1,o c), and add the two one-sided approximations to get the two-term 
approximation 

(1) 
ff()~) ~ ~ /@-l/2e-A 1 q- 1 ~  " 

13Bender and Orszag gives an intuitive presentation of this procedure. 
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Stirling's formula is just the one-term expansion, n! ~ v/-2-~(n + l)n~-U2e-(n+l). 
While the operating assumption in Laplace's approximation is that A is a "large" 

parameter, practical use of such methods rely on what "large" means quantitatively. 
Fortunately, these expansions may do very well even when A is actually small. 
For example, Stirling's approximation for 1! is 0.9595 and the two-term expansion 
yields 0.9995. 

There is a multidimensional extension of Laplace's method. Suppose D C R ~, 
f ,  9 E C2[D]. Suppose the minimum of 9(x) for x c D is achieved at x0 in the 
interior of D. Then the leading term of the expansion is 

e_~g(~o) ( ~ )  n/2 
Z(,~) - -  [ N i l / 2  f ( x o )  

where H -~ (gx~xj) is the Hessian of 9 at x0. Higher order terms can also be computed. 
While computing higher-order terms would be very tedious, symbolic languages such 
as Mathematica, Maple, and Macsyma, are ideally suited to do this. 

6.1. Econometric applications of asymptotic methods 

Asymptotic methods in econometrics are essentially perturbation methods where the 
properties of an estimator are computed in terms of the size of the data set and the 
expansion is around the case of an infinite sample size. In some cases, the asymp- 
totic problem can be handled by relatively simple procedures, such as Edgeworth 
expansions. 

In other cases, the full power of Laplace's method is needed to compute asymptotic 
properties of statistics. In this case, the integral is the likelihood function, and it is 
written in the form (43) where the parameter ~ is the sample size. Phillips [104] used 
Laplace's method to approximate small sample marginal densities of instrumental 
variables estimators. Ghysels and Lieberman [52] use Laplace's method to compute 
small sample biases which arise from using filtered data in dynamic regressions. 
Laplace's method has been more popular among statisticians; see the citations in 
[52]. Holly and Phillips [62] use the related saddlepoint procedure. These methods 
work well, but are not often used, possibly because their implementation requires 
much algebra. One suspects that a more intensive use of symbolic computational 
tools would make them more accessible. 

6.2. Theoretical applications of Laplace's method 

While the theoretical applications of asymptotic methods for evaluating integrals are 
few currently, they are likely to increase. Brock [ 19] discusses where Laplace's method 
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is useful in evaluating statistical mechanical systems adapted to economic issues. 
As this modelling approach matures, it is likely that Laplace's method and related 
asymptotic procedures will be quite useful. 

7. The mathematics of  L p approximations 

We will often want to approximate functions over a broad range of  values with 
relatively uniform accuracy. In this case, we turn to L v approximations. L p approxi- 
mations finds a "nice" function 9 which is "close to" a given function f in the sense 
of a L p norm. To compute an L v approximation of f ,  one ideally needs the entire 
function, an informational requirement which is generally infeasible. Interpolation 
is any procedure which finds a "nice" function which goes through a collection of 
prescribed points. When using interpolation, the objective is to assure that if the data 
comes from a function 9 then the interpolant is close to 9. Regression lies between L 2 
approximation and interpolation in that the amount of data used exceeds the number 
of free parameters, producing an approximation which "best" fits the data. In all cases, 
we need to formalize the notions of "nice" and "close to". 

7.1. Orthogonal polynomials 

We will next use basic vector space ideas to construct representations of functions 
which will lead to good approximations. Since the space of continuous functions is 
spanned by the polynomials, x n, it is natural to think of the ordinary polynomials as a 
basis for the space of continuous functions. However, recall that good bases for vector 
spaces possess useful orthogonality properties. We will develop those orthogonality 
ideas to construct orthogonal polynomials. 

DEFINITION 7. A weighting function, w(x), on [a, b] is any function which is positive 
and has a finite integral on [a, b]. Given a weighting function w(x), we define an 
inner product on integrable functions over [a, b]: 

jfa b 
(f,  9) = f (x)  9(x) w(x) dx. 

The family of  polynomials {~n(x)} are mutually orthogonal with respect to the 
weighting function w(x) if and only if 

{~,,~, ~ ) - - 0 ,  n ¢ m .  

There are several examples of orthogonal families of polynomials, each defined by 
a different weighting function and interval. Some common ones useful in economics 
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are Legendre, Chebyshev, Laguerre, and Hermite polynomials. Legendre polynomials 
assume w(x) = 1 on the interval [ -1 ,  1]; the nth Legendre polynomial is 

( - 1 )  n d ~ 
Pn(X) =--- 2nni dx n [(1 - x 2 ) n ] .  

The Chebyshev polynomials arise from w(x) = (1 - X2) -1/2 on [--1, 1]; the nth 
Chebyshev polynomial is 

Tn(X ) ~ C O S ( n C O S  -1  X). 

The Chebyshev and Legendre polynomials are useful in solving problems which live 
on compact  sets since a linear change of variables will transform in compact interval 
into [ -1 ,  1]. The Laguerre polynomials correspond to w(x) = e - x  on [0, cxz); the nth 
member  is 

e x d n 
Ln(x) =- n! dx n (xn e-x)" 

Laguerre polynomials are useful when one needs to approximate time paths of vari- 
ables in a deterministic analysis. Hermite polynomials arise from w(x) = e -~2 on 
( - o c ,  ec); the nth member  is 

Hn(x) - ( - l ) n e  ~2 dn d z  ~ (e-X2) • 

Hermite polynomials are used to approximate functions of normal random variables. 

7.2. Least-squares orthogonal polynomial approximation 

Given f(x) defined on [a, b], one approximation concept is least-squares with respect 
to the weighting function w(x). That is, given f(x), the least-squares polynomial 
approximation of f with respect to weighting function w(x) is the degree n polynomial 
which solves 

b 

min fa (f(x) -p(x))  2w(x)  dx. 
deg(p) ~<n 

In this problem, the weighting function w(x) indicates how we care about approxi- 
mation errors as a function of x. For example, if one has no preference over where 
the approximation is good (in a squared-error sense) then we take w(x) = 1. If  one 
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cared more about the error around x = 0 we should choose a w(x)  which is larger 
near 0. 

The connections between orthogonal polynomials and least-squares approximation 
are immediately apparent in solving for the coefficients of p(x)  in the least-squares 
approximation problem. If {~}~=1 is an orthogonal sequence with respect to w(x) ,  

and we define ( f ,  g) - f:o f ( x )  g(x)  w(x )  dx  the induced metric is 11 f II2= - (f, f ) ,  
the least-squares solution minimizes [1 f - p  H, and can be expressed 

; ( x )  = 

i=0 

Note the similarity between least-squares approximation and linear regression. The 
formula for p(x)  is essentially the same as regressing the function f on n + t orthog- 
onal regressors; the coefficient of the ith "regressor", qoi(x), equals the "covariance" 
between f and the ith "regressor" divided by the variance of the ith regressor. This 
is no accident since regression is a least-squares approximation. 

7.2.1. Chebyshev approximation 

We will next describe some of the features of Chebyshev approximation since they 
play an important role in many applications. 

THEOREM 8 (Chebyshev approximation theorem). Assume f C C k [-1,  1]. Let 

- c0 + c j T j ( x )  

j=l 

where 

2 /_1 f ( x ) T ~ ( x ) d x  
cj = - 

7r i v;l- x 2 

Then there is a b such that, ]'or all n >~ 2 

b l n n  
I ] f - C n  ]]oo <~ n r 

Hence Cn -4 f uniformly as n -4 oo. Furthermore, there is a constant c such that 

c 
[cjl< T, j> l. 
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This theorem has many useful aspects. First, if we compute a n-term Chebyshev 
approximation, we need to assess the likelihood of  it being "nearly" as good as the 
full approximation. If  the last few terms of  the n-term approximation do not appear to 
be dropping at the j - k  rate indicated in the theorem, we would take this as evidence 
for adding more terms; if the coefficients are dropping at the indicated rate we feel 
more comfortable in accepting the n-term approximation. Note that, even though the 
construction is a least-squares approach, the convergence is uniform, a far stronger 
form of convergence. Since uniform approximation is a more difficult problem, we 
instead use Chebyshev approximation which, according to Theorem 8, will work 
nearly as well in the uniform norm. 

7.3. Interpolation 

Interpolation is any method which takes a finite set of pointwise restrictions and finds 
a function f : R n --+ R m satisfying those restrictions. 

7.3.1. Lagrange interpolation 

Lagrange interpolation takes a collection of n points in R 2, (X i ,  Y i ) ,  i ~-- l ,  . . . ,  n ,  

where the xi are distinct, and finds a degree n - 1 polynomial, p(x ) ,  such that 
yi = p (x i ) ,  i = 1, . . . ,  n. The Lagrange formula demonstrates that there is such 
interpolating polynomial. Define 

x -- Xj  

I I  - x5 

Note that gi(x) is unity at x = xi and zero at x = x j  for i ¢ j .  This property implies 
that the polynomial 

i=1  

interpolates the data, that is, Yi = p (x i ) ,  i = 1, . . . ,  n. Furthermore, this is the unique 
solution. 

7.3.2. Hermite interpolation 

We may want to find a polynomial p which fits slope as well as level requirements. 
Suppose we have data 

p ( x i ) = y i ,  p ' ( x i ) = y ~ ,  i =  t , . . . , n  
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where the xi are distinct. Since we have 2n conditions, we are looking for at least a 
degree 2n - t polynomial which satisfies the conditions above. 

We will construct the unique solution, p(x). First define the functions 

f i(x) = (z  - x i )  e i ( z )  2, 

hi(z) = (1 - 2f~ (x) (x - xi)) gi(Z) 2. 

The critical facts are that hi is a function which is zero at all xj nodes except at xi, 

where it is unity, and its derivative is zero at all xj, and the reverse is true for f~i(x). 
The unique solution to the Hermite interpolation problem is 

i = 1  i = 1  

7.4. Approximation through interpolation 

Interpolation is extremely powerful since it uses a minimal amount of  information to 
construct an approximation. It is also dangerous since the number of free parameters 
equal the amount of data. Furthermore, we want the approximation to be valid gen- 

erally, not just at the interpolation nodes. This is not generally true for interpolation 
schemes. Consider the function f(x) = 1/(1 ÷ z 2) over the interval [ -5 ,  5]. Let 
p~(x) be the nth degree polynomial which agrees with f at the n + 1 uniformly 
spaced (including the endpoints) nodes. Not only does Pn not converge to f ,  but 
for Izl > 3.64, limsup,~_~o ~ If(x) -pT~(x)l =- e~. Therefore, for a seemingly well- 
behaved C ~ function, interpolation at the uniformly spaced nodes does not improve 
as we use more points. 

7.4.1. Interpolation error 

The last example may discourage one from approximating a function through inter- 
polation. While the example does indicate that caution is necessary, with care we 
can reduce the likelihood of perverse behavior by interpolants. To see what we can 
do, we examine the general interpolation error. Recall that the Lagrange polynomial 
interpolating f at points xi is pn(x) = ~in=l  f(xi)gi(x). Define 

7t 

, z n )  -- I I ( z  - 
k=l 
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The following theorem provides a bound on the interpolation error of  the Lagrange 
interpolant. 

THEOREM 9. A s s u m e  a = xo < x l  < . ."  < x n  = b. Then  

sup If(x) -p~(x)14 IIf('~+l)ll~((n+ 1)!) -1 sup tP(x;xo,...,xT~). (45) 
~ [ , ,  b] xc[a, b] 

This bound decomposes the interpolation error into three pieces. The first two are 
independent of  any analysts choice. However, the third term depends on the choice 
of interpolation points. By making good choices for the x i  we can substantially affect 
the interpolation error. 

Here we see a significant difference between the problem facing a numerical analyst 
and the problems of  an econometrician. An econometrician must take the values of 
f evaluated at whatever points some data generating process provides. In contrast, in 
approximation problems we get to choose where to evaluate f .  In general, interpolation 
would be a bad procedure for econometricians since there is in general no assurance 
that our data comes from a good choice of x's. When we can choose the points, 
there is some hope that we can choose them to keep down the interpolation error. 
Furthermore, econometricians have to deal with significant error in the observations 
of  f ,  whereas in numerical contexts we evaluate f with high accuracy. 

Z4.2 .  C h e b y s h e v  in te rpo la t ion  

We will next determine a good collection of  interpolation nodes. Note that our choice 
of  -¢x .~'~ affects only the maximum value of ~P(x), which in turn does not depend l 7,Ji=l  
on f .  So if we want to choose interpolation points so as to minimize their contribution 
to (45), the problem is 

n 

min m a x l - I ( x  - xk). 
: E I ~ . . . ~ X  n x 

k = l  

The solution to this problem on [ -1 ,  1] is 

2k - 1 ) 
x k = c o s \  2n 7r , k =  1 , . . . , n ,  

which are the zeros of  T ~ ( z ) .  Therefore, the interpolation nodes which minimize the 
error bound (45) are the zeros of a Chebyshev polynomial adapted to the interval; 
we call this C h e b y s h e v  in terpolat ion.  This shows that the Chebyshev interpolant is 
the best in terms of minimizing the worst-case error. Furttlermore, it also keeps the 
maximum error acceptably small, as the next theorem shows. 
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THEOREM 10 (Chebyshev interpolation theorem). Suppose f E Ck[a, b]. l f  I~ is the 
degree n Chebyshev interpolant, then there is some dk such that for all n 

II f - I f  IIoo--- < log(n+l )+2  ~ II Iloo. 

This theorem says that the Chebyshev interpolant converges to f rapidly as we 
use more Chebyshev zeros. Furthermore, if f has k derivatives, then the convergence 
rate is O(n-~ . log(n  ÷ 1)). If  f E C °°, then we have O ( n - k l o g ( n  + 1)) conver- 
gence for all k; of course, the proportionality constants, dk, are also increasing in k. 
Convergence may seem to be an unremarkable property, but recall that interpolation 
at uniformly spaced points does not necessarily converge. Given these properties, 
Chebyshev methods are valuable whenever the approximated function is smooth. 

7.5. Approximation through regression 

Another way to approximate a function is to use regression. In regression, one eval- 
uates the function f ( x )  at m points, and use the resulting evaluations to choose a 
parametric approximation with n parameters, n << m, which minimizes some loss 
function. The methods closest in spirit to the material above are the seminonpara- 
metric methods. A key asymptotic result in the seminonparametric literature is that 
if m and n grow at appropriate rates, then the approximation converges to f ( x )  as 
n -+ oc. While regression methods can be used, they are based on "random" choices 
of the xi, whereas other approximation methods make efficient choices of the xi and 
will generally dominate regression by using fewer points. 

7.6. Piecewise polynomial interpolation 

Lagrange interpolation computes a C °o function to interpolate the given data. An 
alternative is to construct a function which is only piecewise smooth. Two common 
schemes are Hermite polynomials and splines. 

7.6.1. Step Jhnction approximation 

One common approximation strategy in economics is to use step functions. Step 
lunction approximations on [a, b] are generated by a basis of step functions, {~i: 
i = 1 , . . . , n }  where h = a - b/n and - 

0, a ~ x < a + ( i  ~l)h ,  
~ ( x ) =  1, a + ( i - ~ ) h ~ < x < a + i h ,  

O, a + i h ~ x ~ b .  
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l f the  interpolation data are (xi, yi) and ~i(xi)  = 1, then the step function ~ i  y i ~ i ( x )  
interpolates the data. To get better approximations, one increases n. 

7.6.2. P iecewise  l inear approximation 

Piecewise linear approximations take a sequence of  data, (x i ,  Yi),  and creates a piece- 
wise linear function which interpolates ,the data. If  the z~ are uniformly distributed, 
then they are generated by a basis of tent funct ions,  that is, functions of the form, for 
i = O , . . . , n ,  

0, 

~ i ( x )  = (x  - (a + (i - 1 ) h ) ) / h ,  
1 - (x  - (a + i h ) ) / h ,  
O, 

a ~< z ~< a +  ( i -  1)h, 
a +  (i - 1)h <~ x ~ a + ih,  
a + ih  <~ x <~ a +  (i + 1)h, 
a + ( i + l ) h ~ x ~ b .  

These are called tent functions since ~ ( x )  is zero to the right of a + (i - 1)h, 
rises linearly to a peak at a + ih,  and then falls back to zero at a + (i + 1)h, and 
remains zero. While both step function and piecewise linear approximations fit into 
our general linear approach, they differ in that the basis elements are zero over most 
of  the domain, and at each point in the domain most basis functions are zero. This is 
the defining feature of f in i te  e lement  approaches to approximation. While the resulting 
bases are not strictly orthogonal, they are close to being so since the inner product of 
most distinct pairs of  basis elements is zero. 

7.6.3. Hermi te  interpolation polynomials  

Next, suppose that we have both level and slope information at xt, • • •, xn. Within 
each [xi, xi+l] interval, we construct the Hermite interpolation polynomial given the 
level and slope information at xi and xi+l. The collection of interval-specific Hennite 
interpolations constitute a piecewise polynomial approximation. The resulting function 
is a cubic polynomial almost everywhere. However, at the interpolation nodes, it is 
only C l . This lack of  smoothness is often undesirable and is addressed by splines. 

7.6.4. Splines 

Another piecewise smooth scheme is to construct a spline. A spline is any smooth 
function which is piecewise polynomial but also almost as smooth where the poly- 
nomial pieces connect. Formally, a function s ( x )  on [a, b] is a spline of  order k if s 
is C k-2  on [a, b], and there is a grid of  points (called nodes) a = xo < x~ < • • - < 
xn  = b such that s is a polynomial of  degree at most k - 1 on each subinterval 
[xi, xi+l], i = 0 , . . . ,  n - 1. Note that order 2 splines are just the common piecewise 
linear functions. 
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The cubic spline (that is, of order 4) is popular. Suppose that we have Lagrange 
interpolation data {(x~, y~) I i = 0 , . . . ,  n}. The xi will be the nodes of the spline, 
and we want to construct a spline, s(x),  such that s(xi)  = Yi, i = 0 , . . . ,  n. On each 
interval [xi, xi+l], s(x)  will be a cubic a~ + b~ x + e~ x 2 + d~ x 3. The definition of a 
cubic spline together with the Lagrange data provides us with 4n - 2 conditions on 
the 4n coefficients. Various splines are differentiated by the two additional conditions 
imposed. One way to fix the spline is to pin down s'(xo) and s ' (xn) .  For example, the 
natural spline imposes s'(xo) = 0 = s ' (xn) .  Hermite splines give s'(xo) and s ' (x~)  
values f ' ( xo )  and f ' ( x ~ )  when these are known. 

In general, degree k splines with data at n nodes will yield O(n - (k+ l ) )  convergence 
for f c C k+1 [a, b]. Splines are excellent for approximations for two general reasons. 
First, evaluation is cheap since splines are locally cubic. To evaluate a spline at x 
you must first find which interval [xi, Xi+l] contains x, then find the coefficients for 
the particular cubic polynomial used over [xi, xi+1], and evaluate that cubic at x. 
The second reason for using splines is that good fits are possible even for functions 
which are not C °~ or have regions of large higher-order derivatives, situations where 
orthogonal polynomials do not do as well since global approximation schemes have 
difficulties in dealing with small regions of high curvature. On the other hand, if a 
function is well-behaved, orthogonal polynomials will generally do better. 

7. 7. Shape-preserving interpolation 

Above we have focused on the pointwise convergence properties of various approxi- 
mation schemes. Sometimes we will want to both interpolate data and preserve some 
shape in the data. For example, if the interpolation data indicates an increasing func- 
tion, we may want to compute an approximation which is increasing everywhere, not 
only node-to-node but also between the interpolation nodes. Even though a scheme 
which converges pointwise will asymptotically preserve shape, these methods are not 
satisfactory since we will want to preserve the shape when we have a small amount of  
data, not just when we have large amounts of data. It is on this dimension where the 
difference between orthogonal polynomials and piecewise polynomial approximations 
are important since orthogonal polynomials will not generally preserve shape. 

Schumaker [117] presents a particularly simple way to construct shape-preserving 
quadratic splines. Suppose we want to find a function s E C 1 [tl, t2] such that 

s(t ) - - s , ,  i = 1 , 2 ,  

and, furthermore, suppose zl(z2, sl)s2, implying that the data are consistent with 
a concave function. The task is to find an interpolating function s which is also 
concave. Schumaker accomplishes this by adding one interpolation node ~i E [~i, ~i+1] 
and constructs quadratic functions over [/.i, ~i] and [~i, ~+l]  which together make a 
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concave C 1 function s on [t~, t~+l]. In general, if the data on [t~, t~+l] are consistent 
with monotonicity, concavity, convexity, or nonnegativity, then one can construct a 
piecewise quadratic function which is monotone, concave, convex, or nonnegative on 
[ti,t~+l]. The nontrivial fact here is such a {i exists for any interpolation data. By 
piecing together these functions over subintervals, we can preserve shape globally. If  
one does not have stope information, one need only to choose the slope parameters 
so as to be consistent with the shape of  the data. Schumaker also shows how to make 
judicious estimates of  the slopes. 

There are many papers on this topic; see Judd [74] for several references. 

7.8. Multidimensional approximation 

Most economic problems involve several dimensions - physical and human capital, 
capital stocks of competitors, wealth distribution, etc. When we attempt to approx- 
imate functions of several variables, many difficulties present themselves. We will 
discuss multidimensional interpolation and approximation methods, first by generaliz- 
ing the one-dimensional methods via product formulations, and then by constructing 
inherently multidimensional schemes. 

7.8.1. Tensor product bases 

Tensor product methods build multidimensional basis functions up from simple one- 
dimensional basis functions. If  {qoi(x)}~__ 1 is a basis for functions of one real variable, 
then the set of pairwise products, {~i(x)~j(y)}~,°°j= 1 is the tensor product basis for 
functions of  two variables. To handle n dimensional problems in general, one can 
take all the n-wise products to create the n-fold tensor product of a one-dimensional 
basis. The tensor approach can extend orthogonal polynomials and spline approxima- 
tion methods to several dimensions. One advantage of the tensor product approach 
is that if the one-dimensional basis is orthogonal in a norm, the tensor product is 
orthogonal in the product norm. The disadvantage is that the number of elements 
increases exponentially in the dimension. 

7.8.2. Complete polynomials 

There are many ways to form multidimensional bases and avoid the "curse of di- 
mensionality". One way is to use complete polynomial bases, which grow only poly- 
nomially as the dimension increases. To motivate the complete polynomials, recall 
Taylor's theorem for R n in Theorem 1 above. Notice the terms used in the kth de- 
gree Taylor series expansion. For k = 1, Taylor's theorem uses the linear functions 
~f)l ~ {1 ,X t ,X2 , . . .  ,Xn}.  For h = 2, Taylor's theorem uses 

7")2 ~ J~l (J {x21~ . . 2 ~ X n _ l X n } .  • ~ X n ~ X l X 2 ~ X l X 3 ~ . . .  
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792 contains some cross-product terms, but not all; for example, XlX2X 3 is not in 5o2. 
In general, the kth degree expansion uses functions in 

{ I } 
g=l  

The set 79k is the complete set of polynomials of total degree k. 
Complete sets of polynomials are often superior to tensor products for multivariate 

approximation. The n-fold tensor product of { 1, x , . . . ,  x k } contains (k+  1)n elements, 
far more than 79k. For example, 7)2 contains 1 + n + n(n + 1)/2 elements compa- 
red to 3 n for the tensor product. Taylor's theorem tells us that many of the tensor 
product elements add little to the approximation, saying that the elements of 79k will 
yield a kth order approximation near x °, and but that the n-fold tensor product of 
{1, x , . . . ,  x k} can do no better than kth order convergence since it does not contain 
all degree k + 1 terms. This suggests that a complete family of polynomials will give 
us nearly as good an approximation as the tensor product of the same order, but with 
far fewer elements. 

7.8.3. Finite element approaches 

Finite element methods use bases whose elements have small support. One simple 
example is bilinear interpolation. Suppose we have the values of f (x ,  y) at (x, y) = 
(+ 1, + 1). Then, the following 4 functions form an interpolation basis: 

= ¼(1 

= 

~ 2 ( x , y ) =  ¼ ( l ÷ x ) ( 1 - y ) ,  

~ 4 ( x , y ) =  ¼ ( 1 - x ) ( l ÷ y ) .  
(46) 

The bilinear approximation to f on the square [ -1 ,  1] × [ -1 ,  1], which is an example 
of an element, is 

f ( - 1 , - 1 ) ¢ l ( x , y ) + f ( 1 , - 1 ) ¢ z ( x , y ) + f ( 1 , 1 ) ¢ 3 ( x , y ) ÷ f ( - 1 , 1 ) ¢ 4 ( x , y ) .  

The approximation is linear at each edge, but generally has a saddlepoint curvature 
on the interior. To interpolate data on a two-dimensional lattice, we create the bilinear 
approximation on each square. 

Finite element methods consist of partitioning a domain into several elements, and 
patching together the local approximations on the elements, but this is not easy. Since 
we generally want the result to be a continuous function, care must be taken that 
resulting approximation is continuous across element boundaries. With bilinear inter- 
polation, this will hold since any two approximations overlap only at the edges of 
rectangles, and on those edges the approximation is the linear interpolant between 
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the common vertices. If  we know that we are approximating a smooth function, then 
the kinks at the edges of the elements may make bilinear approximation unappealing. 
Assuring smoothness at element boundaries is an increasingly difficult problem as 
we increase the desired degree of differentiability and the dimension. The bilinear 
finite element scheme is just the simplest of a large number of finite element ap- 
proximation schemes. There is a large literature on finite element approximations of 
multidimensional functions (see Burnett [22]). 

7.8.4. Neural networks 

The previous approximation procedures are based on linear combinations of polyno- 
mial and trigonometric functions. Neural networks provide us with an alternative and 
inherently nonlinear functional form for approximation. A single-layer neural network 
is a function of the form 

F(x;/3) -2 h ~9 xi (47) 

where x E R n is the vector of inputs and h and g are scalar functions. A common 
form chooses 9(x) = x, reducing (47) to the form h(t3Tx). A single hidden-layer 
feedforward network is the form 

F(x; /3 ,7)  ~ 7jl~, g xi • 
\ i = 1  ~ / 

(48) 

Note the simplicity of the functional forms; this simplicity makes neural network 
approximations easy to evaluate. 

The data for a neural network consists of (yj, xJ) pairs such that yj C R is supposed 
to be the output of a neural network if xJ E R n is the input. This requirement imposes 
conditions on the parameters/3 in (47) and/3 and 3/in (48). One fits single-layer neural 
networks by finding fl to solve 

rain E ( y j  - F(xJ;f l))  2 
J 

and the objective of a single hidden-layer feedforward network is to solve 

min E ( y  j - F(xJ;p ,  3')) 2, 
/3,q, 

J 

which are just instances of nonlinear least squares fitting. 
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The approximating power of neural network approximation is indicated by theorems 
of Horni, Stinchcombe and White (see White [122] for a wide-ranging discussion of 
neural networks and their properties). Let G be a continuous function, G : R -+ R, 
such that f~-~oo G(x )  dx  is finite and nonzero and G is L p for 1 ~< p < ec. Let 

+ b  j) ,  b j,/3j C R, 
L j = l  

w j C R  n, w j ¢ 0 ,  m =  1 , 2 , . . . }  

be the set of all possible single-hidden layer feedforward neural networks using G as 
the hidden layer activation function. 

THEOREM 11. Let f : R ~ -+ R be continuous. Then f o r  all e > O probability measure 
#, and compact sets K C R ~, there is a 9 E z ,n (G)  such that 

sup I f (z)  - g ( z ) l  < 
xEK 

and 

L If(x)  - g(x)[ d/z < e. 

This also holds when G is a squashing functions, i.e., G : R --+ [0, 1], G is nonde- 
creasing, lim:~-+oo G(x)  = 1, and l imx~-oo G(x )  = 0.14 

These are universal approximation results which justify the use of neural network 
approximation, and help explain its success. There is some evidence that neural net- 
work approximation methods may be particularly efficient at, multidimensional ap- 
proximation in the sense of needing relatively few free parameters; see Barton [6] for 
a recent result. The theoretical development of neural networks is proceeding, but is 
inherently difficult because of the nonlinearity of this approach. 

8. Applications of approximation to dynamic programming 

Approximation methods are a key part of most numerical procedures. They are par- 
ticularly important in discrete-time dynamic programming problems. These problems 

14Note that a squashing function is a cumulative distribution function and vice-versa. A coimnon choice 
for G is the sigmoid function, G(x) = 1/(1 + e-X). 
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are among the most useful and basic of  dynamic economic problems, with well- 
understood theoretical properties. We will briefly discuss them and the approximation 
aspects of  numerical dynamic programming. 

Let 7r(u, x)be profit flow if the state is x and the control is u. Suppose the law of 
motion is 

z~+l =g(xt, ~t). 

Then the value function, V(x), solves 

V(x) = maxTr(u, x) + flV(g(x, u) ) - (TV)(x). (49) 

The standard theoretical procedure is to iterate on the basic functional equation, 
(49). If  we could handle arbitrary functions, we would start with a guess, V0, and then 
compute the sequence {Vn} generated by 

v~ - TEn-1 .  (50) 

This procedure converges when viewed as a mapping in the space of  value functions. 
On the computer, however, one cannot store arbitrary functions. There are several 

details which need to be decided to compute approximations to (50). Since we cannot 
deal directly with the space of continuous functions, we focus on a finite-dimensional 
subspace. We will approximate V(x) as a finite linear sum of basis functions. 

N 

i = l  

(51) 

Numerical procedures construct a V(x)  which approximately satisfies the Bellman 
equation, (49). More specifically, the objective is to find a vector, ~ E R N, such that 
V solves (49) as closely as possible. 

The basic task is to replace T, an operator mapping continuous functions to con- 
tinuous functions, with a finite-dimensional approximation, 2r, which maps functions 
of  the form in (51) to functions of the same form. We construct 2~ in two steps. First, 
we choose a finite collection, X,  of points x, and evaluate (T~')(z) at x C X.  We 
will refer to this as the maximization step since it is the maximization problem in (49) 
at x. The resulting values are points on the function TV.  Since we are approximating 
a continuous value function, we use that information to choose a value function of 
form (51) which "best" summarizes the information generatedconcerning TV.  This 
is the critical approxima~on step, and we denote the result TV. In essence, T takes 
a function of  form (51), V, and maps it to another function of the same form, and is 
therefore a mapping in the space of the ~ coefficients, and the objective is to find a 
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fixed point for T in the space of  coefficients. We can also view T as a mapping from 
continuous functions to the finite-dimensional subspace representable as V ( x ,  ~), in 

which case the problem is to find a fixed point of  T in the space of functions of  form 

(51). 
The details of  the approximation aspects of this procedure - choosing a basis for 

the expression of  V, choosing points X to evaluate T V ,  and fitting the data - are 
important. We next discuss some basic approaches. 

8.1. Discretization methods 

The simplest approximation procedure is to discretize the state space, that is, they re- 
place the problem on a continuous state space with one with a finite number of  points. 
This has the advantage of  reducing the problem to one of  finite matrices. The other 
advantage is that the resulting analysis exactly solves some similar economic problem. 
See Rust [112] for a discussion of  numerical dynamic programming procedures. Even 
in the case of  discrete-state dynamic programming, projection solution ideas come 
into use. The key computation in the discrete-state approach is the solution of  a large 
linear system. This can be accomplished approximately by using the GMRES method 
(see Saad and Schulz [113]) which essentially computes a few directions and finds 
an approximate solution which is spanned by these directions and minimizes a loss 
function. 

While the discretization method does not obviously fit the description above, it 
is generally equivalent to approximating the value function with a step function. 15 

However, step functions are highly inefficient ways to approximate a smooth value 
function. Because of this, the discretized state space method is unlikely to be of  much 
value in economic analysis outside of naturally discrete problems, one-dimensional 
problems, or problems where the solutions are so nonsmooth that discretization is 
competitive with smooth approximation schemes. The impracticality of discretization 
is indicated by the fact that supercomputers are often used. Multidimensional problems 
are practically impossible, even for supercomputers, since the "curse of dimensionali- 
ty" is particularly vexing for this method; if N points are used for a one-dimensional 
problem, then N a points will be used for a d -dimensional problem. There are several 
ingenious methods for making discrete state problems more efficient; see Rust [112] 
for a description of these algorithms. We will focus on the alternatives presented by 
the application of  approximation ideas. 

15After computing the solution to (50), many users then use linear interpolation to estimate the value 
function at points not part of the discretized state space. Since this linear interpolation is done only after 
the value iteration is completed, it does not affect these comments and it's contribution to improving the 
algorithm's accuracy is limited. 
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8.2. Multil inear approximation 

While the discretization approach has been popular in economics, other economists 
and the operations research literature in general have moved instead to continuous 
approximations of the value function. The simplest example of this is the DYGAM 
package discussed in Dantzig et al. [41 ] which used multilinear interpolation on hyper- 
cubes when computing Vn+l from the information generated by TV~. In economics, 
Zeldes [130] used piecewise linear approximations. 

This procedure has several advantages. Far fewer nodes are needed compared to 
a discretization method since the continuity of V is being exploited. There are some 
difficulties. First, the kinks make the optimization step more difficult, and are unrep- 
resentative of V if V is C 2. Second, multilinear approximation generates curvature 
properties which may cause multiple local optima in the optimization step. The prob- 
lem is that the interpolation may not have the same shape as the data. 

8.3. Polynomial approximations 

If a little continuity is good, then more should be better if V is sufficiently contin- 
uous. In this spirit, Bellman et al. [7] proposed the use of polynomials, Daniel [38] 
discussed the use of splines, and Johnson et al. [64] report computing experience 
with a variety of approximation schemes. Judd [74] presents an example of using a 
tensor-product basis of Chebyshev polynomials to solve a three-dimensional optimal 
growth problem. The advantages of polynomial approximations are that fewer points 
are evaluated and increased smoothness makes the optimization step more rapid. All 
of the approximation methods discussed above are potentially useful for dynamic 
programming. 

There are, however, some problems which may arise with polynomial approxima- 
tion which don't arise with discretizafion or multilinear approximation. The difficulty 
is that many interpolation schemes do not preserve shape. Even if we use the best 
possible interpolation scheme, the resulting approximation may not be good in be- 
tween the nodes in X,  and can lead to instabilities in the value iteration algorithm. 
To deal with this, Judd and Solnick [78] proposes the use of shape-preserving poly- 
nomials to construct value function approximations, and computes upper bounds on 
the error which are superior, to those from the discretization approach. In particular, 
this leads to convergence proofs for value function iteration with shape-preserving 
approximation, an important fact in itself since there can be no such proof for value 
iteration with polynomial approximation schemes in general. 

9. Projection methods 

Our discussion of dynamic programming indicated that approximation ideas may be 
useful in solving the operator equations which arise in dynamic programming. We 
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next discuss how these ideas from approximation theory naturally lead to algorithms 
for solving many of the operator equations which arise in economics. They are called 
p r o j e c t i o n  me thods ,  also known as w e i g h t e d  res idua l  me thods .  We will describe the 
general projection approach for solving general operator problems. In fact, most of 
the techniques currently used by economists are also projection methods when viewed 
from the general perspective. 

The first important observation is that in many economic models, equilibrium can 
be expressed as a collection of functions. In dynamic programming problems, that 
unknown function will be either the value function and/or the optimal policy func- 
tion. In dynamic games, the unknown functions are the agents' strategy functions. In 
optimal growth models, the unknown function may be the optimal policy function. In 
dynamic equilibrium models, the unknown functions would include functions which 
indicate consumption demand, labor supply, asset trading strategies, and asset and 
commodity prices, all as functions of the underlying state variables. For specificity, 
consider the following simple deterministic growth problem: 

O¢3 

max  
Ct  

t=O 

where capital obeys the law of motion 

kt+l = f ( k t )  - ct .  

To calculate the optimal consumption policy (and competitive equilibrium consump- 
tion function), h ( k ) ,  it is enough to focus on the Euler equation, 

0 = u ' ( h ( k ) )  - f l u ' ( h ( f ( k )  - h ( k ) ) ) f ' ( f ( k )  - h ( h ) )  =_ (Af(h))(k). (52) 

The basic idea of projection techniques is to first express equilibrium conditions on 
these functions as a zero of an operator, .M : B1 --+ B2, where B 1 and/32 are function 
spaces. In (52) above, the Euler equation error is defined to be that operator, where B1 
and B2 are both equal to the space of continuous functions on [0, oc). In general, the 
operator N" can be an ordinary differential equation, as in optimal control problems, a 
partial differential equation, as in continuous-time dynamic programming, or a more 
general functional equation, as in Euler equations expressing necessary conditions for 
recursive equilibria (as formulated in Prescott and Mehra [26]). Of course, space and 
time limitations make it impossible for computers to store and evaluate all possi- 
ble elements of B1. To make the problem tractable, projection methods focus on a 
finite-dimensional subspace of candidates in B1 which can be easily represented on a 
computer and is likely to contain elements "close" to the true solution. The selection 
of this finite-dimensional space naturally exploits approximation methods. It may be 
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difficult for the computer to evaluate N ,  in which case we find a computable oper- 
ator, J~, which is "similar" to N'. Within the finite-dimensional space of candidate 
solutions, we find an element which is "almost" a zero of ~ ' .  

While the basic idea is natural, there are many details. The key details are specifying 
the approximation method we will use, the finite-dimensional subspace within which 
we look for an approximate solution, and the computer representation of N', defining 
what "close" and "almost" mean, and finding the approximate solution. By studying 
these details, we will see how to implement these ideas efficiently to solve numerically 
interesting dynamic nonlinear economic problems. 

9.1. General projection algorithm 

We next describe the projection method in a general context. One begins with an 
operator equation representation of the problem, that is, one reduces the economic 
problem to finding an operator iV" and a function f such that equilibrium is represented 
by the solution to 

A/" ( f )  = 0 

where f : D C R N --+ R M, N" : B1 -+ B2, and the Bi are function spaces. Typically 
34* is a composition of  algebraic operations, differential and integral operators, and 
functional compositions, and is frequently nonlinear. We shall show how to implement 
the canonical projection technique in a step-by-step fashion. We first give an overview 
of the approach, then highlight the critical issues for each step, and discuss how the 
steps interact. 

The first step is to decide how to represent approximate solutions. One general way 
is to assume that our approximation, f ,  is built up as a linear combination of  simple 
functions. We will also need a concept of when two functions are close. Therefore, 
the first step is to choose a basis and an appropriate concept of  distance: 

Step 1. Choose bases, ~bj = {(~:~i}~?°l , and inner products, (., .)j, over Bj ,  
j = 1,2. 

The basis over B1 should be flexible, capable of yielding a good approximation for 
the solution, and the inner products should induce useful norms on the spaces. 

Next, we decide how many basis elements to use and how to implement iV: 

Step 2. Choose a degree of approximation r~ for f ,  a computable approximation N" 
of iV", and a collection of  n functions from B2, p~ : D --+ /~M, i = l , . . . ,  ~r~,. 

The approximate solution will be f -- 2in.=1 aicpi(:c). The convention is that the 
~i increase in "complexity" and "nonlinearity" as i increases, and that the first n 
elements are used. The best choice of n cannot be determined a priori. Generally, 
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the only "correct" choice is n = ec. Larger n should yield better approximations, but 
one is most interested in the smallest n which yields an acceptable approximation. 
One initially begins with small n and increases n until some diagnostic indicates that 
little is gained by continuing. Similar issues arise in choosing .~. Sometimes we can 
take .~  = N', but more generally some approximation is necessary. The Pi are the 
projection directions we will use to determine & 

Step 1 lays down the topological structure of our approximation and Step 2 fixes 
the flexibility of the approximation. Once we have made these basic decisions, we 
begin our search for an approximate solution to the problem. Since the true solution 
f satisfies N ' ( f )  = 0, we will choose as our approximation some f which makes 

2~(f) "nearly" equal to the zero function. Since f is parameterized by 6, the problem 

reduces to finding a coefficient vector d which makes .~ ( f )  nearly zero. This search 
for 6 is the focus of Steps 3-5. 

Step 3. For a guess & compute the approximation, f _= ~i"- ,  ai~.i(x), and the 
residual function, 

R ( x ;  - 

The first guess of d should reflect some initial knowledge about the solution. After 
the initial guess, further guesses are generated in Steps 4 and 5, where we see how we 
use the inner product, (., ")2, defined in the space 132, to define what "near" means. 

Step 4. For each guess of & compute the n projections, 

- ( R ( . ;  i = l , . . . , , J .  

Step 5. By making a series of guesses over ff and iterating over Steps 3 and 4, find 
which sets the n projections equal to zero. 

This general algorithm breaks the numerical problem into several distinct steps. It 
points out the many distinct techniques of numerical analysis which are important. 
First, in Steps 1 and 2 we choose the finite-dimensional space wherein we look for 
approximate solutions, hoping that within this set there is something "close" to the 
real solution. These steps require us to think seriously about approximation theory 
methods. Second, Step 4 will involve numerical integration if we cannot explicitly 
compute the integrals which define the projections. Third, Step 5 is a distinct numerical 
problem, involving the solution of a nonlinear set of simultaneous equations or the 
solution of a minimization problem. We shall now consider each of these numerical 
problems in isolation. 
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9.1.1. Choice of basis and inner product 

567 

There are many criteria which the basis and inner product should satisfy. The full 
basis ~1 for the space of candidate solutions should be "rich"; in particular, it should 
be complete in/3i.  We will generally use inner products of the form 

( f ( x ) ,  g(x))~ =_/D f(x)g(x)w(x)dx 

for some weighting function w(x) >> O. 
Computational considerations also play a role in choosing a basis. The ~ should 

be simple to compute. They should be similar in size to avoid scaling problems. 
While asymptotic results such as the Chebyshev interpolation theorem may lull one 
into accepting polynomial approximations, practical success requires a basis where 
only a few elements will do the job. This requires that the basis elements should 
"look something like" the solution. In particular, our discussion of approximation 
methods above shows that we should use smooth functions to approximate smooth 
functions, but use splines to approximate functions which may have kinks or other 
extreme local behavior. We will also see that the use of orthogonal bases will enhance 
efficiency and accuracy. Because of its special properties, a generally useful choice 
is the Chebyshev polynomial family. If, on the other hand, one has a basis which is 
known to efficiently approximate the solution, one should use that instead or combine 
it with the Chebyshev polynomials. A good, problem-specific, choice of basis can 
substantially improve algorithmic performance over the generic approximation meth- 
ods discussed above. However, the generic approaches are usually acceptable if one 
has no apparent problem-specific alternative. 

9.1.2. Choice and evaluation of projection conditions 

Projection techniques include a variety of special methods. Generally we use (-, ')2 
to measure the "size" of the residual function, R(x; g). The general strategy is to find 
an ~ which makes R(x; if) small. There are several ways to proceed. 

First, we have the least-squares approach which chooses d so as to minimize the 
"weighted sum of squared residuals": 

rn~n</~(x; d), R(x; d)>2" 

This replaces an infinite-dimensional operator equation with a nonlinear minimization 
problem in R "~. The standard difficulties may arise; for example, there may be local 
minima which are not global minima. The objective may be poorly conditioned. 
However, there is no reason for these problems to arise more often here than in any 
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other context, such as maximum likelihood estimation, where optimization problems 
are solved numerically. 

While the least-squares method is a direct approach to making R(x; d) small, most 
projection techniques find approximations by fixing n projections and choosing d 
to make the projection of the residual function in each of those n directions zero. 
Formally, these methods find ~7 such that (R(x; d), pi(x))2 = 0 for some specified 
collection of functions, Pi. Different choices of  the Pi defines different implementa- 
tions of  the projection method. 

One such technique is the Galerkin method. In the Galerkin method we use the 
first n elements of the basis for the projection directions. Therefore, g is chosen to 
solve the equations: 

_= (R(z; = o ,  i =  

Notice that here we have reduced the problem of solving a functional equation to 
solving a finite set of finite-dimensional nonlinear equations. In some cases in physics, 
the Galerkin projection equations are the first-order conditions to some least-squares 
minimization problem, in which case the Galerkin method is also called the Rayleigh- 
Ritz method. This is not as likely to happen in economics problems because of the 
inherent nonlinearities. 

There are obviously many ways to implement the projection idea. A collocation 
X" method takes n points from the domain D, { ~}i=1, and chooses g to solve 

R(x i ;  6) =0,  i =  1 , . . . , n .  

This is a special case of the projection approach since R(xi; 6) equals the projection 
of  R(x; d) against the Dirac delta function at x~, (R(x; if), 5(x - xi))2. Orthogonal 
collocation chooses the collocation points in a special way. The chosen xi are the zeros 
of  the n ' th  basis element, where the basis elements are orthogonal with respect to 
the inner product. The Chebyshev interpolation theorem suggests its power. Suppose 
D = [ - 1 ,  1] and we have found an d such that R(z~ ; 6) = O, i = 1, . . . ,  n, where 
the z~ ~ are the n zeros of  Tn. As long as R(x; 6) is smooth in x, the Chebyshev 
interpolation theorem says that these zero conditions force R(x; 6) to be close to zero 
for all x, and that these are the best possible points to use if we are to force R(x; 6) to 
be close to zero. It is not certain that even orthogonal collocation is a reliable method; 
fortunately, its performance turns out to be surprisingly good. 

Choosing the projection conditions is a critical decision since the major computa- 
tional task is the computation of those projections. The collocation method is fastest 
in this regard since it only uses the value of  _R at n points. More generally, the pro- 
jections will involve integration. In some cases one may be able to explicitly perform 
the integration. This is generally possible for linear problems, and possible for special 
nonlinear problems. However, our experience is that this will generally be impossible 
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for nonlinear economic problems. We instead need to use numerical quadrature tech- 
niques to compute the integrals associated with evaluating (., .). A typical quadrature 

formula approximates f :  f ( x ) w ( x ) d x  with a finite sum 2 i n 1  w i f ( z i )  where the 
xi are the quadrature nodes and the wi are the weights. Since these formulas also 
evaluate R(x; d) at just a finite number of points, xi, quadrature-based projection 
techniques are essentially weighted collocation methods. The advantage of quadra- 
ture formulas over collocation is that information at more points is used to compute 
the approximation, hopefully yielding a more accurate approximation of the projec- 
tions. 

9.1.3. Finding the solution 

Step 5, which determines 6 by solving the projection conditions computed in Step 4, 
uses either a minimization algorithm (in the least-squares approach) or a nonlinear 
equation solver to solve the system P(6)  = 0. Many alternatives exist, including 
successive approximation, Newton's method, and homotopy methods, all of which 
have been used in the economics applications of the projection method. 

10. Applications of projection methods to rational expectations models 

Most methods used in numerical analysis of economic models fall within the general 
description above. We will see this below when we compare how various methods 
attack growth problems. The key fact is that the methods differ in their choices of 
basis, fitting criterion, and quadrature techniques. With the general method laid out, 
we will now report on a particularly important application to show its usefulness. 

]O.l. Discrete-time deterministic optimal growth 

We examine optimal growth problems in discrete time and show how projection 
techniques can be adapted to calculate solutions. The stochastic case is one which has 
been studied by many others with various numerical techniques. In fact, one point 
we make below is that most of these procedures are really projection methods. By 
recognizing the common projection approach underlying these procedures, we can 
better understand their differences, particularly in accuracy and speed. We conjecture 
that the comparative performances of these various implementations of projection 
ideas in the discrete-time stochastic optimal growth problem is indicative of their 
relative value in other future problems. 

We first examine the deterministic growth problem described above which is char- 
acterized in (52). We shall now describe the details of a projection approach to that 
problem. The domain D of our approximation will be [km, kM]. km and kM are 
chosen so that the solution will have k confined to [k~, kM]. In particular, [k~, kM] 
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must contain the steady state, a point which we can determine before calculations 
begin. Our approximation to h is parametrically given by 

n 

i = 1  

where n is the number of  terms used. Common choices include the Chebyshev poly- 
nomials ¢~(k) ~ T~-i (2(k - km) / (kM - kin) - 1), the tent functions, or the ordinary 
polynomials. 

In this problem, N" is a s impleoperator  using only arithmetic operations and com- 
position. Therefore, we can take N" = N'.  Since h is continuous, we define .Af to have 
domain and range in C°[k,~, kM]. Hence, B1 = B2 = C°[km, kM], the continuity of  
N" in the L ~ norm following from the u, f ,  and/z  being C 1 in all their arguments. 
Given the Euler equation (52), the residual function becomes 

R ( k  ;6) = u '  (h(k ; 6)) - flu' (h ( f ( k )  - h(k ; 6); 6 ) ) f ' ( f ( k )  - h(k ; 6)) 

=N(h). 
To compute & we can do one of several things. First, we consider orthogonal 

collocation. We choose n values of k, denoted by ki, i = 1 , . . . ,  n. We then choose 
6 so that R(ki;  6) = 0 for each i. Orthogonal collocation chooses the ki to be the n 
zeros of  ~b. The Chebyshev interpolation theorem strongly argues for using Chebyshev 
polynomials in this case. I f  R(ki; 6) = 0 for each ki, then we would like to conclude 
that R(ki;  6) is the zero function on the domain D. The Chebyshev interpolation 
theorem says that this is most justified if the ki were the Chebyshev zeros, and that 
if we use Chebyshev zeros, R(k;  ~) will likely be nearly zero. 

We could also implement the Galerkin method. If  we use Chebyshev polynomials 
as a basis, then we use projections with the inner product 

~k kM 
( f ( k ) ,  g(k)) =- f ( k )g (k )w(k )  dk 

where 

__± 1/2) 2 

With this choice of inner product, the basis is orthogonal. The Galerkin method 
computes the n projections 

f k  kM P i ( a ) =  R ( k ; 6 ) ¢ i ( k ) w ( k ) d k ,  i =  l , . . . , n ,  
m 
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and chooses d so that P(d)  = O. Here the difficulty is that each P~(d) is an integral 
which needs to be computed numerically. The form of w ( k )  implies the use of Gauss-  
Chebyshev quadrature. That is, we approximate Pi (~) = 0 conditions with 

o = R ( k j ;  
j = l  

for some ra > n, with the kj being the m zeros of ~b~+l. 
When we have calculated our estimate of  ~, we would like to check if this procedure 

yields reliable approximations. Several diagnostics can be used to see if the proposed 
solution is acceptable. First, the ak coefficients decline rapidly in k, as predicted by 
the Chebyshev approximation theorem. Second, the low-order coefficients should be 
insensitive to the choice of  n. While these facts do not prove that the approximation 
is good, we would be uncomfortable if the high-order coefficients were not small, or 
if the coefficient estimates were not stable as we increase n. We also want to examine 
test cases to see if the results from the projection method agree with the answer from 
another method known to be accurate. Judd [72] performs these tests on a variety of 
empirically interesting cases, finding that the projection method applied to this model 
is very accurate and very fast. 

Table 12.2 (which is taken from Judd [72]) indicates the kind of accuracy which 
can be achieved. We assume that f ( k )  was Cobb-Douglas with capital share of 
0.25, and that the steady state capital stock is k = 1. We first solved the problem 
with an 800,000 point discretization over the range [0.5, 1.3]. We then used the 
projection method to solve the problem. The entry under PROD indicates the output 
at k, and CONS indicates the optimal consumption as computed by a 800,000 point 
discretization method. The entries under n = 9, 6, 4, 2 columns indicate the error of 
the degree n polynomial approximation. The notation a ( - m )  means a x 10 - ~ .  The 
results indicate that even a low-order approximation does quite well. 

The tent function approach was used in Bizer and Judd [11] in a similar model. 
There the interpolation nodes were chosen to be uniformly distributed in D. The 
advantage of  the piecewise linear approximation is that the resulting interpolation is 

Table 12.2 
Errors in consumption policy function 

k PROD CONS n = 9 n = 6 n = 4 n = 2 

0.50  0.1253211 0.1147611 3(-7) 3(--7) 0.01 -1( -4)  
0 .70  0.1401954 0.1335954 -3( -7)  -3 ( -7 )  -1 ( -6)  1(--4) 
0 .80 0.1465765 0.1421165 -2( -7)  -1(--7) --5(-6) 2(-4) 
0 .90 0.1524457 0.1501957 4(-7) 0.04 -5( -6)  2(-4) 
1.00 0.1578947 0.1578947 0 -0.01 -3( -6)  2(-4) 
1.10 0.1629916 0.1652816 --2(-7) -2 ( -7)  2(-6) 9(-5) 
1.30 0.1723252 0.1792852 2(-7) 2(-7) 4(-6) --1(--4) 



572 K.L. Judd 

shape-preserving. This may be useful since we know that h is monotone increas- 
ing. However, the shape-preservation considerations turn out not to be important 
relative to the differentiability considerations which argue for Chebyshev polynomi- 
als. The policy functions computed in Judd [72] using Chebyshev polynomials were 
monotone increasing, and using tent functions substantially reduced the algorithm's 
efficiency. 

10.2. Stochastic optimal growth 

We next turn to a stochastic optimal growth model. This example will show us how 
to handle multidimensional problems and the conditional expectations which arise 
in stochastic dynamic problems. We will also be able to describe the parameterized 
expectations method of solving rational expectations models. 

More specifically, we examine the problem 

k t + l  = Ot f ( ] c t )  --  e t ,  

ln0t+l = plnOt + :t+~ (53) 

where Ot is a stationary AR(1) multiplicative productivity parameter. We will assume 
that the productivity shocks et "- N(0, o -2) are independent. In this problem, both the 
beginning-of-period capital stock and the current value of 0 are needed for a sufficient 
description of the state. Hence, consumption is a function of both k and 0, h(h, 0), 
and the Euler equation is 

u/(h(k,O)) = /3E{u/(h(Of(h)-h(k,O),O) )Of'(Of(k)-h(k,O)) I O }. (54) 

At this point, we will rewrite the Euler equation to make it more linear. We know 
that projection algorithms work well for linear problems. Perhaps our algorithm will 
do better if we make it more like a linear problem. To that end, rewrite (54) as 

0 = h(k, 0) 

Note that (55) has two terms, one linear in h(k, 0), and the other is similar to a CRTS 
function of next period's potential consumption values. Similar stochastic growth 
problems were investigated in Judd [72] and in the Taylor-Uhlig [120] symposium. 
We shall now describe and compare the various methods. 
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The procedure for finding h is similar to the deterministic case. First of all, we need 
to approximate the policy function. Judd [72] and Coleman [36] use approximations 
of the form 

n k  7~,0 

h(k, O; a) = ~ ~ aij¢ij(k O) 
i = l  j = l  

where the ~/Jij functions are Chebyshev functions of k and 0 in Judd, and tent func- 
tions of Ink and log 0 in Coleman [36]. Judd also considered complete polynomials. 
Comparisons followed the considerations outlined above. Since the policy function 
is smooth, the smooth approximation procedures did better with the complete poly- 
nomial approach doing best, that is, the greatest accuracy per unit of computer time. 
Coleman's choice of a finite element approach reduced efficiency since it used far 
more basis elements; furthermore, it cannot switch to a complete polynomial ap- 
proach. These differences between the spectral approach advocated in Judd and the 
finite element approach used in Coleman become even larger as we move to higher 
dimensions. 

In their approach to the stochastic growth model, Den Haan and Marcet [57] pa- 
rameterized the policy function to be 

h(k, O) = (k62053e 61)l/'y = (exp{Sl + 52 in k + 53 In 0}) I/'Y (56) 

that is, they assume that log consumption is a linear function of In k and log 0. 
However, this basis is not orthogonal. When they tried to improve the approximation 
to a quadratic form in In k and log0, the lack of orthogonality lead to difficulties 
which prevented them from improving on the linear approximation. They argue that 
the collinearity of their basis elements is "a fortunate situation" and justifies their focus 
on low-order polynomial approximations. In contrast, the use of orthogonal bases in 
Judd and the use of a finite element approach in Coleman leads to no difficulties in 
finding substantially better approximations beyond low-order polynomials. 

The comparisons of the Coleman, Den Haan and Marcet, and Judd approaches to 
solving (54) illustrates the importance of approximation ideas. Den Haan and Marcet, 
and Judd use polynomials to approximate what is presumed to be a smooth function. 
Coleman's contrasting use of finite elements introduces kinks in the approximation 
which forces him to use many elements. The finite element approach and the or- 
thogonal polynomial approach avoids the multicollinearity problems which limited 
Den Haan and Marcet to low-order approximations. As these papers discuss, these 
differences lead to considerable differences in computational speed and accuracy in 
the final result. 
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10.3. Problems with inequality constraints 

The optimal growth problem described above was simple in that the equilibrium was 
described in terms of an Euler equation which always had an interior solution. In some 
problems, constraints mean that the first-order conditions must be complemented with 
complementary slackness conditions. This was the nature of the problems which were 
the first to lead to numerical solutions of nonlinear rational expectations equilibria. 
Gustafson [56] investigated the problem of equilibrium storage of a storable commod- 
ity. He assumed that output in period t is an exogenous random variable, Yt, which is 
divided between a change in storage, St+l - S t  (cot is the beginning-of-period-t stock), 
and consumption, ct. In equilibrium, price is a function of total stock, p(St + zt),  and 
obeys the conditions 

p(s~  + x~) - E{p(S~+l + x~+~)}/> 0, 

(p(St + xt) -- E{p(St+I -t- xt+l) })St+l = 0 
(57) 

where St+l = St + xt - D(p(St  + xt)) and D(p) is the demand function. 
In some states of the world, the equilibrium storage level will be zero and the price 

function will not be a smooth. Gustafson [56] used a piecewise linear approximation 
of the equilibrium price function in his solution method. Piecewise linear approxi- 
mations are relatively inefficient because many pieces are necessary to get a good 
approximation. In their analysis of the problem (which also generalized Gustafson to 
handle endogenous output) Williams and Wright solved for E{pt+l [ St+l } as a func- 
tion of St+l, expressing this year's expectation of next year's price conditional on the 
amount stored for next year. This function determines the current price, future supply, 
and current stockpiling through an Euler equation similar to (57), but is smooth be- 
cause it is a conditional expectation. Hence, they found that a low-order polynomial 
approximation was sufficient to solve the problem. Miranda and Helmburger [98] also 
used this insight in their analysis of stockpiling. Christiano and Fisher [32] applied 
the Wright-Williams technique for handling the inequality constraint to a constrained 
version of (53) and found similar advantages to using a smooth approximation. 

This discussion points out two facts when dealing with inequality constraints. First, 
we can still use the same approximation ideas but we may have to adapt to handle 
the kinks which may arise. Second, skillful construction of the problem may result 
in finding a smooth function which characterizes equilibrium and allows us to use 
the more efficient smooth approximation schemes. Again, approximation ideas can be 
exploited to produce superior methods. 

10.4. Dynamic games 

Methods which are useful for dynamic programming are also naturally natural for 
computing closed-loop (also known as Markov) equilibria of dynamic games. This 
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holds since each player solves a dynamic programming problem, and equilibrium 
can be expressed as a coupled collection of Bellman equations for each player's 
dynamic programming problem. Kotlikoff, Shoven and Spivak [80] used ordinary 
polynomials in their study of strategic saving and bequests. Miranda and Rui [99] 
computed closed-loop equilibria for dynamic stockpiling games among commodity 
producing countries. They used Chebyshev polynomial approximations to players' 
value functions and projection methods to determine equilibrium value functions. In 
both cases, equilibrium was computed with relative ease. 

10.5. Continuous time problems 

The examples above have been of discrete-time systems. Projection methods have 
also been used to solve continuous-time models. One simple example is the canonical 
continuous-time optimal growth problem described above in (21), which reduced to 
solving the differential equation: 

o : C ' ( k )  ( f ( k )  - C ( k ) )  u " ( C ( k ) )  (p - f ' ( k ) )  - E(k;  C) .  

Judd [71] used a basis of Chebyshev polynomials to approximate C(k) with C(k, a) = 
En-  on i=0 ai a large interval of capital stocks. Again, the performance of the 
algorithm was very good, independent of the details of the implementation. In fact, 
it easily outperformed the more commonly used shooting approach to the problem. 
Judd also extended this model to allow for taxation and uncertainty in continuous time. 
In all cases, accurate results were obtained quickly. Since projection methods were 
initially developed to deal with continuous-time systems represented by ordinary and 
partial differential equations, this is not surprising. One suspects that continuous-time 
systems in general will be readily computed with projection methods. 

10.6. Models with asymmetric information 

Many of the examples discussed above reduced to applying the projection method 
to standard mathematical problems - ordinary and partial differential equations and 
integral equations. To demonstrate the flexibility of the projection method, we next 
examine a very different kind of problem - equilibrium where individual agents have 
different information. These problems do not reduce to any of the standard operator 
problems discussed in applied mathematical literature. However, one can attack them 
successfully with the projection method. We will first describe an application to asset 
markets with asymmetric information. We will then discuss other economic problems 
where these methods have potential. 
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10.6.1. Information and asset markets' 

Asset market equilibrium with imperfect information have been rigorously studied in 
recent years. Grossman [54] and Grossman and Stiglitz [55] began a long literature 
on the partial equilibrium analysis of security markets with asymmetric information. 
However, much of this literature makes very special and simple assumptions about 
the distribution of returns, the information asymmetries, investor tastes, and asset 
structure. The restrictions substantially limit the generality of the results and the range 
of questions which can be addressed. 

Recently, Judd and Bernardo [76] applied projection methods to analyze these 
models without special functional form assumptions. A simple one-period investment 
problem illustrates the method. Suppose each investor invests in two assets. The safe 
asset pays out R dollars per dollar invested, and the basic risky asset (we will call 
it stock) pays out Z dollars per share. If  an investor begins the first period with W 
dollars in cash and coo shares of stock, and ends the first period with co shares of stock 
which trade at a price of p dollars per share, his second, and final, period consumption 
will be 

= ( w  - (co - coo)p)  R + c o 2 .  (58) 

The first-order condition for the choice of co will be 

0 : E { u ' ( ~ ) ( 2 -  pR) 1 I} (59) 

where I is the investor's information set. 

10.6.2. Computing conditional expectations 

The conditional expectation in (59) implies that our equilibrium concept involves 
a conditional expectation. Numerical implementation of the conditional expectation 
conditions is the most challenging aspect of this problem. To solve this problem, Judd 
and Bernardo used the following definition of conditional expectation: 

Z(X) = E{YIX } 

if and only if 

E{(Z(X) - Y)f(X)} : 0 

for all bounded measurable functions, f ( X ) ,  of X.  Intuitively, this says that the predic- 
tion error of the conditional expectation, E { Y  [ X},  is uncorrelated with any measur- 
able function of the conditioning information, X.  This definition replaces the condi- 
tional expectation with an infinite number of unconditional expectation conditions. 
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10.6.3. Computing an asymmetric inJbrmation rational expectations equilibrium 

We now show how to compute an equilibrium. Assume three types of investors, with 
type i investors observing Yi. The state of the market includes all private signals, 
g = (Yl, Yz, Y3), but each investor sees only the market-clearing price and his own 
information. Therefore, a rational expectations equilibrium includes a price function 
p(y) and type-specific demand policy functions, Oi(p, Yi) for i = 1,2, 3, such that 

given p(y), O~ solves (59) for i = 1,2,3, and ~=10 . i (y i , p (y ) )  : 1 for all states y, 
where total supply is 1. 

In their solution, Judd and Bernardo [76] approximate the price law, P(yl, Y2, Y3), 
and the demand rules, Oi(p(y), Yi), with multivariate polynomials. To determine the 
unknown coefficients in those polynomials, they impose projection conditions on the 
investors' first-order conditions. The first-order-condition for a type i investor 

Ey , z{u ' (S i ) (Z -pR)  lyi,p } = 0 ,  i =  1,2,3. (60) 

Using the definition of conditional expectation given above they impose projection 
conditions of the form 

Ey,z - p(y)R)p(v/ } : o, (61) 

for various choices of j ,  k >~ 0. The condition in (61) states that the prOduct of the 
excess return and the marginal utility of consumption for a type i agent is uncorrelated 
with polynomials in p(y) and yi. 

After imposing a sufficient number of such conditions, the result is a system of 
projection conditions constituting a finite nonlinear system of algebraic equations. This 
reduces an infinite dimensional functional problem to a finite-dimensional algebraic 
problem. The projection conditions given in Eq. (61) are only part of the conditional 
expectation condition given in Eq. (60). The hope is that a small number of projections 
can yield a useful approximation. Judd and Bernardo document the accuracy for this 
approximation method for a variety of distributions. Overall, their experience is that 
this method is reliable and reasonably fast. 

10.7. Convergence properties and accuracy of projection methods 

When using numerical procedures, it is desirable to know something concerning its 
errors. An important focus of theoretical numerical analysis is the derivation of bounds 
on errors. Two kinds of error results are desirable. First, it is desirable to derive an 
upper bound on the error for a given level of approximation. Second, if such upper 
bounds are not possible, it may still be valuable to know that the error goes to zero 
asymptotically, that is, as one lets the degree of approximation become arbitrarily 
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large. The first kind of error information is rarely available. More typical in numer- 
ical algorithms for differential equations are asymptotic results. There has been little 
work on proving that the algorithms used by economists are asymptotically valid. 
Fortunately, there are general theorems concerning the consistency of  the Galerkin 
method. Zeidler [128] and Krasnosel'skii and Zabreiko [81] demonstrate consistency 
under a variety of  conditions. Even though it remains to be seen whether these the- 
orems cover our problems, they do indicate that projection methods are potentially 
valid for our economic problems. 

Even if one had a convergence theorem for a method, it is clear that one cannot just 
blindly accept any answer one gets from a computation. Asymptotic theorems have 
a nasty feature of  telling you only that the error goes to zero as your computational 
effort approaches infinity, but generally not telling you at what finite level of effort you 
may stop. Therefore, a more pragmatic approach is to ignore convergence theorems 
and instead use diagnostics to ask whether a solution is acceptable. We actually did 
that above in our construction of  (26). There the issue was how well a perturbation 
expansion solved a continuous-time Euler equation. We constructed the approximation, 
substituted it in the Euler equation, and used the result, (26) to measure the amount 
of  irrationality an economic agent is guilty of in equilibrium if each agent followed 
our approximate rule. If  that number is small, say a dollar per million spent, then we 
argue that the approximate rule is as reasonable a prediction for behavior as the "true" 
equilibrium since people generally do not optimize beyond one part in a million. 

In economic problems we can generally compute such diagnostics and measure the 
level of  implied "irrationality". This diagnostic approach to evaluating a candidate 
solution can be applied independent of  the computational method which produced 
the candidate solution. It does not rely on convergence; in fact, even if one uses a 
convergent method, one should still use such diagnostics to make sure that one did 
not stop the method too early. Furthermore, if one uses a method for which there is 
no convergence theorem, but it produces a solution which passes such diagnostics, 
the lack of  a convergence theorem is irrelevant. 

11. Hybrid perturbation-projection method 

We have discussed both perturbation and projection methods for solving economic 
models. While they are different approaches to approximation problems, we will next 
describe a method, the hybrid perturbation-projection method which synergistically 
exploits their differences and similarities. 

Suppose that there are a continuum of problems to be solved indexed by a parameter 
e with the form 

A/ ' ( f (z ,  e); e) = O. 
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Suppose that we can solve the c = 0 instance. The result of applying perturbation 
methods near the e = 0 solution is the calculation of a series of the form 

f ( x ,  ~ 

i = 0  

(62) 

where the ~Pi (x) functions are computed by the perturbation calculations and the 6i (e) 
are the generally prespecified gauge functions. Similarly, the result of a projection 
approach is an approximation of the form 

n 

f(x,e)~-~ai(e)Wi(x) 
i=O 

(63) 

where the ~i(x) functions are the prespecified basis elements of the approximation 
system and the ai(e) coefficients are computed by the projection method. The strength 
of perturbation methods is that the approximations are quite good (in fact, asymp- 
totically optimal) for small e, but the weakness is that the quality may not hold up 
as e increases. The projection approach tries to be good for any e, but the difficulty 
is finding good bases which will allow the series in (63) to be short. Therefore, the 
strengths and weaknesses of these methods are complementary. 

This observation turns out to be substantive. The idea of the hybrid perturbation- 
projection method is to use the ~i(x) functions from perturbation calculations as 
the basis functions to be used in a projection method. We know that these functions 
constitute an optimal basis for small e, and that the optimal weight on ~i(x) is 
3~(e) for small e. The conjecture is that the ~i functions still form a good basis for 
approximating f(x, e) but that the weight on ~p~ should not be the prespecified 5i(e) 
but rather should be computed by (63). 

Our continuous-time growth model gives a simple example of this approach. Recall 
the continuum of problems represented (27) and the related expansion (28). The 
objective there was to use a perturbation method to solving (21). We will use the 
results of the perturbation approach to develop a projection approach to solving (21). 
The first perturbation was the function 

c (k) - k"p(  - '  - 7) + (Tp - p)k. (64) 

Note that this function has a singularity at k = 0, a feature which is possibly also true 
of the solution to C(k, 1). This feature is absent in the orthogonal bases we discussed 
above. We see here already that this procedure has produced a basis element which 
has some advantages. To see if this is a good basis element, one can compare the 
basis {1, k, C~ (k)} with the basis {1, k, k2}. Computations show that the custom-made 
basis lead to solutions which had much smaller errors. 
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Note what (64) really suggests. Since the function k is already in the basis, C~ (k) 
essentially adds the production function, k s, to the basis. This reflects the general idea 
that the basis should be augmented by functions which are natural to the problem. 
Above we used differentiability properties to motivate basis elements. The hybrid 
approach attacks more precisely the problem of developing problem-appropriate bases. 

Continuing the perturbation approach will generate a series of functions which 
can be used as a basis for a projection approach. For example, C~(k) is a compli- 
cated function which essentially adds k 2c~-1 to the basis {1, k, C~(k)}. This addi- 
tional element is not as intuitive as C, (k), showing that the perturbation method will 
bring in elements other than obvious ones. Again, computations show that the basis 
{1, k, Ce(k), C,~(k)} does much better than the basis {1, k, k 2, k 3 } in solving 

These additional basis elements will possibly be collinear with previous elements. 
However, for any specified inner product, we can use a standard Gram-Schmidt 
procedure to construct a basis which spans the same space and is orthogonal. In 
this way, we can combine the conditioning advantages of orthogonal bases with the 
desirable shape properties of the perturbation functions. 

Judd [73] discusses further the usefulness of this approach to producing bases. 
The example above just hints at the method's potential. In this example, reducing the 
number of basis elements is not important since the basis size is not a limiting factor in 
one-dimensional problems with smooth well-behaved solutions. However, basis size 
is a very important consideration in multidimensional problems. In those problems, 
a few well-chosen basis elements may allow for drastic reduction in basis size. One 
suspects that the hybrid perturbation-projection method has substantial potential in 
multidimensional problems where economizing on the basis size is important. 

The hybrid perturbation-projection method also points out the value of combining 
methods. Since economics problems do not fit into standard mathematical classifica- 
tions, it is likely that skillful combinations of various techniques will prove to be a 
powerful technique. 

12. Conclusions 

In this chapter we have reviewed a collection of approximation ideas which have 
proved themselves useful in computational analyses of economic models. We have 
also shown that a general class of techniques from the numerical partial differential 
equations literature can be usefully applied and adapted to solve nonlinear economic 
problems. Despite the specificity of the applications discussed here, the general de- 
scription makes clear the general usefulness of perturbation and projection methods 
lbr economic problems, both theoretical modelling and empirical analysis. The appli- 
cation of perturbation and projection methods and the underlying approximation ideas 
have already substantially improved the efficiency of economic computations. Further 
exploitation of these ideas will surely lead to further progress. 
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