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Perturbation Solution Methods
for Economic Growth Models

Kenneth L. Judd and Sy-Ming Guu

4.1 Introduction

Economic growth is one of the most Important macroeconomic phenomena.
With economic growth comes the possibility of improving the living standards
of all in a society. Fronomic growth has been studied by all generations of
econormists. Economists have used optimal contrel theory and dynamic pro-
gramming to formalize the study of economic growth, vielding many important
insights. Unfortunately, most of these methods are generally qualitative and do
not yield the kind of precise quantitative solutions necessary for econometric
analysis and policy analysis,

There are many ways to compute numerical solutions to economic growth
models; see Taylor and Uhlig (1990) and Judd (1991) for a discussion of stan-
dard numerical analytic methods applied to a simple stochastic growth model.
In this paper, we will focus on soluticns arising from perturbation methods.
Perturbation methods are distinct from standard numerical analytic procedures
in that they use algebraic manipulations of equilibrium equations to derive in-
formation about a solution at a point, producing a local solution. In contrast,
numerical analytic procedures take a more global approach, using information
about the solution at several points and linking that information to form an
Approximate solution. The advantage of perturbation solutions is that they
produce solutions which are, in some sense, the best possible near some point,
and can be quickly computed. The supposed weakness of perturbation meth-
ods is that their quality falls as one moves away from the starting point. We
will show how to compute perturbation solutions in simple growth models,
and demonstrate that they often produce approximate solutions of high quality
globally.

This chapter will examine methods based on the analyses of Bensoussan,
Judd, and Judd and Guu; the reader should see those Papers for the formal
mathethematical results which underly the formal procedures described below,
Section 4.2 will discuss both Taylor series and Padé approximation methods.
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Section 4.3 will outline a simple optimal growth model in continuous time,
show how to produce perturbation solutions, and discuss a way to evaluate
their quality. Section 4.4 extends the continuous-time analysis to uncertainty
and section 4.5 applies the same methed to a discrete-time optimal growth
model, While perturbation methods can be used for a much wider variety of
models, these examples provide a good introduction to the techniques.

4.2 Approximations

Perturbation methods of approximation begin by computing a function and its
derivatives at a point. We should therefore begin with a discussion of approxi-
maton methods based on such information. If we have a function, fliz), and we
want to study it near the point o, we compute f and several of its derivatives
at o, and then use this information to construct good approximations for [ in
the neichborhood of #p. We only assume that these derivatives exist. We will
discuss two basic methods using this point-based information: Taylor series
and Padé approximants.

421 Taylor Series Approximations

The mast basic local approximation method is based on Taylor’s Theorem:
Taylor’s Theorem: 1f f € C*7' [a, b and x, xo € [a, b], then

£(#) = Fao) 4 (2 = 70) F(ao) + E222 f(a0)
bs -"."I:IT—_-EE:LI["]{J,'H}-i-FT..Q.[{JT}
T
where
RnTlli:'.r_'}: ]_I z [_E_'r}n.lrlfu-l-]l'“]dt

n. 0y

I:.E = .I‘r|}1"+'” e
= EI pinetig),
{n+ 1)
for some £ between = and To.

A Tavlor series approximation of (] based at g is the degree n polynomial
in Taylor's Theorem, It uses only derivative information at x and the error of
this approximation is proportional to the n + 1'th derivative of f and

(x = )Y
fmn+1)!
It is therefore valid to a high order near &g, and asymptotically exact if f 1s

an analytic function. Generally, this approximation is good only near g and
decays rapidly away from zq. The hope is that we are only interested in values
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of ir sufficiently close to zp or that we are "lucky” and the approximation is 200d
away from .

4.2.2  Padé Approximations

Taylor series approximations construct a polynomial to approximate f, An
alternative way to use the same information is to construct a rational function,
that is, a ratio of two polynomials, which agrees with f and its first n derivatives

at rp. The basic rational approximation method based at a point is called Pads
Approximation.

The (i, n) Padé approximant of f at zq is a rational function
_ pl=)
glx)

where p(x) and g(x) are polynomials, the degree of p is m, the degree of gisn,
and

rix)

i
#w—fga[x.q_ k=0, m+n

This definition says that if f(x) is approximated by p{z)/g(z), then the first n
derivatives of g(z) f(x} — plxr) will be zero. Such derivative conditions impose
linear constraints on the coefficients of p and ¢, The only restriction on pand g is
that the degrees of p and ¢ add up to at most n. This implies that there are 7 + 2
unknown coefficients of pand . The n derivatives of f at  and the value of f
at g provide n+ 1 conditions. Since we are interested only in p/g, we can set the
leading coefficient of 4 equal to 1 without loss of generality. Hence, the ratio p/q
can be uniquely specified. (See Cuyt and Wuytack (1986) for a more rigorous
demonstration of the critical properties of Padé approximation.) Usually we
take pand q to be of equal degree, or make p one degree greater.

Theory and experience say that Padé approximants are better global approxi-
mants than Taylor series approximations, that is, the error grows less rapidly as
we move away from . For this reason, computers typically use Padé approxi-
mants to compute trigonometric, exponential, and other functions. We will use
both Padé and Taylor approximants in our calculations below.

4.3 Optimal Growth Models

The solution of optimal growth models is important for dynamic modelling
in economics. In this section, we will show how one can compute high-order
polynomial and rational approximations to optimal policy functions in simple
growth models.

The basic focus in economic growth models is how a country allocates re-
sources and income between current consumption and investment. By forego-
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ing current consumption, a country increases its wealth, its future output and
income, and its future potential consumption. The more a country allocates to
investment, the more rapidly income and potential consumption grows. How-
ever, that growth comes at the sacrifice of consumption today. Intuitively, the
choice between consumption and investment depends on how important cur-
rent consumption is today relative to the return on the investment. Economic
growth models allow us to formalize these ideas.

We will first examine a simple continuous-time growth problem. We will
assume that f(k) is a concave production functon, u(c) is a concave utility
function of consumption, # and that the capital stock, k, obeys the law of
motion

% = f{k) -«

This law says that the rate of increase in capital equals current output minus
current consumption. We will allow consumption to exceed output, permitting
decreases in k. This is a very simple model, assuming that there is only one
good produced in the economy and that it is used for both consumption and
investment purposes. However, it will allow us to simply display perturbation
methods, which, as shown in Judd {1991), can also be used to study models with
several goods and several kinds of capital stocks.

The basic growth problem is choosing a consumption path, ¢(¢), which is
feasible—that is, it keeps the capital stock nonnegative at all times, and max-
imizes the discounted sum of utility. This is represented by the control prob-
lem

e
Vi{kg) = max / e~ Plu(e) dt
e 0

ik = f(k)
ap T E
k[ﬂj = L‘"

V{ky) will denote the total value when one follows the optimal dynamic con-
sumption plan when ky is the initial capital stock.

Dynamic programming methods study the value function by constructing
a Bellman equation. The Bellman equation for this dynamic programming
problem is

pVIE) = u(C{k)) + V(E) (Flk) = ClE) (1)
The first-order condition for the indicated maximization is
0=u'(Clk})) = V'(k) (2)

This equation implies that consumption can be expressed as a function of capital,
¢ = (k). Note that calendar time plays no role here, as is expected since the
horizon is infinite and neither the utility function nor the production function
depends on time in any crucial way.
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When we substitute the first-order condition into the Bellman equation,

get a pair of equations in the two unknown functions:
0 =u(ClE)) + V'(k)(f(k) — C(k)) — pV (k)
W Ck) = V'(k)
These equations describe our prablem. We will simplify the problem by elip,.
mating V" and V' and reducing the problem to one equation in one unknowp
function, C'(k). If we differentiate the Bellman equation with respect to k we get
= w(CR))C (k) + V" (k)(F(k) = Ck)) + V' (B)(F(K) — C'(k)) — V' (k)
If we differentiate the first-order condition with respect to k, we get
u"(C(k))C' (k) = V"' (k)
which allows us to eliminate """ and arrive at a single equation for C:
0= C'(k)(f (k) = CR)) — (' (CR) " (CURN)p = £()) (3)

It is this equation which will be the basis for our perturbation solution
various choices of f(k)and u(e).

In particular, we will assume a Cobb-Douglas production function with cap-
ital share .25, and an isoelastc utility function with intertemporal elasticity of
substitution equal to .1. Our first Mathematica instructions will clear various
variables and specify tastes and technology:

Infifz

for

= Clear[f,u,kss,gamma,rhu,alpha,ctay.ccnsf,
cpade, numcoef, dencoaf]

rho = .05;

alpha = .25;

f£lk_] = (rhofalpha) k- alpha;
gamma = -10;

ule ] = ¢ (l+gamma) / {l+gamma) ;

Qur objectiveis Lo find the first n derivatives of C'(k) at kss. This can be accom-
plished by defining the policy function in terms of the parameters cocoef (1):
InfZ2):= n = §;

ctay[k 1 := Sum[ccoaf[i] (k=kss)i/fit, {1,0,n}]

where kss will serve as the starting point of our approximation, and will be
determined below,

We next define the critical function of equation (3), which for our choice of
utility function reduces to:

In[{3]:= bellman[k ] = - rho*ctay[k] -
gamma®ctay [k] *Decivative [1] [ctay] [k]+
gamma*f [k] *Decivative[l] [ctay] [k]+
ctay [kl *Derivative[1][£] [k];

Equation (3) says that bellman[k] is always zero at all capital stocks k. Itis
this fact which we will now exploit, since this implies that all derivatives are
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also zero at all k, a condition which in turn imposes identifying conditions on
the derivatives of C.

431

Qur basic equation, (3), is a first-order differential equation. Such differential
equations need an initial condition to define a unique solution, that is, we need
to find a k where we know the solution to C. We shall determine an initial
condition by computing the steady state. The steady state capital stock is that &
where there is no savings, that is, where f(k) = C{k). From equation (3), saving
is zero if and only if

Steady State Determination

fliky=p
The solution to this condition, denoted kss, is the steady state capital stock. We
have defined the production function so that

Infil:= kss = 1;

At the steady state, net invesment is zero, and consumption equals output,
implying the conditions

£

ni2]:= ctay[kss] = flkss];
ceosf [0] = flkssl

Out{2]:= 0.2

The steady state capital stock will serve as the point on which we base our
perturbation procedures. Economically, this is a special point. If the country
is at kss, then it will stay there forever. This implies that if kg = kss, then we
know the entire future path of consumption and capital, and that we know both
(ko) and V (ko)

From this beginning, we can compute the necessary derivatives of C'( k) near
kss and construct our approximation.

432 Computing C'lkss):

Computing the first derivative of the consumption policy function is a lineariza-
tion procedure, commonly used in analyzing these models. However, the usual
procedure revolves around linearizing a system of differential equations and is
limited by this ODE perspective. We will pursue a more general approach, not
limited to problems with an ODE formulation.

The key fact for our procedure is that pellmanik] = 0 atall k, which in
turn implies that all derivatives of be1lman k] arealso zeroat all k. Therefore,
we first differentiate the Bellman equation with respect to &,

Infl]:= xbellman(k ] = Dibellman(k],k];

IS e ——————
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We then evaluate the resulting expression at kss,
In[2] ;= xbellman[kss]

Ougp [2]:= 2
=0.0075 — 0.5 ccoef[1] + 10 ceoefl{i]
Since xbellmanikss] = 0

Y, we can solve this quadratic equation for the
possible values of "(kss) = ccoef[1],

Inf3li= root = Eolva[xbellman[kss]==ﬁ,ccuef[1]]

Qut{3f:= {|ccoef|l] — 0.082081), {copsf[l] —= —0.0120811) )

This equation has two roots of Opposite sign, but we can select one. I

particular, only the positive root is consistent with 1 being concave at ksg,
Therefore,

n{dj:= cocoaf[l] = Tect [[1J]101111[[2]1
Gurf4f:=0,06208]1

This derivative corresponds to the usual linearization procedure widely used
to study these models. Analysis usually stops with this linearization.

However,
we will go on to compute higher-order derivatives,

4.3.3 Computing Higher Derivatives:

In order to compute higher derivatives of ( at ksy, we need only to take more
derivatives of bellman [k] evaluate them at kss, and solve out for the appro-
priate derivative of C, as in the following:
Infl):= Fax[j=2,j{n+l,j++,
dbellman(k_] = D[xbeliman[k],k]:
ruut=5¢lva[xhellmanikss]==0,:ccef[j]];

ccoef[j] = zoet [[111([111L[(2]]
]

This procedure will, in succession, compute the first n — 1 derivatives of C.
Note that we constantly redefine xbelliman [k ]: thisis done to save space since
these expansions can grow rapidly. Each new derivative of xbellman producesa
higher derivative of be 11marn [ ], and introduces a new, and unknown, deriva-
tive of . When xbellman|kss] is computed, that new derivative of C at kss
is the only unknown. Furthermore, as shown in Judd (1991), the new derivative
of C at kss appears linearly. More precisely, at stage j, the first j — 1 derivatives
of C' are known, xbellman[kss] involves ondy the first 7 derivatives of O,
and the unknown derivative, the j'th, appears linearly in the equation xbell-

man[kss] == 0. Therefore, we have reduced the problem of computing the
higher-order derivatives of C to a sequence of linear problems.

With the first several derivatives of C at kss computed, we have computed
the Taylor series approximation. We can plot the consumption function:
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In{#]:= Plot[etayl=], {*,.1, 2}]

Q.
0.

Qut[2]:= —Graphics—

and the saving ratio function,

241

22+

Inf3l:= Plet] (E[x]-ctay[x]1}/E0x], (% 1201

EI.:Ia‘e-I-

G.

=} ..

-0.047

-0

gut [3]:= —Graphics—

From the saving rate
at small capital stocks since we
all capital stocks below the stea
the steady state, the policy function
dynamics near the steady state. Unfortuna
good the approximation is.

02t

32.

06+

function, we can see that the approximation is not good
know from theory that savings is positive at
dy state, which equals 1 here. However, near
appears to be sensible, implying stable

tely, this tells us little about how

434 Computing the Padé Approximation

An alternative use of these derivativ

es is to compute a Padé approximation.

This is accomplished by finding a pair of polynomials such that their ratio has
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the same derivative properties at kss as ., The degree of the numerator wij] be =
mpade, i
F
In[1]:~ mpade = Flooz[n/2]; %
npade will be the degree of the denominator, |
IniZ2]:= npade = n - mpade; i :

and we choose them so that the numerator is the same d
. greater than the denominator.
| We next define the numerator and denominator, and compute the coefficients
| of the Padé approximation. We first define a function centered at k=1-

egree or one degres

Inf2lr= ellk ] = etay[k+1]
Oue 3] := 2 3
0.2 + 0.0820B1 % — D.018406% & 4+ 0.0103787 k

. Next we define the numerator and denominator polynomials:
3 1a{4]:= numpol(x ] = Sum[numcoef[i] x~ (i-1), {i,npade+1}];
denpol[x_] = Sum[dencoef[i] x” {i-1), {1, mpade+1}];

We expand the function, c1, to be approximated at = = (:

Ia[3):= taylerix ] = Series[el(x], {%, 0, npade+mpadal]

o

e TN AN A s S A i by B R
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=}
£
-J
-}
]
oy
i
L
=
+
-
ca
]
LT
ka
0% ]
«1%
ol
e
=

g =

- 3
| 0.2 + D.062081 = — 0.,018406% » + 0.0103787 -

&
0.00702861 x + 0.005226494 x = Cix]

i

o

We next express the error in the rational approximation:

Inf6]:= diff = numpol[x] - tayloz[x] denpol[x];

P |

It is obvious that we can multiply both numpol [x! and denpol [x] by
a common constant and have an equivalent rational function. We need to
eliminate this degree of indeterminacy. Without loss of generality, we can

il s

normalize the representation by
5 In{?):= dencoef[1] = 1;
3 :
L We now solve for the polynomial coefficients by invoking the linear derivative
i conditions which define a Padé approximation:
s l In[8]:= s1 = Solve[LogicalExpand[diff==0]];
?.. | Do [numcoef [i]=numeocef[i]/.s1[[1]1], {i, npade+1}]
= | Du[denccef[i]=dqncuef[i}3,51[Il}],{i,mpada+1}]
% 1 pade [x_}=numpol [x] /denpol [x]
£
i
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cut 8] = 2 3
0.2 + 0:27T6831 2.+ 0.0828634 x + 0.00445471 %

2

1 + 107378 = + 0,223585 »

This direct procedure is not the most efficient way to compute the coefficients
of a Padé expansion. See Cuyt and Wuytack (1986) for a discussion of superior
procedures. We choose this procedure for its directness and simplicity.

To get a pelicy function for consumption, we shift the Padé approximation so
that the resulting function is centered on the steady state:

Inf3j:= epade[k_] = pade[k-1];

We next plot the difference between the Taylor and Padé approximations:

Infld]:= Blet[({ctay[x]-cpade(x])/E[x].,{x, .1,2.}, PlotRange->All]

0.0a7T
0.057
0.04%
0.037
0.02%

0.011 /

625 0.5 07 1:25 1.5 175 &

e

out [I10) = —Eraphics—

We see that the two approximations are very similar except for the outer
values of capital. At this point one wonders which is better. We next consider a
procedure for making a judgment on that issue.

4.3.5 Evaluating the Quality of the Approximations

We next examine the quality of the approximations over a wide range of cap-
ital stocks. To do this we substitute the Taylor and Padé approximations into
equation (3), yielding functions of & which measure the error in equation (3)
generated by these approximations. Since this error is not unit-free, we then
normalized the error function, commonly referred to as the residual, by rho
and the steadv-state consumption, We define rezidtay k| to be the residual
function of the Tavlor approximation,

In{i):= residtay[k ] := Abs[({£' [k]-rho)*ctay[k]+
gamma* (£[k]-ctay[k]) *ctay’ [k]]/(zho*ctay[kss]]]

I ] ki i el




and residpade [k] is the residual functon

Inf2):= :esidpada{kmj ‘= Abs[ (£ [k]
gamma*{flk]—:pada[klj

for the Pade dpproximation,
-rho) Ycpade [k]+

Both of these residuals are smal] near the steady state; for example,

Inf3}:= {residtay[.ﬂﬂ]. :asidtay[l.DZJ,residpada[.ﬂa],
residpade[1.02]}
Ouef3]:= —11 —=11 =13
{3.62898 10 + 3.48191 10 ¢ B.HD14Z 10
~13
2.011%8 10 '

We will examine the relative quality of the two approximations by eXamining
which has the smaljer residual function, To do this we plot the residuals op 5
logarithmic scale. To avoid underflow, we will plot the base 10 logarithm of the
residual’s magnitude, plus, to prevent overflow, a small number
inl4]:= eps = 0.000000000001 ;
Plnt[[Lug{rasidpada[z]+ePs]chg[lﬂ,],

ch[rasidtay[x}+aps]fLugElU.]},{x,.l,E.Sj,
PlotStyle-»{ [Dashing[{-_ﬁﬁr 0531}, (1N

—10

~124

But [4]:= —Sraphics—

These plots show that both e pansions are excellent near the stead y state, but
that the Padé approximat; on, represented by the solid line, is sy bstantially better
away from the steady state. In fact the Padé approximation remains an excellent
approximation, with an error of less than one partin a thousand, even for capital
stocks more than double the steady state, whereas the Taylor approximation has
unacceptable errors at those capital stocks.

Considerations from complex analysis indicate the limitations of the Taylor
series expansion. Because of the singularity in the production function at f = 0,
One expects that the consumption policy function is also singular at k = 0; this
would be the case if consy mption is roughly proportional to ou tput. From com-
plex analysis, this would imply that the Taylor series approximation centered

Kennath L Judd ang S¥-Ming Gy
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at k = 1 cannot be valid outside of [0,2]. Therefore, the poor performance of
the Taylor series for k > 2 is not surprising. The good performance of the Padé
approximation is not limited by the singularity at £ = 0, and performs very well

even for k= 2.5,
In this section we have shown how to compute a high order approximation

of C(k) for a simple continuous-time growth model. In the sections below we
show how to extend this to discrete time, uncertainty, and labor supply.

4386 A Perturbation Package

We will now collect the basic functions above into a set of functions which
will allow us to compactly compute the important functions. We will define a
function which will automatically compute the Taylor series expansion of the
consumption policy function around the steady state:

In{l}:= ctayfunclalpha_,gamma ,rhe_,n ] :=
Bluck[{f,u,ksa,ccuef,:,rcut,hallman.xbellmanl,
f£lk_] = (ghofalpha) kdlpha;
ufe 1 = c” {l+gamma}/ (1+gamma) ;
efk 1 = Sumfccoef[i] (k-kss) i/i', {i,0,m}]:
bellman{k_] = - rho*c(k] -
gamma*c{k] *Derivative(l] [c] [k1+
gamma* £ [k] *Derivative[1] [c] [k]+
cl[k]*Derivative[l] [£] [k]:
ksa = 1;
clkss] = flkss]l;
ccoef[0] = £lkss]:
sbellman[k ] = Dibellmanik], k]:
root = Eolva[xballman[ksa]==ﬂ,:cuaf{l]]:
rtl=root [[11] (111 [[2]];
ce2=root [[2]]1[[1]][[2]]+
I£[rt1>0, re=rtl, rt=rt2];
ceoaf[l] = £t
For[§=2, j<n+l, j++,
xbellman(k_] = D[xbellman[k], k]/
root:Sulva{xbalean[kss]==ﬂ,c:aa£[j]];
ceoaf[j]l = root[[11]10[2111[2]]
1:
Sum[ccoef[i]

]

To use ctayfunc, we invoke it as part of a function definition, as in the
following application which replicates the example above:

{i,0,na}1

[x-kasg) "i/1!,

IniZl:= ectay(x ] = ctayfune[.25,-10., .05,5]
3 " 2

0.2 + 0.062081 (=1 + =} — 0,01B4062 (=1 + ) +
3 4

0.0103787 (-1 +'x) — 0.00702881 (-1 + =) +

L ol ! ol b B
=1

B

o, T
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derivatives of ' can be computed by cpadefunc:

Elock [ (mpade, npade, numpol , numcoef, denpal,
dencoef, tayleor, pade,al},

mpade = Floor[n/2];

npade = n - mpade;

clfx ] = elx+xpt];

numpoel [z ] = Sum|[numecef[i] =~ ({i-1),
{i,npadetl}];

denpol[x ] = Sum[denceef[i] =~ ({i-1),
{i,mpade+l}]:

Infd):= cpadefunc[c ,xpt ,n ] :=

R
The Padé expansion of a function ¢ around a point, zpt, using the first 5 :

tayler[x ] = Bezies|[clix], (x,0, npade+mpadal];

diff =
denceef[1l] = 1,;

8l = Solve[LogicalExpand[diff=0]];:

Do [numecoef [i]=numcecef [1]/.81[[1]], {1, npada+l}];
Do [dencoef [i]=dencoef[i]/.51[[1]], (i, mpade+l}];

pade [x_]=numpol [x] /denpol [x] ;
pade [x-xpt]
1

numpol [x] - tayler([x] denpol[x]:

We check cpadefunc by asking it to repeat the example above:

Inf4d]:= cpadefunc|[ctay, 1, 5]

Ouecid]:= 2 3
0.2 + 0.27BB31 (=1 » %} + [.0829684 {—1 + =} <+ D.00440471 (=1 + x)
1.+ 107375 =1 +:x) = DiZZIHBS f—~1 + %)

We now demonstrate just how fast these expansions can be computed and
how good they can be by repeating these operations with n = 15, thereby
generating 15'th degree approximations.

IinfSl:=n = 15;
In{s]:= Clearctay, cpade]
Timing[ctay[x ] = etayfunc[alpha.gamma,zcho,n];]
Sut[e]:= {2B.8167 Sscond, Mull}
Inf7]:= Timing[cpade[x_] = gpadefunc|ctay,1,n]]
Cut{7]:= 2
{L.71687 Second, (0.2 + 0.T7T78477 (=1 + %)} + 1l.22781 (=1 + %} =+
3 i 5
1.00548 (-1 + %) + 0.454781 (=1 + ) + 0.311T466 {1 + =)
& 7
0.0134483 (-1 + =) =+ 0.000634302 (-1 + =) F;
B
0.00000625817 (-1 + =) )

B e D i
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s o |

sing the ﬁISt1;1% g : put [ 71 feonc. )

2 3
(L. + 3.58198 (-1 + %) + 5.115923 (=1 + ¥+ 3.71602 (=1 + ¥

4 3 ]

+ 1.449084 (=1 + x} + 0.2B6IB1 (-1 + x] o+ 0.0250533 (=1 + x}

-
+ 0.000838291 (=1 + x} )}

When we plot the residuals, we find that both expansions are excellent:
In{8]:= eps = 0.000000000001;
Flat[{Lng[zesidpade[x]+eps]!LagIlﬂ.],
Loglresidtay([x]+eps]/Logl10.]}, (%, .1,2.57,

: Plotstyle -> {{Dashing[{ﬂ.ﬂs,ﬂ_ﬂl}}},[}},
PlotRange -> All]

pade}];

pade+l}]; J
oade+l}]; 24

Lak

1+ X%

il 3,05
1

i
i

computed and
= 15, thereby

Out (8] := <Graphics-

Note that in this case the Padé expansion is excellent over a very large range
of capital stocks; in fact, the residual is of the order 10”7 or better over almost all
151 capital stocks examined. The Taylor expansion is better near the steady state, as
= it should be since it is the best possible local expansion. However, its advantage
in that region is truly trivial, existing only past the seventh significant digit,
whereas the Taylor expansion becomes of questionable value outside of [.5,1.5].
_ We have seen that perturbation methods can be used to compute two kinds of
v % < 5 i approximation to the continuous-time deterministic growth problem, and that
: = Mathematica programs can automate the necessary algebra. We will next turn to

other models which can also be analyzed in this way.

(-1 +x) + 8
e

For many interesting questions concerning economic growth and dynamics, it
is necessary to add uncertainty to the analysis. We will next show how to use
the approximation to C(k) around kss in the deterministic case to compute an |

i Biwiuitr =
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approximate policy function in 2 similar model with small amounts of Uncer. 8
tainty. While the assumption of small shocks may seem limiting, we wil] fing
that the approximations do well with empirically relevant levels of risk.

The problem we will examine 15 just the stochastic version of the previoy, SE -
problem: :

o =g
Viks) = max E{/ e M ule) d!} -
5 0

di = (f(k) = ) dt + ; Vi kds
H(0) = ko )
We define the value function to be
Vik) = .‘i'l]!_JE{-/’M e ulr) tﬂ.}
eEF (i
where F is the set of feasible consumption processes with £(0) = k. If Vik)

is €%, then stochastic optimization theory demonstrates that the v

alue function
solves the partial differential equation
1 |

kb

O0'= tnax [mp VIR +ule) + V() (f(k) — o) 40 .E-.”V”[A-}J

] Again, the optimal choice of consumption depends solely
- capital stock. While the dependence of V and
in the notation, we will add & as 3 parameter
as Clk. o). This emphasizes the fact that we

basis of our approximation. Fo rmally, we are |
expansion of ('

on the current
on « is normally suppressed
and express the policy function
are using the o = 0 case as the
ooking for the terms of the Taylor

Clk, o) = Clkss, 0) & Ciolkss. 0)(k — kss) + Cn(hss, 0)a

+Chr(kss, 0)(k — kss)* /2 + O (hss, Ula(k — kss) + Cpq(kss,0)02 /2 4 ...

The Bellman equation im

plies that the policy and value functions satisfy the
system

0=—pV+u(C)+Vi(f - C) + 0 K2V} (4)

0 =u'{€C) — Vi (3)

Differentiating (4,5) with respect to & and using (5), we find a single equation
for the consumption policy function,

O=u'(f"~ p)+u"Ci(f - C) + 20 ku"Cy + ok* (w"CLCy + v O (6]

Equation () will be the cente
and & = kss

Crrie R

rpiece of our analysis. We know that at o« = 0

Clkss,0) = f(kss).

Our earlier analysis has computed all of the derivatives

=H
ﬁ%{ms.m,ml,---,u.
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We will next move our derivatives
8 ¢8'c
5 () ten0)
We first differentiate (6) with respect to @, yielding
0=u"C.lf —p) +u Calf - C)C: +u"Cra(f — ) + w[=CH )0,
+ " Oy + 2aku™C,Cr + 2aku’ Che
+ .I.:Q[ITE.WC'EC;; - H”Ckk:l
= HA‘-E [ LL””GJC;CC';,- + 'z-u”'t‘,?;wfjk + EI”'IGE. Cep+ Lt”Ckkalj
At (kss.0) this reduces to
0= —LII.HC,:{T;C % Peu" O+ Iil..zl::.u.l”ci;j: 4+ H”Ckk]
showing that C'; can be solved linearly in terms of £, and Cr at kss.
Subsequent differentiation of (4) with respect to & will yeild similar expres-
sions for Cag, Cork, BEC
However, note that C, needs Cir, Cok needs Cue, ete. Hence, if we know
only the first n derivatives of C with respect to k, we can only compute the first
o — 2 derivatives of C with respect {0 I This restricts what o derivatives can
be computed. For example, the following is a maximal collection of computable
derivatives if we only know up to Treppe:

(e € Cre Crkkk
€, Cor Cokk
E"I'TD'

This tableau is maximal since (7 eer needs Crrrkk which is absent, and the
resulting absence of Caprs then makes it infeasible to compute Cogi-
We now implement this procedure in Mathematica. We first initialize the

critical parameters,

Ini1]:= kss=l; alpha = 25: rho = .05; gamma = -2
define the production function,

Irf2ls=E[k_] = rho/alpha kalpha;

define the utility function,

In[3]:= ufe_] = ¢ {l+gamma)/ (l+gamma] ;
define some useful auxiliary functions,
Infd}:=ulla ] = Simplify(u’ lel/u’ " lell;
Inf5]:= u2lc_] = Simplify[u’'"’ [€] fu’ " 1ell:
and set the desired degree of approximation,

Inf6ej:=n = 43

The following procedure builds a function, conss (x,s], which approxi-

mates O (k. o)

et i ST i ey i P i LK e — L i —

oy

por b
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TF]a= Block[{sbell,rﬂbt,cﬁnsh

lear[conss];

r[3=0, j<=n, j++,

For[p=0, p<=n, p++,
Derivative{j,p]{ccns][kss,ﬂl = .

1:

17

(£° [k] = rhao) ul[ccns[k.s]] +

Dlcons [k, 5], k] (£lk]-cons[k,=]) +

s k k (u2[cons[k,s]] (D[cens[k,s],k])-2 +
Dlecens[k,s], {k,2}]):

sbell[l,ﬂ,k_,;_] = D[sbell[0,0,k,s],k];:
cons [kss, 0] = flkss]:

cunss[k_,s_j = cons[kss, 0];

root = Selvelsball(l,0,kss, 0]==0,
Derivative[l,ﬂ]1cuns][k55,0]];
Eript[root];

Derivative[l,ﬂ][:uns][kss,ﬂ

=

F

] = reet[[2]]1[[11]([[2]];:

onss[k_.;_] = conss [k, 5]

+ Derivative
or[j=2, j<n+l, j++,
5ballij,ﬂ.k_,;_] = D[shell[j-l,ﬂ,k,s],k];
root = Solva[shell[j,D,kss,ﬂ]==n,
Darivativa[j,ﬂ][cuns][kss,ﬂ]];
Brint [reot];
Darivativa{j,ﬂ][cuns][kss,ﬂ] =
conssfk_,s ] = conss{k,s] +

Derivative[j, 0] [cons] [kss, 0] {k=kss} "5 / !
1:

[1,&][cnns][k35.0] (k-kss);

oot [ [111[[11] [[2]];

Far [P=1rP":=n-"'l2rP++a

]
]

[1,0)
[{cons

(2,01
[{cons

[1

11,

sbell[0,p,k_,s_] = D[sbell[0,p-1,k, s],8];

oot = Solve[sbell[ﬂ,p,kss,ﬂ]==ﬂ,
Darivative[D,p][cuns][kss,ﬂ]]:
Print[root];
Derivative[ﬂ,p][ccns]{kss,ﬂ] = root[[1T1[[1]110[2]1];
conss(k_,s ] = conss[k,s] 4
Derivative[0,p] [cons] [kss, 0] s7p / pl;
For[j=1, j <= n - 2 p, j++,
sbellij,p.k ,5 ] D[sbell[j-1,.p,k,s],k];:
rook = SulvE[sEéll[j,p,kss,ﬂ]::ﬂ.

Derivative[],p] [cons] [kss, 011
Print[root];

Derivative([j,p] [cons] [kss,0] = root{[1]][[1)1[12]]} 3

conss[k_,s ] = conss(k,s] +
Derivativu[j,p]iccns]fkss,ﬂ]
(k-kss) "3 s™p/{j! p!)

1;

[1; O] == —0.0411438}1]

» 0] = 0.02937141}

y ¥

:
;
i
H
:
H
:
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(3.0
{{cons [ 38

v, 0)
{ {cons [x, 0.127661}}

[Q,1)
{[cons [Y; —» {.0%671631})

(1.1}
{{=ons 1.

- P G
[ {cons [,

(0.2

{{cons [Z, O] —=

To evaluate the quality of the approximation, we substitute it into the stochas-

tic bellman equation,
sbells[0,0,k_,s ] = (£'[k] - rho) ul[conss[k,s]] +
D[censs(k,s],.k] (flk]-conss(k,s]) +
s k k (uZ[{censs(k,s]] (Dlconss[k,=s],k]}) "2 4
D{conss[k,s5],{k,2}1);

In{8]:=

and define a unit-free residual function,

In{#l:= resid(k_,s ] = sbells[0,0,k,s]/(cho ul[conss[kss,0]]);

We plot a three-dimensional surface of resid:
In{lf]:= Plot3D[Log[Abs[resid[k,s]] +.0000000001] .-"I.ag{_lﬂ] ’
{k,.8,1.2}, {s,0,.001}]

11100210 : ;
- P S T 0.0008

0.00d8

el

g |

Qut (1) = —“surfaceGraphics—

K:E_—'_-g.;f
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This graph shows that the residual function is quite small over a wide Tange

of capital stocks and an economically significant range of s values. To gey Some :
perspective on what s means, recall that the standard deviation of outpyt in the
U.5. economy is on the order of 2% of GNP and that capital-output ra tio is abayy
2, implying that the standard deviation of output is 1% of w
a variance, s, equal to.0001.

We next plot the residual function for some specfic values of s which ape
similar to output variability in U.5. aggregate data:

Infllj:= aps = _0000000001;
Plot[{Log[Abs|resid[k,0]]+eps]/Log[10],
Log[Abs [resid[k, .0001]+eps]/Log[10],
Log[Abs[resid[k,.0004]]+eps] /Log[10]},
{k;.5,1.5},
PlotStyle -> [{Dashing[{.0&,.0}1},
{Dashing([{.05,.01}1},
‘ {Dashing[{.0L1,.01}]1}}]

ealth and imp]}rjng

i

i
; 0urf1i):= —Graphics-
Note that the residuals are quite small, considering the low degree of approx-
imation and the wide range of capital stocks, Also note that the residuals are
‘ practically equal for all three values of the variance, s.
;
| 4.5 Discrete-Time Growth i

In some problems, it is more natural to use a discrete-time formulation of the
problem. We will next apply these ideas to a discrete-time growth model. In
this model, we assume that at the beginning of each period the current stock of




Sy-Ming Guy

ide range
get some
putin the
0 is about
implying

vhich are

fapprox-
iuals are

n of the
odel. In =
-stockof =

E
i
1!

4, Perturbation Solution Methods for Economic Growth Models 99

:F!:n-r:-'_-u_.. Fi

B

M e e

capital, k, is split between consumption uses, ¢, and investment, & — ¢, which is
used to produce gross output, f(k — ¢), which will be available the next pericd.
More specifically,

kit +1) = F(k(t) — et))

is the law of motion.
The optimal growth problem is expressed as

(=]
[ Z 8 ule)
ol i=l

kBt 4 1) = Fk(t) = ()}
k(D) = &y

We make the standard assumptions that u(c) is a concave utility function and
Fik) is a concave gross production function.

Because of the stationarity of the problem, the optimal consumption in each
period is given by a policy function, C'(k), satisfying the Euler Equation

W' (C(k) = 3u' (C(fk = CWR) ) £ (k- Clh)) (8]
At the steady state, kss, we have f(kss — C'(kss)] = kss, implying
u'(Clkss)) = Bu'(Clkss)) f'(kss — Clkss))
which in turn implies
1=0 f'(kss — C{kss))
all of which uniquely determines kss, Furthermore
kss = flkss — Clkss))
Taking the derivative of (8) with respect to k implies
W (C(k)) C'(k) = Bu" (C (k= C(K)) ) €' (£(k = CLkY))
x f'{k— C(k))(1 = C'(k)) f'(k — C(k])
4 g [C‘U{L— b C{f:]‘a]) (k= CR)) (1 = C'(K))
Atk = kss, this reduces to (we will now drop all arguments)
WO = B L = A F(1 =)

This is a quadratic equation with the solution

=

B3 =

s W / ) S [T TR | S
(1—'_{3—{?_?; +1|.I|II{1—||'3—:?'Ff'IJ' 'I"-;Fﬁ“f”)

We now define the critical functions and parameters:
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Infil:= n=7; Clear[ed]; kss=l.;beta=0.96;alpha=0.25;
gamma=-13.0; a=kss/(zlpha beta kss)alpha;
£lk_]l=a kalpha; uly_]l=y (i+gamma)/(l+gamma);
ully_I=u'[y]:; w2k _]=v’ [cd[f]k-cd[k]]]];
cd[ksa]l=kas* (l-alpha beta);
The Euler equation for this model is
Tn(2]):= euler[0,k ]=beta*u2[k]*£’ [k-cd[k]]-u’ [ed[k]]
Gut [Zj:= =1, 0.342893 ]
T8 s
10. 0.75 0.25 10. E
cdlk] fk = edlk}} cd(1.42872 (k — ed[k]) ]
This equation states that the utility from saving one unit of capital and con.
suming the gross proceeds tomorrow has the same marginal vield as COMSuming
that unit today. .
While this equation is intuitive, this form of the Euler equation generates -
unnecessarily complex algebraic expressions. More efficient is the equivalent
form which follows from the CRRA specification of the utility function which
we specified above: _
In[3]:= eulerl(0,k ]=cd[£f[k-cd[k]}]*(beta £’ [k-cd[k]]) (1 /gamma)- §
cd[k]
tut f3] = 0.075 0.25 »
—edlk] + 1.11297 (k — cdi]) ed[1.42872 (k — cd[k]) |

The gain in simplicity is seen by examining the output cells of euler and
eulerl. The denominator of the second term in suler involves the tenth
power of cd (k] composed with itself raised to a power. In 2ulerl, the tenth
power is missing from the comparable term. Rewriting the Euler equation soas
to minimize the complexity of the most complex term will help us keep down
the complexity of the computation.

We sequentially solve for the Taylor series solution around the steady stale.
Successive differentiation and solving for derivatives yields these series:
Inid4]:= Derivativel[l] [ed] [kss] = .;

enlerl{l, k }=D[eulerl[0,k],k]: enlerl0,k] = .;
root=Sclve [sulerl[l, kss]==0, Deriwvative(l] [ed] [kss]]:
rl=root[[1]]1[(1110[2]1); z2=zoot[[2]]10[2]1[[2]1]:
I£[£1>0, rt=rl, ct=r2]; Derivative([l] [cd] [kss]=zt;
For[j=1, j<n, j++,
Derivative[j] [ed] [kss] = .;
Eulerl[j,k&]=D[aulerl[j—1,k],k]:
eulerl[j-1,k] = .;
sol=5olve [eularl(j, kss]=0,
Derivativae[j] [cd] [kss]]:
vt=Derivative[j] [ed] [kss]/.sal[[1]];
Derivative[j][cd] [kss]=vt:]:
Dolces[iil=1/({il!)
Derivativelii] [ed] [kss], {ii,1,n-1}]
Dc[cd[k_}=cd[kss]+
Sum[cee[iii] (k-kss}iii,{iii, 1,311,
{ij1,m-1}]

cd[k]

jab L
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oucl4]:= 2
0.6 + p.3s2ess [=L1. 4 k) — 0.2887B3 (1. ¢ B &

3
n.i95456 (=1. + k) — 4.

{s=]
o]
-1
P
-l
Lo
o
P
|

P

0.0639789 (—1. + k) ¥ 0.166206 (=1. + k)

In this code, we eliminate =u lerl[i,k], the jth derivative of the Euler Bk
equation, as s0On as we have finished using it. This i done to economize 0N

space.
We can again solve for the Padé approximation.

Tn[5] := mpade = Floor[n/f2];
npada = n-mpade;
fenix 1 = cd[x+1]:
numpol[x_1 = Sum [numcoef [1] x~ {1i-1} ., {i,npade+l}];
danpcl[x__] = Sum{denc:oefliil x-(i-1), {i,mpade-rl}] i
raylor[x_] = series[fenixl, (%0, ngadei-mpad.a}} % il
diff = numpollx] - taylor(x] denpel(x]: |
dencoetf[l] = y 1

sl = Eolva[chinalExpand[diff = 0]1]:
pDolnumcoef [1] —numcoat[il/.511 [111. (% npade+l}]:
Do [dencoet [i]=dem:uef[i] J.al[[11]1.41, mpada+l}l:
pade(x 1 = numpal{x}fdenpnl[x].:

cdpade[k_l = pade[k—ll

23
St
]

L
=

(0.76 + 6.3B06 (-1 + K] * 13,9385 (-1 + K} ¥ 83.8372
4
0.3979%4 (-1 + k1. !
2 3
(1 + B.BEE34 (-1 F k) + 14,2402 =1 + ki + 7.28448 (=1 + ki |

We can again compute residual functions to represent the error of our ap- :
pmximaﬁun. In this case, the residual will be sulerli [0, k] /=dl kss]. This !
expresses the Euler equation error as a fraction of steady state consumption. Bl
While this is similar to what we did in the continuous-time case, the mean- L
ing of the residual is more ¢lear here. 1f the residual is .01 at some k, then LRl 111
we conclude that the difference hebween what our approximation says current il
consumption should be and what it would beif anagent optimized today believ-
ing that our appmximatinn would be used in the future equals .01%¢ [kass]-
This is therefore a one-period error. Over the life of an economic agent he

may make several such errors. However if this relative error is on the or- i
der of, say, 105, then this gne-period error is so small that the cumulative (] 1|.i i

error is also small given the ability of the human brain to do intricate calcula- ~

Hons. l :

We next compute and plot the residual functions for both the Taylor and Pade l]j

{8 !

approximations:
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;= cdtay[k ] = cd[k];
residtay(k_]=Abs|
{cdtay(f[k-cdtay[k]]]*(beta £’ [k-cdtay[k]]) " (1/gamma).
cdtay[k]l) / ecdtayl[kss]]:
residpade [k_]=Abs[ i
(cdpade [£[k-cdpade[k]]]1* (beta £’ [k-cdpade(k]]) " (1/gamy).

cdpade [k]) / cdpada[kss]]:

Inf{&):= eps = 0.0000000001;
Plot [ {Log[residpade[x]+eps] /Logfl0.],
Logiresidtay[x]j+eps] /Log[10.]}, {x, .1, 2.5},
PlotStyle -> {{}, {Dashing([{.01,.01}]}}]

-1l03

r

our |

rry

Jr= =Graphics—

Again we find that the Euler equation errors are quite small. The difference in
the discrete-time case is that the Taylor expansion slightly dominates for capital
stocks below the steady state, but is much worse above the steady state.

Overall, we conclude that our approximations are as good as one could rea-
sonably expect real-life individuals to compute. We also find that the Padé
approximation is good over a wider range of capital stocks than the Taylor
expansion.

Extensions and Conclusions

We have demonstrated that perturbation methods can be implemented in Math-
ematica, and can produce excellent approximate solutions to simple economic
growth models. Other applications are under development. Adding taxes t0
our analysis is straightforward and will facilitate analysis of the effects of taxa-
tion on growth and welfare. InJudd [1991], there are discussions of, for exa mple;
applications with several state variables and applications to dynamic games.

i ity i s
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In our examples, we have focussed on computing particular examples. Math-
ematica is rather slow if we wanted to compute hundreds of examples, as would
be the case inside a maximum likelihood estimation procedure. These methods
could still be used. Using the same procedures, one can compute the deriva-
tives in terms of the underlying parameters, p, .~ and any others, and then,
using FortranForm commands, write Fortran statements which could be used
in Fortran programs to rapidly compute the coefficients. In this way one can
combine the symbolic tools of Mathematica with the computational power and
software base of Fortran.

In general, we anticipate that perturbation methods will become as useful in
economics as they have been in science generally, particularly when symbolic
manipulation software becomes more powerful and widespread.
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