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This paper examines a model of dynamic limit pricing with a profit-maximizing 
fringe constrained to finance new investment from internal finance. In a differential 
game, the dominant firm controls price, thereby determining the current earnings of 
the fringe, while the fringe chooses its optimal retention ratio. I f  market growth is 
less than the discount rate, an important feature of the solution is that price must 
eventually drop to the fringe long-run cost of production. If  market growth is 
initially rapid, the dominant firm is much more aggressive in limiting fringe growth. 
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1. INTRODUCTION 

In this paper we examine the optimal pricing strategy of a dominant firm 
or a group of joint profit-maximizing oligopolists facing expansion by a 
competitive fringe. The problem is of considerable interest because most 
concentrated industries consist of a large number of fringe firms alongside 
one or more dominant firms1 Furthermore, expansion by the competitive 

* This paper has greatly benetitted from many suggestions and comments by Mark Sat- 
terthwaite, Ron Braeutigam, Richard Caves, Steve Erfle, Steven Matthews, John Panzar, and 
Bill Rogerson and also from the research assistance of Scott McShan. We also gratefully 
acknowledge the financial support of the National Science Foundation and the J. L. Kellogg 
Graduate School of Management at Northwestern University (Ken Judd) and the Sloan 
Foundation. 

1 For some examples of highly concentrated industries with a large number of fringe firms, 
see Scherer [29, p. 621. Some examples from Scherer of industries in 1972 with four-firm con- 
centration ratios of 90 or greater with a large number of fringe firms include flat glass (ll), 
cereal breakfast foods (34), turbines and turbine generations (59), and electric lamps (103). 
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fringe appears to be an important source of “entry,” since full-scale entry 
by new firms into significant oligopolistic markets appears to be a fai 
rare event.2 

The problem of a dominant firm facing expansion by a competitive fringe 
was first examined by Gaskins [ 141. He labeled the pricing strategy of the 
dominant firm “dynamic limit pricing.” We believe a new formulation is in 
order because of two developments: (1) Gaskins’ model has rece 
widespread application at the theoretical, empirical, and policy levels 
(2) the strategic assumptions underlying his model have come under tel 
criticism in recent years. We believe that our formulation handles the bas 
criticisms of Gaskins’ approach yet continues to yield a rich set of predic- 
tions about dominant firm pricing strategy. 

Gaskins’ model has become widely known and used by both economists 
and non-economists for further theoretical modeling,3 empirical research in 
industrial organization4 and policy analysis.5 Some reasons for this w  
range of application can be found in Scherer’s [29, pp. 23&243] excel1 
description of the model and its predictions. Scherer notes that the model 
“is compelling not only because it yields rich predictions, but also because 
these predictions appear to be consistent with a good deal of what we 
know about American industrial history” [p. 239-J Scherer gives several 
examples, including the pricing strategies of ‘U.S. Steel, American Viscose, 
American Can, Xerox, IBM, Alcoa, and General Motors. 

Along with the many applications have come some telling criticisms of 
Gaskins’ formulation. These criticisms center around the ad 
the fringe expansion equation and the game theoretic foun 

’ For a discussion of modes of entry and expansion, see Scherer 129, p. 2481. 
3 To cite but a few of the theoretical extensions of Gaskins’ model, Brock [2] includes 

technological progress, Lee [22] adds non-price policies and learning by doing, DeBondt f5] 
includes scale effects and Encaoua and Jacquemin [9] incorporate non-price policies. Flaherty 
(111 investigates a duopoly model where a fringe firm gradually grows to a size comparable to 
the dominant firm. However, she assumes Cournot competition with adjustment costs in ont- 
put. 

4 At the empirical level, Gaskins’ model clearly demonstrates the possibility of a feedback 
relationship between price and market structure-the choice of a pricing policy affects market 
share over time, as well as market share determining pricing policy. While the vast majority of 
industrial organization studies continue to be cross-sectional, a few recent studies are 
dynamic, and more are likely to follow. Brock [2], for example, estimates Gaskins’ model 
econometrically for the computer industry; while Martin [2X] includes a concentration 
equation based on Gaskins’ model in a system of simultaneous equations. Martin finds tkat a 
dynamic specification of concentration is critical to the specification of the ~ro~tab~~~t~ 
equation 

5 Gaskins’ model has seen application at the policy level, including frequent citations in law 
journals. It appears that a number of lawyers as well as economists interested in antitrust 
issues are familiar with the model, including Dunfee and Stern [7], Easterbrock [$a9 and 
Kaplow [ZO]. 
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model. In particular, Gaskins’ fringe expansion equation is not based on 
any maximization behavior on the part of the fringe. Some of the criticisms 
of the game theoretic foundations of the model apply with equal force to ail 
but the most recent limit pricing models.6 It has been pointed out by Fried- 
man [12] and Milgrom and Roberts [26] that under complete infor- 
mation, if established firms’ pre-entry actions do not influence post-entry 
costs or demand, these actions cannot deter entry. The capital investment 
decision is one example of a pre-entry action which can affect post-entry 
conditions.’ We are aware of no previous explanations, however, for how 
price could deter either entry or fringe expansion under complete infor- 
mation. 

Our dynamic limit pricing formulation is based on the importance of 
internal finance (retained earnings) to fringe firms. In this respect our 
model is related to Spence [31], in which internal finance plays the crucial 
role of the constraint on the expansion of later entrants into a new market. 
Spence, however, chose to examine. capacity, not price, as the control 
variable of the first entrant. Building on Spence, Fudenberg and Tirole 
[13] also examine how an early entrant in a market can exploit its 
headstart by strategic investment when there is an exogenously given 
upperbound on investment.8 

We set up the dynamic limit pricing problem as a deterministic, non- 
cooperative, differential game between the dominant firm and the com- 
petitive fringe. The dominant firm controls price while the fringe firms 
choose their retention ratio. Fringe firms retain all of their income for 
investment as long as it is in their long-run interest to do so. The connec- 
tion between current price and expansion is then obvious+urrent price 
determines fringe earnings which in turn determines the maximum possible 
rate of expansion of their capital stock. Today’s pricing decision then does 
affect the future circumstances that dominant firms face.’ 

We demonstrate several interesting features of the equilibrium outcome. 
First, in the case where the market’s rate of growth is less than the 
dominant firm’s discount rate, if the fringe is initially small (large) the price 
drops (rises) to fringe marginal cost at some finite time although the fringe 

6 A recent example is Matthews and Mirman [24]. 
’ For an analysis of capital investment as a deterrent to entry, see Dixit [6]. 
* It is interesting to note that in an early version of their paper, Fudenberg and Tirole [ 131 

point out that their assumption that current levels of output have no effect on the latter 
periods of the game may not be appropriate if firms relied on self-financing. 

9 There are documented examples of dominant firms setting low prices to reduce the current 
earnings and internal finance of fringe firms. A recent example is discussed by McAdams [25], 
an expert government witness in U.S. v. ZEM. For a different interpretation of ZZLWs pricing 
strategy with respect to its plug-compatible periferal equipment competitors, see Fisher et al. 

ctu1. 
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market share continues to rise (fall) forever. This contrasts with Gaskins’ 
analysis where the price only approaches the fringe marginal cost 
asymptotically, and then so only in the case of zero growth.r’ We also 
examine the case where the market’s rate of growth is greater than the 
dominant firm’s discount rate and the game lasts for a finite time, a case 
not examined elsewhere in the literature. We believe this to be an impor- 
tant case given the fact that demand for many goods grows very r 
immediately following introduction. In the rapid growth case we fin 
equilibrium goes through as many as five qualitatively distinct stages. 
interesting is the finding that the dominant firm will be more aggressive 
during periods of rapid market growth. While our analysis is explicitly 
open-loop, we argue that our equilibrium must be similar to a close 
equilibrium, and show that the long-run steady state outcomes cannot dif- 
fer. 

The next section of the paper is a brief review and a critique of Gaskins’ 
formulation. In section three we summarize recent research supporting 
dominance of internal finance and we derive our expansion equation. 
set up our general model in section four. In Sections 5, 6, and 7, we 
solutions for different assumptions about market rates of growth a 
trast our results with Gaskins’. Finally, Section 8 is a discussion of 
generalizations and alternative solutions to our formulation of dynamic 
limit pricing. 

2. BACKGROUND 

Dynamic limit pricing differs from static limit pricing in that it allows 
more general strategies on the part of dominant firms. Firms following a 
static limit pricing strategy either charge the short-run profit-maximizin 
price and allow their market shares to decline, or they set price at the limit 
price and preclude all entry. Gaskins argues that there is no justification for 
this dichotomy; rather maximization of the present value of future profits 
entails a balancing between current profits and future market share, 

In Gaskins’ formulation the optimal pricing strategy maximizes: 

lo In a comment on Gaskins [ 141, Ireland [16] shows that Gaskins’ expansion equation 
can be modified such that price always asymptotically approaches fringe marginal cost. None 
of the basic shortcomings of Gaskins’ approach, however, are dealt with. 



372 JUDD AND PETERSEN 

where V is the present value of the dominant firms’ profit stream, p(t) is 
product price, cd equals average total cost of production (assumed to be 
constant over time), q(p(t), t) is the dominant firms’ output, and r is the 
dominant firms’ discount rate. 

Gaskins assumes that the level of dominant firms’ current sales can be 
decomposed into additive univariate functions of price and time, such that 

dP(f), t) =fMt)) e” - x(t) (2) 

wheref(p(t)) is the market demand curve, y is the market growth rate, and 
x(t) is the output of the competitive fringe which is assumed to be fixed at 
any point in time. The net effect of fringe expansion, 1, is to shift the 
dominant firm’s residual demand curve laterally. 

Gaskins argues that if fringe firms view current product price as a proxy 
for future price then expansion will be a monotonically nondecreasing 
function of current price. He then assumes that expansion is a linear 
function of current price, given by 

i(t)=koey’(p(t)-ji) x(o) = &,, p 2 cd (3) 

where p is the limit price, k, is the response coefficient at time 0 (k > 0), 
and x0 is the initial output of the competitive fringe. Gaskins also assumes 
that the response coefficient k(t) = koeYf is a growing exponential function 
of time. He argues that increasing disposable income should cause a 
proportional increase in the quantity of resources available to the fringe for 
investment in any particular market. 

Equations (1) (2) and (3) allow the optimal pricing strategy of 
dominant firms to be solved analytically using the mathematics of optimal 
control. The objective is to choose p(t) to maximize (1) subject to (2) and 
(3), where x(t) is the state variable.” The necessary conditions12 for an 
optimal p(t) can be used to obtain a system of differential equations 
describing the time path of prices and fringe market shares. If 

I1 The Hamiltonian for Gaskins’ model is given by 

H= (~(4 -GM(P) ey’ - x(t))e-“+z(t)k,eY’(p(t)-p) 

where z(t), the costate variable, is the shadow price of an additional unit of rival entry at any 
point in time. The first term in the equation is the change in present value accruing from 
current sales. The second term is the product of z(t) and n(t), which is the effect of current 
entry on future profits. 

I2 The necessary conditions in Gaskins’ formulation are: (i) a*(l) = k. eQ*(t) -p), 
x*(0)=x,; (ii) i*(t) = - (dH/dx)(x*(t), z*(t), P*(t), 2); i*(t) = (p*(f) - cd) e-“, 
hm ,+,oo z*(t)=O; (iii) a&Q(t) = ((f(p) ey’-x*(t))+(p*(t)-cJf’)e-“+z*(f) k#=O. 



DYNAMIC LIMIT PRICING 373 

w(t) = x(t) e-” is the normalized size of the fringe, the resulting system of 
equations is 

Equations (4) and (5) define two possible optimal price trajectories, 
depending on the initial size of the fringe, its cost disadvantage in relation 
to the dominant firm, and other factors. If the dominant firm is initially 
large, it will price initially above the steady-state level and lower it 
gradually over time, thereby causing the fringe to gain market share until 
the steady state is reached. This is the strategy which is consistent wit 
number of corporate histories described by Scherer [29] and with the 
empirical findings of Caves et al. [4] on the decline of dominant firms dur- 
ing the early decades of this century. If the dominant firm is initially small, 
it initially sets price below the steady-state level and raises it gradually over 
time, thereby causing the fringe to lose market share until the steady state 
is reached. In both cases the present value of the profit stream is maximized 
by balancing the contributions of current price to profits with the loss or 
gain of future profits from the loss or gain of market share. For furt 
details, we refer the reader to the original paper. 

The weak point in Gaskins’ formulation is that fringe iirms (the 
entrants) are not treated as rational, maximizing economic agents. As 
Milgrom and Roberts [26, pi 4443 point out, this is common to most of 
the existing limit pricing literature. In addition, a number of issues can be 
raised about the exact specification of the fringe expansion equation, 
i(t) =k,e?‘(p(t)-,I?). One issue is the response coefficient, k,. A priori 
nothing is known about this parameter which is unfortunate since i(t), 
b(t), and the steady-state values of market share and price critically depend 
on its magnitude. l3 A second issue is t h e j ustificafion for the response coef- 
ficient growing at an exponential rate y. Gaskins’ justification, that increas- 
ing disposable income should cause a proportional increase in resources 
available to fringe firms in all industries, seems tenuous in an economy 
where new industries are emerging and competing for resources, some have 
matured and others are declining. Another issue is why fringe ex~~~si~~ 

I3 Gaskins provides a numerical example at the end of his paper for a given demand curve 
and a given response coefhcient. We recomputed the steady-state values of market share and 
price, along with the price trajectories for a range of response coefficients and demand 
parameters. We find that the results are very sensitive to the selection of the response coef- 
ficient and the demand parameters. Plausible results for any given demand curve can be 
obtained only by experimenting with the selection of k,. 
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does not depend on the present size of the fringe, as well as price. One 
would expect that the larger the fringe, the greater ii-, other things equal. 
Finally, is there any justification for a positive, much less a linear, 
relationship between fringe expansion and price? We return to these issues 
in the next section. 

3. INTERNAL FINANCE AND THE EXPANSJON EQUATION 

Similar to Spence [31], we assume that fringe expansion is constrained 
by the availability of internal finance. Corporations may linance expansion 
with internal finance or with debt and new share issues, sources of external 
finance. It is well known, however, that internal finance has been the 
dominant source of finance historically I4 as well as during the post-World 
War II era. New share issues accounted for only 8% of all new equity 
finance for nonlinancial corporations (a large part originating from public 
utilities) over the period 1970-79,” while the debt/capital ratio in manufac- 
turing in 1981 was under 20%.16 Given the above figures it is not surpris- 
ing that retention ratios for small firms tend to be extremely high. For 
example, during the last decade, corporations under 5 million in assets had 
average retention ratios of over 80% while corporations between 5 and 25 
million in assets had average retention ratios of over 75%.” It is not at all 
uncommon for fringe firms in growing industries to pay no dividends (i.e., 
retain 100% of income) for long periods of time. 

Many explanations exist for this pattern of finance. An excellent over- 
view is contained in Meyers [27], where he argues for the “pecking order” 
theory of finance-internal finance followed by debt and new share issues. 
The usual explanations for low debt/capital ratios include the costs of 
financial distress, I8 agency costs, I9 the personal tax advantages of equity, 

I4 See Butters and Lintner [3] for a review of the historical importance of retentions as a 
source of finance for expansion. 

Is See King and Fullerton [Zl, Table 6.151. 
I6 After corrections for inflation, King and Fullerton [21, p. 2391 report a debt/capital ratio 

of 0.198 for 1981. Furthermore, the debt/capital ratio varies little across firms in different size 
categories. 

” Retention ratios for corporations by asset size appear in the Internal Revenue Service, 
Statistics of Income, Corporate Income Tax Returns, 1910-1919, Table 5. 

I8 Financial distress refers to the set of problems that arise whenever a firm has difficulties 
in meeting its principal and interest obligations. Bankruptcy is the most extreme form of 
financial distress. For an in-depth discussion, see Haley and &hall [15, p. 3771. 

I9 A g ency costs arise from the efforts of creditors of the firm to ensure that the firm honors 
its contractual obligations. These costs result from the attempts by creditors to modify or con- 
trol firm decisions and the failure to make some investments due to the pricing of debt con- 
tracts. 
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and flotation cost~.~’ Recent theoretical foundations for the paucity of new 
share issues include the design of the corporate tax system and assymetric 
information between managers and existing and potential shareholders2” 
The former explanation is briefly discussed below. 

The United States and a number of other countries employ what is 
known as a “classical” tax system. Among the provisions of this system is 
that capital gains are taxed at the personal level at a favorable rate com- 
pared to dividend and interest income. A number of recent studies2’ have 
examined the cost of equity finance under the classical tax system. In each 
study, internal finance is shown to dominate new share issues. The basic 
intuition is that no tax savings occur from the issue of new shares, while 
tax savings do occur when earnings are retained because a dividend tax is 
avoided for a lower tax on capital gains. Given the typical sbare~olders’ 
marginal tax rate, the tax advantage of internal finance over new share 
issues appears to be quite large. 

The importance of internal finance is clearly a reason why current expan- 
sion and future capacity of the fringe is a function of current price. A high 
current price established by the dominant firm increases the internal 
finance available for the purchase of capital and the expansion of output. 

Let the revenue of the fringe net of all operating expenses and taxes be 
denoted by R(p(t), x(t)), h w  ere x is the output of the fringe. The fringe 
obviously will not retain 100% of its income in all time periods--eventually 
it will choose to pay some dividends. Let u(t) e the fraction of earnings 
each fringe firm chooses to retain. Further, assume, as does Gaskins, con- 
stant returns to scale and a capacity contraintz3 Then the expansion 
equation of the fringe can be written as 

i(t)=R(p(t), x(t)).u(t).J (6) 

” This is particularly true for small issues of debt or new shares-and therefore especially 
relevant to fringe firms-because the transaction costs tend to be largely fixed costs. 

” A second theoretical foundation for the dominance of internal finance is presented by 
Myers and Majluf [ZS] and summarized by Myers [27]. In their model, firms have assets in 
place as well as potential investment opportunities. Managers have inside information both on 
the true value of existing assets and the investment opportunities. Their objective is to 
maximize the value of existing shares. Myers and Majluf show that if manager’s inside infor- 
mation is unfavorable, the firm will always want to issue new shares even if the only good use 
for the funds raised is to put them in a bank. But if management acts this way, its decision to 
issue will signal bad news to both old and new shareholders. The conditions for a rational 
expectations equilibrium indicate that firms may pass up positive net present value oppor- 
tunities if they have to be financed by new share issues. 

22 See Auerbach [l] for a review of the literature. 
23 This type of cost function is commonly used in theoretical work in industrial 

organization. See, for example, Spence [30] and Dixit [6]. 
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where J is the physical output-dollar value of capital ratio.24 A useful way 
to think about the expansion equation is that if K(t) is the dollar value of 
the capital stock of the fringe at time t, then x(t) =K(t) J, and thus 
-l;-(t) = k(ct) J. k(t) is just the net revenue of the fringe when u = 1. 

The above expansion equation completely excludes sources of external 
finance. The assumption of no external finance is stronger than necessary. 
Rather, what is needed is that external finance, in particular new share 
issues, be sufficiently more costly than internal finance. This point is dis- 
cussed in more detail in section eight. The absence of debt finance in the 
expansion equations is not a substantive limitation. If debt can be 
increased by some fixed finite amount for every additional dollar of new 
internal finance, then a multiplier equal to the ratio (debt + equity)/equity 
could be included without any change in the results. We do not include 
debt finance, but note that it could be easily incorporated in J. 

Before proceeding to the general model, it is appropriate to compare our 
fringe expansion equation with that of Gaskins’, i(t) = k,eY’(p(t) -p). As 
long as the fringe is operating, Eq. (6) can be rewritten as 

i(t)=@(t)-cf)x(t).u(t).J 

where cr is the fringe non-capital unit costs of production up to the 
capacity constraint x(t). Clearly, our fringe expansion equation displays a 
linear relationship between both R and p and i and x. Quite simply, fringe 
revenue varies proportionately with both price and output. Also of interest 
is that something analogous to Gaskins’ k appears in our expansion 
equation; taking the partial derivative of 2 with respect to p, one obtains 
x(t) uJ. Our “response coefficient” depends on the current size of the fringe, 
the fringe retention rate, and the physical output-capital ratio. What is 
especially important is that the parameter J is knowable a priori-that is, 
for individual industries one could determine what the response coefficient 
is at any moment in time. It is apparent that our response coefficient will 
increase over time as long as I;-(t) > 0. Our formulation does not, however, 
provide any economic justification for Gaskins’ assumption that k(t) grows 
exponentially over time in every industry at some common rate y. 

24 It should be noted that l/(Jp), not l/J is the conventional capital-value of output ratio. 
Since $2) is expressed in physical units of output, not in dollar value of output, J must also 
be expressed in physical units of output per dollar of capital per period of time. This presents 
no problem for applications as long as the distinction between l/(Jp) and l/J is kept in mind. 
As an example, suppose the after-tax income of the fringe is $15,000,000 and p = $1O,ooO (e.g., 
output is automobiles) and l/Jp = 3 (the average value in the U.S.), then J= l/$30,000 and 
therefore 1= 500. 
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4. THE GENERAL MODEL 

We shall determine the nature of the open-loop equilibrium in a dynamic 
game between the dominant firm and the competitive fringe. In this game 
the dominant firm chooses a price path, p(t), and the fringe firms choose 
their reinvestment rate, u(t). Since all fringe firms have ac6ess to the same 
constant returns to scale technology, we can assume without loss of 
generality that each fringe firm chooses the same u(t). Equilibrium is any 
pair of p(t) and u(t) such that each is a best reply to the other. 
ing the Nash open-loop equilibria, we are implicitly assuming that at some 
initial time the players simultaneously make irreversible decisions concern- 
ing p(t) and u(t). While closed-loop equilibrium analysis is preferable since 
it allows continuous and sequential decision-making, it is intractable. Pa 
this problem the two equilibrium concepts will be seen to be similar. In 
particular, they must have the same steady states. Therefore, we examine 
the open-loop equilibrium. 

Both players make their choices in order to maximize discounted profits, 
with the dominant firm taking into account its impact on fringe capacity. 
Letf(p) be demand at t = 0, and x0 the fringe capacity at t = 0. We assume 
that the interest rate is r > 0 and that market demand grows at the rate of 
y 3 0. Recall that ci is the variable marginal cost for the fringe up to the 
capacity constraint x, where the absolute capacity constraint x can be 
increased by J units per dollar of profits. We assume that there is no 
possibility of leasing the equipment and that there is no resale value to the 
equipment, presumably due to ex post firm specificity of tbe equipment and 
high costs of monitoring care of leased equipment. 

cd is the marginal and average cost of production for the dominant firm. 
e assume that the fringe and dominant firms’ costs are not too dissimilar. 

n particular cr + rJ- ‘, the fringe firms’ long-run cost of 
assumed to be less than the dominant firm’s rnon~~o~y rice. Ass~rn~t~o~ 1 
states this formally. 

AssuwPTroN 1. (p - cd) f’(p) +f(p) < 0 for all p le53 tha~l cr+ rJ-‘. 

This avoids the trivial case where the fringe firms are pushed out of the 
market even if the dominant firm acts like a mo list. cd may be inter- 
preted in a number of ways. First, one could as e that the dorn~~a~~ 
firm is using a technology different from the fringe firms, one without 
marginal capacity costs, i.e., there is a large innial set-up cost, but thereaf- 
ter costs are proportional to output. This is not an abs 
since the dominant firm operates at a different scale of 
possibly uses a different technology. 

If the dominant firm uses a technology similar to that of the fringe 
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firms, it would also have a capacity choice, and we should take care that 
we remain consistent with the imperfect capital market assumptions crucial 
to our analysis. We should also apply the restrictions concerning leasing 
and resale to the dominant firm. Nevertheless, we may often ignore the 
dominant firm’s capacity choice in this case. If investment is irreversible, 
but the dominant firm’s sales are always growing, then the irreversibility is 
not binding and cd is the long-run marginal cost, i.e., short-run marginal 
costs plus the opportunity cost of capacity. If the dominant firm’s sales are 
declining, then cd is the marginal variable cost, since the capital costs are 
sunk and unrecoverable. We will assume that cd is constant through time. 
This means our analysis applies to two cases: when there is no marginal 
capacity cost for the dominant firm or when we find the dominant firm’s 
sales to be monotonic in equilibrium. 

Recall that w  is the fringe capacity expressed as a proportion of market 
size, that is, w(t) = x(t) ewY*. w  is the state variable of interest to both 
players, the dominant firm wanting to keep it low and the fringe possibly 
wanting to increase it. The evolution of w  is given by 

14 = (p - cf) s(p, w) uJ- yw (7) 

which is derived from the fringe expansion equation, (6), where s(p, w) is 
fringe supply normalized for market growth and revenue equals (p-c,-) S. 
Since the fringe firms are profit-maximizing, we define s(p, w) to be w  if 
p > c,. and zero otherwise. At p = c,~, the fringe is indifferent between 
producing and not producing and we assume they produce zero in this case 
to keep the dominant firm’s problem well-behaved. The dominant firm’s 
problem is 

s F 
Max eV(p) -s(p, w))(p - cd) eprtd 
PC0 0 

s.t. 

G = (p - cr., s(p, w) uJ- yw 

where F< co is the time at which the game ends. Let q be the dominant 
firm’s shadow price for w. By the Pontryagin maximum principle 

li = rv + (P - 4 GAP> WI - v4p - 4 J (8) 

where the current-value Hamiltonian (using r-y as the discount rate) is 

W%P, v)= 
(P - c,)(f(~) - 3) + V((P - 4 mJ- WI, P’CS, (9) 

(q- df(P) - ?YWY p < Cf, 
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FIG. 1. Dominant h-m’s objective. 

and p is chosen to maximize H: 

pEargmaxH(wp, ~1. 
P 

Since marginal revenue to the dominant firm is positive for p < c~, 

p = c, or 0 = (p - c,)f’ +f(p) - w + yuw9. (11) 

The corner choice, p = cr, cannot be ruled out since at that price the fringe 
shuts down, causing the Hamiltonian to look like the graph in either 
la, where the corner choice of c,- is the solution, or Fig. lb, where 
optimal p, p”, is above cr 

Figure 1 shows clearly that the assumption that the fringe shuts down at 
p = cr makes the objective of the dominant firm upper semic~~ti~nous a 
is necessary for the existence of a solution to (IO). 

Each fringe firm will maximize the present value of its net cash 
income minus retentions, taking prices as given. Since each firm is a price- 
taker, the fringe acts in the aggregate as a pro~t-maximizing price-taker‘ 
Therefore, the competitive fringe collectively solves the problem 

s.t. 

If 1” is the shadow price for w  from the point of view of a fringe firm, t 
its evolution is described by 

Jt = rJ. - (p - cf) sJp, w)( 1 - 24) - A(p - cf) uJ 

and the decision rule for a fringe firm is 

1 

1, /z>J-’ 

u= E [O, 11, I=J-’ 

0, A-CT’. 
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The fringe decision rule is bang-bang since both the payoff and equ 
motion are linear in the control, U. 

DEFINITION. Open-loop equilibrium is any pair of strategies (p(f), ~(~~) 
together with some functions of time, I, 9, and w, which satisfies (7)7 (8), 
(lo), (12), and (13), given an initial fringe size equal to w,,~ 

5. CASE I: y<r 

We first examine the slow growth case where the rate of 
is less than the interest rate. We consider the case of an infinite 
exactly the situation examined by Gaskins. We first investigate the stea 
state of the equilibrium equations and then construct an equilibrium whi 
converges to that steady state. 

The Steady State 

Theorem 1 enumerates the possible steady states of our eq~il~br~~m for 
the general model with y < Y. 

THEOREM 1. If y < r, the steady state of any open-loop equ~~~br~~rn is (81, 
(ii), or (iii): 

0) wss = 0 and u arbitrary; 

(ii) if cf+ rJ-’ 3 cd, then 

qss = (cf+ rJ-’ - cd)/(y - r) 

Ass = J- 1 

P SS=rJ-‘+cf 

us’ = y/( pss - cf) J = y/r 

wss = ((p”‘- c&-‘(pSS) +f(psS))/(l - F+.?J) 

= (r - y)((rJ-’ + cf - cd)f’(pSSi i-f(pss)Mr + yJ(cf- cd/p.); 

(iii) if cr+ rJ-’ < cd, the “dominant” firm is driven out if cd is the 
dominant firm’s marginal variable cost, and price equals cr+ rJ-’ in any 
case. 

In (i), the fringe does not exist so the dominant firm will set price at t 
monopoly level. In (ii), the fringe exists and has size wss. In (iii), ce is 
governed by fringe cost, and the fringe eliminates the dominant fi if it 
has a sufficiently superior cost structure. 
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Proof. It is not possible that in a steady state the dominant firm hmit 
rices by setting p = cP With such a steady-state price, the fringe fi 

would not invest since the quasi-rent would be zero, implying that the 
fringe would disappear asymptotically. However, choosing a steady~s~ate 
price of cr would not be a best response by the dominant firm to the fringe 
choice of no investment. Therefore, p = cr cannot be part of a mutual best 
response. Hence, in a steady state, the firm must choose a price 
interior of its choice set. Hence, the possible steady states are fo 
setting all derivatives in the equilibrium equations (7), (g), and (12), equal 
to zero and using the interior condition in (11). It is straightforward to 
show that in (ii) the dominant firm will not set price equal to cf given the 
computed value for the shadow price I?. Hence, (ii) does describe an 
equilibrium steady state. Cases (i) and (iii) are trivial cases ere 
technology and initial conditions drive the long-run ~qui~ibr~~rn~ .D. 

Cmoergence to the Steady State 

We next examine the evolution of the game out of steady state. We want 
to determine whether the game can converge to the steady state and the 
extent to which the dominant firm can affect this transition ue to the 
specific nature of the manipulations involved in this transition analysis, we 
assume that demand is linear. 

ASSUMPTIQN 2. f(p) = a - bp. 

A convenient reference price will be the dominant firm’s monopoly price, 

In particular, if there were no fringe as in case (i) above, then the dominant 
firm would charge p*. We will also concentrate on the more interesting 
case where fringe long-run marginal cost exceeds that of the dominant firm. 

ASSUMPTION 3. cr+ t-1-l 3 cd. 

The alternative has a trivial steady state and the analysis of convergence 
to that condition requires only minor adjustments to the following analysis. 
In general, the dominant firm’s behavior is described by setting 
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whichever maximizes the Hamiltonian, H, which is given by substituting 
a - bp for f(p) in (9). 

Next, we will show that for w  close to MI”, we can construct an 
equilibrium path which will converge monotonically to the steady state. We 
need to first establish that, given this convergence assumption, when w  is 
close, but not necessarily equal, to w’s, price and the fringe shadow price of 
capacity are equal to their steady-state values. 

LEMMA 1. If an equilibrium converges to the steady state, then for t such 
that w(t) is sufficiently close to wss, p(t) =pss and A(t) = Ass. 

ProoJ: To establish this we show that it is inconsistent for price, 1, and 
fringe capacity to all converge gradually to their steady-state values. Since 
w  cannot jump, it must converge gradually to wss, if it converges. There 
would appear to be four combinations of p and A converging 
asymptotically to their steady-state values from above or below. However, 
p and A must move in the same direction. If A is above and falling to its 
steady-state value, J-‘, then price must also be falling. This follows from 
the fact that u = 1 when R exceeds J-‘, implying via (12) that A is falling if 
and only if p also exceeds its steady-state value, cf+ rJ-‘. Similarly, if 1 is 
less than and rising to J-‘, then p also is less than and rising to its steady- 
state value. 

Next suppose that p exceeds pss and I is falling to Ass. Then u = 1 since il 
exceeds J-‘. This together with (8) implies that the rate of growth in w  
would exceed r-y, since p exceeds cr+ rJ-‘. Since we are examining the 
slow growth case, r--y is positive and w  must hit wss at some finite time. 
To stay at wss at this point, u must fall to its steady-state value. However, 
(14) shows that price increases when u falls, implying that when w  hits wss, 
price would have to rise and thereby stay above pss, a contradiction. 
Similarly, one can prove that if 1 and p were to rise to their steady-state 
values from below, price would have to drop and stay below pss when wss 
is hit. Therefore, if w  is to converge to wss, A and p must be at their steady- 
state values when w  is close to wss. Q.E.D. 

With Lemma 1 in hand we can first prove a local existence result. 

LEMMA 2. For wO sufficiently close to wss, there exists a unique 
equilibrium which converges to the steady state. 

ProoJ Since p and 1 are constant as w  converges to its steady state by 
Lemma 1, u must be changing as w  approaches wss. To determine the con- 
ditions for the equilibrium movements of u and ye as w  converges to its 
steady state, we differentiate the price equation, (14), with respect to time. 
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FIG. 2. Phase diagram of equilibrium around steady state of slow-growth case. 

(Equations (14) and (7) are used to eliminate w  and I& from the resulting 
expression.) The result shows that u and q must obey 

~=Y-Y-u~J(T-y)-Jlr(c/+rJ~‘-c,) 
VJ 

Ij=r(l-~u)~+~/+~J~‘-c~. 616) 

The phase diagram for this system is presented in Fig. 2. Note the 
saddlepoint stability of the steady state. If w  is close to wss, then t 
unique q and u on the stable manifold such that cl+rJ6%-l = 
p* - w(quJ- 1)/2b since any hyperbola of the form yu = k has a uni 
intersection with the negatively sloped stable manifold. Therefore, for IV 
near wss, there is a unique V-U pair on the stable manifold of Fig. 2 con- 
sistent with w  and the pricing formula. As v] and u converge to their steady- 
state values in Fig. 2, the unique corresponding w  also converges to 
We have thereby demonstrated the existence of an equilibrium pat 
the steady state which converges monotonically to the steady state. 

We make no claim of general uniqueness since we have not rule 
cycles. However, Lemma 2 shows that this equilibrium is the only one con- 
verging monotonically to the steady state. Xn this eq~i~ibr~~rn, u an 

642:3912X? 
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FIG. 3. Phase diagram for slow-growth case away from steady state. 

follow the stable manifold in Fig. 2 to the steady state of that system, with 
w  being determined by the price equation (14), since p = cr+ I-J-~ along 
this path. 

Finally, we show that there are equilibrium paths for arbitrary w. 

LEMMA 3. There exists a convergent equilibrium for arbitrary w0 > 0. 

ProojI Suppose q1 is such that (1, r’) is on the stable manifold of Fig. 2 
and w1 is that value of w  consistent with u = 1 and q = ql, derived by 
setting the price equal to p ” in (14). We examine the phase diagram for q 
and w  when u = 1 in Fig. 3, given by Eqs. (7) and (8) with u set equal to 
one. Since the steady-state w  in this phase diagram is associated with a 
price of cf+ yJ-’ and u = 1, it exceeds the true steady state, wss. Since 
u = 1 and p = c,+ rJ-l, w is increasing at (ql, wl), and (q’, wl) is above the 
I$ = 0 locus in Fig. 3. Therefore, we can run time back from (rj’, w’) and 
always remain above the ti = 0 locus. This implies from our pricing formula 
that price is above cr+ rJ-’ and rising as we run time backwards. Hence, if 
1 is J-’ when we are at (q’, w’ ), then ,I rises as we move back in time, 
proving that u = 1 is consistent with the evolution of A during that time. 
Hence, we have constructed an equilibrium for small initial w. 
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If w  is large, initially u is zero and A < JP lT but ;i increases and hits JP ’ 
exactly when 4’ and w” are hit, where these are the values of q and w  con- 
sistent with ZJ = 0 and q being on the stable manifold of Fig. 3. This case is 
even more straightforward since it is just the solution to t 
linear ordinary differential equations: 

rj = rq + max(P - cd, 0) 

X = rI. + max(P - c~, 0) 

GJ= -yw 

where 

P = arg max n(p) 
P 

and we impose the boundary conditions 

v(To)=?” 

w(0) = wo 

w( To) = w” 

A(T,)=J-” 

where w. is the initial value of w. Note that T,, the length of ti 
u = 0, is endogenous, being determined from the I+ equation. 

Theorem 3 summarizes the conclusions of the foregoing analysis. 

THEOREM 3. If y < Y, F= CO, and Assumptions 4 and 2 hold7 then there is 
an equilibrium where.. 

I. If wO is sufficiently small, 

(i) price is initially above cf + rJ-‘; 

(ii) at some finite time, t,, price is cr+ rJ-I; 
(iii) price is falling to cf -i rJ- 1 and u = 1 during t < tl; 

(iv) price equals cf+ rJ-’ for t 2 t, ; 

(v) u drops smoothly from 1 to its steady-state value for t > t,. 

II. If w,, is sufficiently large, then 

(i) price is initially below cr+ rJ-‘; 
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(ii) at some finite time t, , price is cr+ rJ- ‘; 

(iii) price rises to c~+ rJ-’ and u = 0 for t < t, ; 

(iv) price equals cr+ rJ-’ for t > t, ; 

(v) u rises smoothZy from 0 to its steady-state value after tl. 

The equilibrium that we have constructed has several interesting features. 
First, the dominant firm does use its price-setting power to restrain fringe 
firm expansion, since q # 0. However, its “limit pricing” behavior decays 
over time and does not have any long-run impact on performance since the 
steady-state price is fringe long-run marginal cost. The dominant firm 
prices high initially, but not as high as its static monopoly price. Its price is 
reduced as the fringe grows in size. At some finite time price equals fringe 
long-run marginal cost and remains there forever. This does not stop fringe 
expansion, but after this time, the fringe reinvestment rate drops 
monotonically from 1 to the steady-state rate and earnings are distributed 
to investors. 

Comparisons with Gaskins’ Model and Comparative Exercises 

We are now in a position to contrast our dynamic limit pricing results 
with those of Gaskins. We first discuss the comparative statics of the two 
models and then the comparative dynamics. 

The greatest differences in the results show up in the steady-state prices. 
We find that eventually price drops to the fringe long-run marginal cost, at 
which point full reinvestment ceases and price remains constant. In con- 
trast, in Gaskins’ model, as long as growth is positive, the steady-state 
price always exceeds long-run fringe marginal cost. Gaskins finds this to be 
a “disturbing result” [ 14, p. 3171 and provides numerical examples which 
show rather large deviations of price over average cost. 

Comparative statics for the steady-state price are very straightforward in 
our model since pss always equals fringe long-run marginal cost. Any 
change in a component of fringe cost, r, J-l, or cr, is reflected in an equal 
change in p “. In contrast, because Gaskins’ steady-state price exceeds 
fringe cost, changes in fringe cost are not fully reflected in changes in pss. 
Furthermore, in Gaskins’ model, dpss/dy > 0, while we have already noted 
that dpss/dy is zero in our formulation. 

Our comparative statics for wss are, however, similar to those reported 
by Gaskins. (See Theorem 1 for the wss expression.) In particular, 
dwssjdcf< 0 and dwss/dcd > 0, implying that an increase in the cost advan- 
tage of the dominant firm increases the steady-state market share of the 
dominant firm. Another intuitive result is that dwss/dy < 0, or an increase 
in the rate of market growth raises the steady-state market share of the 
dominant firm. 

The dependence of the steady-state fringe capacity on the other 
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parameters is not as straightforward. For example, as J rises, the steady- 
state w  will rise if and only if cd exceeds c,-, whereas intuition would have 
suggested that as fringe firms’ costs are reduced their market share sboul 
increase. The key element is the dependence of the steady-state marginal 
value of current fringe revenue, yJ, on J. The steady-state equations imply 
that it increases in magnitude as J increases if cJ sufficiently exceeds cd. 
Such an increase in the cost to the dominant firm of fringe revenu ould 
lead the dominant firm to be more aggressive in pricing. fact, 
examination of (11) shows that if cr exceeds cd marginal revenue will 
become negative if the steady state w  were unchanged as J is increas 
implying that the dominant firm would have incentive to lower price a 
push down w. Therefore, stability (this is an intuitive argument since we 
have not proven stability) would argue that the new steady state has a 
lower 1~. On the other hand, if cr were less than cd, than the more intuitive 
prediction of steady state w  rising with greater J holds. These rest&s are 
similar to Gaskins where the effect of an increase in k, was also ambiguous, 
however the analysis there did not make any distinction between fringe 
marginal and average costs, the crucial element here. 

The impact of the interest rate is also different between the two mo 
Whereas an increase in the rate of interest increased the fringe firms’ s 
in Gaskins, the effect here is ambiguous. This arises because Gaskins’ r was 
only relevant to the dominant firm and a higher interest rate reduced only 
the value of limit pricing to the dominant firm, whereas here the oppsr- 
tunity cost of funds is relevant to the fringe firms as well, implying that a 
higher interest rate will make investment less attractive to the fringe firms, 
Since these forces push fringe share in opposite directions, the net effect is 
ambiguous. If the firms faced different opportunity costs for invested funds, 
then a straightforward generalization shows that fringe firms’ share rises as 
fringe firms’ interest rate falls and as the dominant firm’s interest rate rises. 

We next turn to the comparative dynamics of the two models. 
partially compare the optimal trajectories found by Gaskins with OUT 
results. The present-value Hamiltonian for Gaskins’ formulation is 

and the present-value Hamiltonian for our formulation when tl = 1 is 

WY fh v) = (p(t) - c~)(~(P) - w(f)) eepr + q(t) 
x eC”[(p(t)- cf) w(t) J- yw(t)]. 

The first term in either Hamiltonian is the present value accruing from 
current sales while the second term reflects the effect of current entry on 
future profits. Differences between the two Hamiltonians occur only in the 
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second terms and arise because of the different expansion equations. Note 
in particular that the value of the second, dynamic, term is proportional to 
the value of w(t) in our Hamiltonian but not in Gaskins’ because our rate 
of expansion, G(t), is proportional to w(t). This implies that our game 
equilibrium analysis yields higher initial prices when fringe shares are suf- 
ficiently small. This is expected since maximizing the Hamiltonian with 
respect to price involves a balancing of the first and second terms, and the 
value of our second term becomes small as fringe output becomes small. 

This observation permits us to make a comparison of the average rate of 
decline in price. Since our terminal price is lower and price attains this 
lower price at some finite time, the average rate of decline in price when the 
initial w  is small must be greater in our game analysis than in Gaskins’ 
model. This is intuitive since the reduced long-run effectiveness of limit 
pricing in the game analysis encourages the dominant firm to be more 
aggressive in acquiring profits through high prices in the initial stages when 
it has a greater market share. 

The necessary conditions for a maximum value for the dominant firm’s 
problem for either formulation can be written as a system of differential 
equations in p(t) and W(I). Gaskins’ system of equilibrium equations, (4, 5), 
was given in Section 3. The comparable @ and 0 equations for our model 
are determined by differentiating the price equation, (14), in which we set 
u = 1 and assume an interior price choice, valid choices when price is 
greater than the steady-state price, and are given by25 

b(t) = k- cd w(t) J- (y - YHXP) - w(t) +f’(~Mt) - cdl + w’(t) 
-2f’k7) --f”(PMf) - Cd) 

A comparison of Gaskins’ P(t) equation with ours indicates that only the 
numerators differ. The differences arise only because our response coef- 
ficient is endogenous and depends linearly on w(t). Therefore Gaskins’ 
analysis and comparative dynamics is very similar to our u = 1 phase. 

At the outset of this study, it was not a priori clear what effect a rational 
fringe would have on the analysis. On the one hand a smarter fringe may 
find ways to circumvent the dominant firm’s attempts to limit the fringe, 
while on the other hand a smarter fringe may realize that, since limit pric- 
ing was rational for the dominant firm given the capital market constraint, 
it should resign itself to this aggressive behavior and retreat or possibly 

25 The necessary conditions for a maximum value of the dominant firm’s problem generates 
the simultaneous differential equations: (i) G*(t) = (p*(t) - c~) w*(t) u*(t) J- yw*(t); (ii) 
q*(t) = (p*(t) - c,,) e-” + q*(t)(p(t) - c,) Ju(t). This system of differential equations can be 
converted into the autonomous system in the paper by eliminating q(t). 
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even surrender. The mechanical expansion rule of askins’ model ianplies 
that fringe firms are both limited in their perception of their options, but 
also implies that they are stubborn. We find that when the growth rate is 
small, the dominant firm is less successful in keeping out rational fringe 
investors. We next examine the case when the growth rate is rapid, finding 
substantially different implications for industry performance under limit 
m-icing with a rational but constrained fringe. 

6. CASE II: y > r, F< cc 

Next we examine equilibrium when growth is rapid, i.e., y > r, a case 
ignored previously in the literature. To keep payoffs bounded, we must 
assume that the game ends at some finite time. We have in mind two types 
of situations. First, one could think of the good as being faddish in nature 
with demand growing rapidly, but then dropping to zero at some time F. 
Second, and more realistically, this analysis will be directly useful in 
examining our third case where demand initially grows rapidly, but t 
slows down. 

To focus on the interesting situations, some auxiliary assumptions are 
needed. In order to assure survival of the dominant firm, we nee 
Assumption 4. 

ASSUMPTIQN 4. cd < cr+ yJ- ‘, 

Otherwise, even if the dominant form charged only its breakeven m-ice, 
the fringe would want to fully invest (since y exceeds Y) umil nearly J’, and 
the fringe would grow more rapidly than the market, squeezing the 
dominant firm out. 

To avoid the trivial case of natural monopoly where the fringe shrinks 
relative to the market even if price were p*, we need Assumption 5. 

ASSUMPTION 5. cf+yJ‘-’ <p*. 

For technical convenience we need Assumption 6. 

ASS~MPTIQN 6. cf< cd. 

Assumption 6 is needed to assure that the dominant firm will not set 
m-ice at fringe short-run marginal cost in the last moments of the game. 
This case is the more interesting since it is the case where t 
some chance to compete. Again, we assume demand is linear. In this case, 
Lemma 4 provides the crucial facts. 
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LEMMA 4. Under Assumptions 2, 3, 4, 5, and 6, tf y > r, p rises whenever 
u = 1 and p > cr, and 1 is concave whenever it is falling and u is 0 or 1. 

Proof This follows from 

which is positive since r < y and cd < cr+ yJ-‘. If u = 0, then p =p* - w/2b 
and p rises since w  falls with no reinvestment. 

From this, we may further conclude that 2 ~0 also when U= 0 or 1 
and ,4 is falling since 

X=rX-p, u=o 

=rX-pL, u= 1, 

is negative if 1 is falling and p is rising. Q.E.D. 

Next we establish that in equilibrium, the fringe will go through possibly 
three basic stages, first either initially reinvesting less than all earnings or 
being indifferent concerning the reinvestment rate, then reinvesting at a 
100% rate until some time FO, at which time investment ceases forever. 

LEMMA 5. In the fast growth equilibrium under Assumptions 2, 3, 4, and 
5, there exist t, and F0 such that t, < F,, u(t) < 1 or A= J-l for 0 < t < t,, 
u(t)=1 and ,?>J-‘for tl<t<FO, and u(t) = 0 for t > F,. Furthermore, 
F- F0 is bounded above independent of F and the initial conditions. 

Proof First, we show that if 1 approaches J-’ from above, then 1 must 
pass through J-’ immediately. Since A< 0 during such an approach to 
J- ‘, price must exceed c,-+ rJ- ’ from (12). Since u = 1, price is rising and 
cannot approach cf-t- rJ-’ from above as i converges to J-l. When ;1 hits 
J-l, u cannot rise since it equals 1, implying that price cannot fall. Since 1 
is concave in time, price must exceed cf+ rJ-’ when 1 is J-’ and x must 
be negative. Once 1 falls from J-‘, then u = 0 and 1 continues to decline, 
implying that u = 0 thereafter. Also, when u =O, 1 is bounded above by 
-r(p* - cf- rJ-‘) implying that 2 moves from J-l to 0 in an amount of 
time bounded above independent of F and w. However, /z(F) = 0 is the 
fringe firm’s transversality condition at the end of the game, implying that 
the length of the final stage is bounded above independent of F. 
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Second, this argument implies that once I. exceeds J- ‘, it must never 
equal or fall below J- ’ again until the terminal stage of the game is 
reached. Therefore, if I does not always exceed J-‘, there is an initi 
where either u = 0 or I = J- ‘. 

In summary, we have shown that once ,I hits 9-l from above it must 
continue to decline. Therefore, in equilibrium the fringe goes through at 
most the three stages described above since once it begins reinvesting all 
earnings, it continues that policy until it stops all reinvestment forever. 
During the final stage of the game from t = F0 to t = F, y follows 

rj=rrj+p*-cd-w/2b. 

Since 14 = -yw during this stage and since q(F,) = 0 also, it follows from 
solving these linear differential equations that /q(F,)l is also bounded 
above independent of F. Let N(w) be the value of 9 at F. if the fringe is w  
at F. and the fringe decides to stop expanding at F,, i.e., 1(F,) = J--l. Since 
11, w, and A are governed by the linear differential equations above, there is 
a unique such N(w). Let W(q) be the inverse correspondence of N(w). 
W(y) is then the possible sizes of the fringe at F. if the fringe ceases to 
expand when the dominant firms costate is q. 

FIG. 4. Equilibrium phase diagram under fast growth. 



392 JUDD AND PETERSEN 

The final piece for the fast growth case is the phase diagram of the 
dominant firm’s behavior in the intermediate stage when u = 1. This is 
described in Fig. 4, which is the phase diagram in q - w  space of 
Eqs. (7) (8) with ZJ = 1, y > r, and p chosen by (14). The dominant firm 
must choose between setting price equal to the fringe marginal cost and 
making the interior choice. Since q < 0 (more w  depresses the dominant 
firm’s profits), our price equation, (14), implies that when w  and/or q are 
large in magnitude, p = C~ will be chosen. This says that if the fringe is large 
or if the future lost profits from expansion of the fringe is large, then the 
dominant firm sets price equal to fringe firm costs, causing the fringe firm’s 
expansion to cease. Let M(w) be the q such that 

M(w) exists because H evaluated at p* f (w/2b)(qJ- 1) is strictly 
monotonic in q. Examination of the Hamiltonian also shows that M(w) is 
increasing in w, that is, the larger the fringe is, the smaller is the critical.? 
at which price is set at C~ by the dominant firm. M(w) is therefore as dis- 
played in Fig. 4. Also, as cd decreases and as cr increases, M(w) shifts up, 
increasing the likelihood that p = cr is chosen. 

With these pieces, we can now construct an equilibrium. 

THEOREM 4. In any equilibrium of our game under Assumptions 2, 3, 4, 
and 5, with y > r, and F < co, there are up to five phases, which are, in order, 

(i) the fringe does not want to reinvest, i.e., 1 <J-l, and price is the 
static leadership price; 

(ii) the fringe wants to invest and price is set below the static 
leadership price; 

(iii) th f g h e rin e c oases u = 1 and price is set equal to cfi. 

(iv) the fringe chooses u = 1 and price rises above cr; 

(v) the fringe chooses u = 0, and price is the static leadership price 
and continues to rise. 

Proof: The basic elements needed for construction of our phase 
diagram are the stationary loci for w  and r] when u = 1 and q > M(w)-that 
is, when the fringe wants to fully reinvest earnings and is not shut down. 
Straightforward calculations show that, if q > M(w), 
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r$!b (q- Cd) 23 

(1-qJ)2+ (1 -qJ)’ 

y2b 
(1 -qJ) J’ 

At this point we use the assumption that y < (p* - CJ I to ensure a 
positive ui when G = 0. 

It is straightforward to calculate that the 6 = 0 and G = 0 loci never inter- 
sect for q < 0 < w. Also, the w  intercept of the ti = 0 locus exceeds the w  
intercept of the 6 = 0 locus. Since cf < cd, at the w  intercept of the q locus p 
exceeds cP That is, when there is no dynamic consideration because q is 
zero and w  is at the value where rj = 0, the incumbent oes not choose to 
shut down the fringe. In fact, for c~< cd3 the 4 = 0 lot lies to the left of 
the q = M(w) locus. 

To piece together the analyses of u = 1 and t 
L = J-I, u is 1. Since il is falling, p > cr+ rJ-‘. 

Ij=(q+rJ-‘-p)qJ+p-cd>O, 

proving that q is rising just before the moment the fringe shuts down. 
Putting these pieces together, we get the phase diagram presented in 

Fig. 4. Since u = 1 in Fig. 4, it represents the possible paths of the game 
when the fringe is fully reinvesting. 

We now can determine that the game goes through possibly five phases. 
First, the fringe may not want to expand and the dominant firm sets price 
equal to the static leadership price. This will be the case if w  is initially 
large, making the static leadership price small and fringe investment unat- 
tractive. Eventually w  will be sufficiently small and the static leadership 
price sufficiently large that the fringe will want to expand. At first, ,J may 
stick at J- ‘. This is a possibility which we cannot rule out. However, if this 
occurs then (12) implies that p = cr-t rJ- ’ and (15) implies that u increases 
from 0 to 1. At this point, the game begins to be described by Fig. 4. The 
game may be below and to the right of the q = M(w) locus, where p = C~ 
and the fringe capacity decreases relative to market size. In this case, the 
dominant firm decides to limit price and prevent any fringe growth q also 
decreases, that is, the current value of the marginal cost to the dominant 
firm of fringe expansion increases. Eventually, the 17 = M(w) locus is hit. 
For a while, the game may move along q = 
plished by the dominant firm using a “‘mixe 
sense of mixing) strategy, alternating between limit pricing, p = c~-, and the 
alternative, p =p* - (w/2b)(qJ- 1). Eventuahy, however, the game moves 
to a fourth phase (or is in this fourth phase when the ftinge begins to wan? 
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to expand) where price exceeds c,. and is increasing, but is being kept low 
by the dominant firm to slow expansion of the fringe. During this phase the 
game proceeds through regions A, B, and C. In region A, the price is low 
enough that w  and fringe market share are decreasing. However, q is also 
decreasing, meaning that marginal fringe capacity is increasingly more 
costly to the dominant firm. This decline in q is ended at some point where 
the q locus is crossed and the game moves from A to region B. In B, w  is 
still falling, but q is rising. Since the marginal cost of fringe capacity is 
declining the dominant firm eases up on the price. This continues until the 
marginal cost of fringe capacity is so small that the dominant firm will 
allow it to grow. This happens when the stationary w  locus is crossed and 
the game moves to region C. In C fringe market share is rising until the 
w  = W(q) locus is reached, after which the fringe ceases to reinvest and the 
dominant firm engages in static leadership pricing. It is straightforward to 
check that p rises all through regions A, B, and C and jumps when the 
fringe ceases to expand. Q.E.D. 

Comparative dynamics are again difficult to determine. However, one 
very interesting feature is clear from Fig. 4. As the horizon, T, becomes 
large, the path followed by the game must move closer to the w  = 0 axis in 
Fig. 4. Lemma 5 showed that the terminal period when u = 0 was bounded 
above independent of F. Furthermore, if w  is small, L <J-l, and u=O, 
price is set at the monopoly price and II is falling by (12), implying that the 
game cannot languish in any u = 0 phase for an arbitrarily long period of 
time. Therefore, for games of arbitrarily large T, u = 1 in equilibrium for an 
arbitrarily long time. If w  is large or q is small in magnitude, then it will 
take only a short time for the game to reach G, implying that w  must be 
close to zero for a substantial period of time in long games. This is a type 
of turnpike theorem since w  = 0 is a collection of steady-state points. 

This close approach to w  = 0 in long games implies that the dominant 
firm is so aggressive that the fringe is reduced in size and becomes reIatively 
small during a long game. This temporary decline in w  and the aggressive 
pricing by the dominant firm which achieves this result are features which 
distinguishes the fast-growth case from the slow-growth case. This extra 
aggressiveness by the dominant firm under fast demand growth indicates 
that industry performance may be worse in our model than under slow 
growth, though confirmation of this conjecture awaits more precise quan- 
titative analysis. 

Note that the fast and slow-growth cases differ substantially. In the slow- 
growth case, the fringe size moves in a monotonic fashion whereas in the 
fast-growth case relative fringe size may go through phases of both expan- 
sion and contraction. Price movements also differ in the same fashion with 
prices being much more volatile in the fast-growth case. The dominant firm 
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is much more aggressive in the fast-growth case, or at least is more suc- 
cessful in limiting fringe firm growth. This is not surprising, since the value 
of limiting fringe firm growth is greater relative to the current sacrifices 
implicit in limit pricing as the future market is larger relative to the current 
market. 

7. CASE III: FAST GROWTH FOLLOWED BY SLOW GROWTH 

Casual empiricism suggests that for many goods demand first grows 
rapidly then slows as the industry matures. This can be modeled in our 
analysis by assuming that the rate of growth initially exceeds the rate of 
interest, as in Case II, then at some known time, R, the rate of growth 
drops to a level below the rate of interest, as in Case I. The analysis of this 
case is accomplished by a simple union of the two preceding cases. 
time R denotes the end of the fast-growth phase as did F in Case II, except 
that at R the shadow prices are not zero, but rather are given by the initial 
equilibrium relationship between the w  and shadow 
equilibrium of a slow-growth game. All that is altered is th 
face of the fast-growth phase. The phase diagram for the fast-growth game 
in Fig. 4 continues to be the phase diagram for the fast-growth phase with 
fringe firm reinvestment. The curve G in Fig. 4 represents the equi 
Q - w  relationship which exists at the beginning of the slow~growtb 
horizon game of Case I. In this case, G is the terminal surface of the fast 
growth equilibrium system instead of the w  = IV(q) locus 
inferred from Fig. 4 concerning their relative position.) 
face G represents the transition between the two growth phases. Unifyin 
the analysis of the two phases in this fashion shows some interesti 
features of the resulting equilibrium. In the initial fast-growth phase, t 
dominant firm will be very aggressive, keeping price low to slow fri 
expansion. As the fast-growth phase nears its end, the dominant 
cashes in by letting price rise, reaping large profits because the fringe 1s 
small but the market has grown to a large size. When the s~ow~growt~ 
phase begins the fringe is able to grow suffl~ie~tIy rapidly to increas 
market share and force price down to its long-run marginal cost, whi 
also the long-run market price. 

8. GENERALIZATIONS AND ALTERNATIVE SOLUTIONS 

We have characterized the open-loop equilibrium of the dynamic 
leadership model. First note that continuous limit pricing is never an 
equilibrium of our open-loop game. If the dominant firm woul 
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price path p”(t) with b(t) < cf+ rJ-’ always, then the fringe will never 
expand. However, if the fringe firms are committed to no expansion, it is 
not rational for the dominant firm to react with such a price path. It may 
be that the dominant firm would make more money charging p(t) with no 
fringe expansion than it does in our equilibrium, but that outcome is not 
an open-loop equilibrium unless the static leadership price is less than 
c,-+ rJ-‘. It may be the outcome if the game were a Stackelberg game 
where the dominant firm could not only commit itself to a fixed price path, 
but could also communicate such a commitment to the fringe firms before 
they committed themselves to any investment policy. This structure is not 
studied here because of the excessively strong commitment advantage 
enjoyed by the dominant firm compared to the symmetric commitment 
structure in our open-loop structure. 

At this point it is clear that our assumptions about various methods of 
financing expansion are somewhat stronger than necessary. While the 
assumption that new share issues are not possible is quite strong, it is not 
necessary for equilibria to display the qualitative features displayed here. A 
much more reasonable assumption is that equity financing in the form of 
new share issues is possible but more costly than retentions. Suppose the 
tax laws were such that the effective tax rate on equity investment was 
higher than that on investment financed by retentions, See, e.g., Auerbach 
[ 11, for an exposition as to how this is likely to be true under current U.S. 
tax law. Furthermore, suppose that this higher tax pushes the marginal 
cost of equity finance above the marginal value of capital, A, everywhere 
along an equilibrium path. This is possible since either the game is finite in 
length and 1, being continuous, has a maximum on a finite interval, or the 
game is infinite in length with /z converging to a finite limit. Then the 
equilibrium path that we construct assuming that equity investment is 
impossible will continue to be an equilibrium since the marginal value of 
capital for a competitive fringe firm, 1, is determined at any time solely by 
the future path of prices and a fringe firm will not use equity finance as 
long as its cost exceeds 1. Therefore, as long as /z is below the cost of new 
share issues, our equilibrium remains an equilibrium if equity financing is 
also possible since fringe firms will choose to issue no new shares. Similar 
comments can be made concerning debt linancing. In the case of debt 
financing, it may be natural to assume that new debt can be issued roughly 
in proportion to retained earnings. This, however, is handled 
straightforwardly by altering J, the amount of new capacity made feasible 
by one dollar of retained earnings. Therefore, our analysis is more general 
than indicated by the initial assumptions. 

The final issue we should discuss is the subgame perfection of our 
equilibria. While a complete closed-loop subgame perfect (also known as 
feedback) equilibrium analysis of this game is beyond our reach at this 
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time, certain aspects are immediately apparent. The steady-state closed- 
loop equilibrium price in the slow growth case must also be cs+ rJ- i. A 
larger constant steady-state price would cause the fringe to beco 
indefinitely large relative to the market because price would always excee 
long-run fringe average cost, and therefore fringe firms would want to 
invest all earnings, causing the fringe to grow at r, faster than deman 
growth. However, price would have to fall to the minimum of cr and cd 
the fringe grew to such a size. A smaller steady-state price would imply that 
the fringe disappears, causing the dominant firm ts charge p* instead of the 
supposed steady-state price. Therefore, if a closed-loop equilibrium con- 
verges to a steady state, the long-run price must be the same as in the 
steady state of our open-loop solution. These same arguments also 
that a cyclical closed-loop equilibrium must oscillate between being 
and above cf+ rJ-‘. Therefore, the introduction of a rational fringe causes 
the long-run behavior of closed-loop equilibria ts be c?oser to our one 
loop equilibrium than to that of Gaskins’. 

9. CONCLUSIONS 

In this essay we have examined the optimal pricing strategy of a 
dominant firm facing expansion by a competitive fringe. This problem was 
first examined by Gaskins [14], who labeled the pricing strategy of the 
dominant firm “dynamic limit pricing.” While his analysis has received 
widespread application, its strategic assumptions have come under telling 
criticism in recent years. The principle differences between our fo~u~ati~~ 
and Gaskins’ is that we precisely specify the constraint on fringe expansion, 
restriction to internal finance, and we treat the fringe as a rational, 
maximizing economic agent. The capital market imperfection provides a 
rational basis to the dominant firm’s choice to keep price low today in 
order to limit the rate of expansion of the fringe. 

In solving the noncooperative differential game between the dominant 
firm and the competitive fringe, we first examined the case Gaskins con- 
sidered, market growth less than the discount rate, but we also examine 
the case of rapid growth. In equilibrium with “slow” growth, we find that: 
(i) if the fringe share of the market is sufficiently small, the dominant fir 
will set price above its cost of production; (ii) at some finite time, price will 
drop to the fringe long-run marginal cost; and {iii) the fringe firms will 
retain 100% of their earnings until price equals their long-run marginal 
cyst. While our results resemble Gaskins’ in that the dominant firm will use 
its power to slow fringe growth, in the equilibrium of our model, price con- 
verges to a lower level at a faster rate. Therefore, the long-run anticom- 
petitive nature of dynamic limit pricing is less in our game equilibrium 
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analysis compared to Gaskins’. If the firms have similar long-run marginal 
costs, then long-run performance as measured by social surplus is also bet- 
ter here. However, initially prices will be greater if the fringe starts small. 

When the market initially goes through a period of rapid growth, any 
comparison of performance is ambiguous. In this case the dynamic incen- 
tives for reducing current fringe size during rapid growth are sufficiently 
large relative to the current cost of limit pricing that the dominant firm will 
price to reduce the fringe share and keep it small. However, when this 
initial phase of rapid growth draws to a close, the dominant firm cashes in 
by raising prices, allowing fringe firms to accumulate the necessary ear- 
nings for growth. When the market growth rate slows, the fringe grows and 
prices drop, converging to the slow growth steady-state values. 

In conclusion, we find that when fringe firms are faced with capital 
market imperfections limiting the availability of external finance, dynamic 
limit pricing will be an important feature of dominant firm decision- 
making. However, in equilibrium, the importance of this behavior will 
depend crucially on the rate of growth of demand. 
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