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There are two problems with the common argument that a continuum of 
independent and identically distributed random variables sum to a nonrandom 
quantity in “large economies.” First, it may be unintelligible in that it may call for 
the measure of a nonmeasurable set. However, there is a probability measure, 
consistent with the tinite-dimensional distributions, which assigns zero measure to 
the set of realizations having that diffkulty. A second diffkulty is that the “law of 
large numbers” may not hold even when there is no measurability problem. Journa/ 
of Economic Literature Classitication Number: 2 13. c) 1985 Academic Press Inc. 

1. INTRODUCTION 

In many models we tind the following assertion: “Suppose that there is a 
continuum of agents each making a draw from a distribution F, such draws 
being independent; then the distribution of realized draws equals F.” This 
appears to be a law of large numbers, but is there such a law of large 
numbers for a continuum of random variables? This paper demonstrates two 
difficulties. The first is the well-known fact that the “law of large numbers” 
may be unintelligible for a continuum of random variables in that the 
realized distribution may be nonmeasurable. However, we show that one can 
find a probability measure, consistent with the finite-dimensional 
distributions, which assigns a measure of zero to all realizations which have 
nonmeasurable distributions. A second difficulty is that the “law of large 
numbers” may not hold even when there is no measurability problem. 

2. THE MEASURABILITY PROBLEM 

First we must construct a probability space which represents a continuum 
of independent and identically distributed draws. For specificity, let Xt, 

* The author is indebted to C. Wilson for posing this problem and for helpful discussions, 
and to H. Baron for comments. 
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t E [O, 1] E 1, be such a collection of real-valued independent random 
variables, each with distribution function F. Let m denote the measure on F!, 
the real line, induced by F. By the Kolmogorov construction (see, for 
example, [2]), we can construct a probability space in which all possible 
sequences of draws may be simultaneously represented. Let 0 = FF be the 
elements of the space, that is, m E Q represents the realization of a 
continuum of draws and is function from 1 to F?. Sets in a of the form 

where c E 1 and ,4 is a Lebesque measurable subset of F?, generate the Bore1 
measurable sets of Q, 9-. The measure on Q, P, must be consistent with the 
finite-dimensional distributions of the i.i.d. random variables. This implies 
that 

(i) &4’) = m(A), and 

(ii) &4’1 n At* n . . . n flfn) = ,L@~I) x ,u(A~~) x ..- x p(Afn), li E 1, 
ti # tj for i #j, n = 1, 2 ,... . 

In fact, these expressions define the measure ,u. Hence (fi,F, ,u) is the 
probability space generated by the Kolmogorov construction. 

In this framework, we can pose the appropriate question for our problem. 
Let Fw(.) be the sample distribution function, i.e., 

where I denotes Lebesgue measure. F,d(.) is supposedly the “proportion” of 
agents whose draw does not exceed c. We desire that almost all m have their 
sample distributions equal to the sampled distribution, i.e., 

In the case of a countable collection of random variables, {Xn: 
n = I, 2,... 1, one actually defines 

and proves a statement like (2). However, we have an uncountable set of 
random variables. Bewley and Radner [l] recognized these difficulties and 
suggest that one redelines the integrals so that Fm(c) is treated as being equal 
to F(c) if for each countable subset of 1 (3) holds for almost all UA In this 
paper we will see what exactly holds when we stay with the more direct 
approach explicit in (I) and (2). 
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The Iirst difficulty which confronts us is the detinition of FJc). FJc) may 
be undefined since the set 

may be nonmeasurable. If we assume the axiom of choice, then there exist 
nonmeasurable sets and it is straightforward to construct m such that Us is 
not measurable (see [5]). Moving to a set theory without choice would be 
unappealing to many. Therefore, we assume the usual Zermelo-Frankel set 
theory with choice. We then ask: “Do most realizations, q fail to have a 
distribution function, Fw ?” To answer this, let P* be the outer measure on ~2 
generated by p and let ,+ be the corresponding inner measure. 

THEOREM 1. Let 

N= {co E QiFw fails to exist}. 

Then 

(iv) for any r E [O, 11, there is an extension of p, ,ur, such that 
,GV = r.- 

ProojI To show (i), it is sufficient to show that all nonempty Bore1 sets 
the p-measurable sets in (L?, .Y, p), intersect N. Choose B E LF and m E B. 
We shall construct an m’ E B such that Fu, does not exist. Since the Bore1 
sets are constructed from the sets of the form ,4f by countable unions and 
intersections, any Bore1 set is restricted on at most a countable number of 
indices. That is. 

is countable where we deline [m/x, t]: Z+ R 

[u/x, t](s) = 1 y ,Y + t s=t 

to be the function which is the same as m except that at t it takes the value X. 
The easiest way to see this is to note that these countably restricted cylinder 
sets do form a sigma-algebra, and hence form the Bore1 field of the 
Kolmogorov extension. RB then denotes the countable set of indices which 
are restricted by B. 
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We can now construct m’. If Fw does not exist, then let cc’ = CO. If Fm 
exists, choose a c such that 

z({t~co(l) = c}) = 0. 

Let UC R be Lebesgue nonmeasurable and disjoint from RB. Since RB is 
countable, U can be constructed by the usual approach, as in Royden [5]. 
Then deline CO’ by 

d(x) = 
1 

(jJ@h xER/U 
C, XEU 

CO’ E B since CO’ and CO are equal for x in RB. However, Fw, does not exist 
since {l] CO’(~) = c} is nonmeasurable, being the union of a set of zero 
Lebesgue measure and a nonmeasurable set. Hence CO’ E B n N and (i) 
follows. 

Since R* is countable, each B # 0 contains an OJ which is constant outside 
of RB, and hence measurable. Therefore, N cannot contain any nonempty B 
and (ii) follows. 

Parts (iii) and (iv) are direct consequences of (i) and (ii). Part (iii) follows 
because measurable sets necessarily have equal inner and outer measures, 
and (iv) holds since the only restictions on extending a measure to a 
nonmeasurable set are that the inner measure not be decreased and the outer 
measure not be increased. Q.E.D. 

Theorem 1 shows that it is not true that “most” realizations fail to have 
distribution functions and that there are extensions of ,U where the set of such 
“bad” realizations, N, has measure zero. Let (O,F, ,C) be the minimal such 
extension where the Bore1 sets in SF are generated by adding N to 3. Any 
extension of ,U must be consistent with the linite-dimensional distributions. 
Hence, we have constructed a measure on F!’ consistent with the finite- 
dimensional properties of a continuum of i.i.d. random variables where 
almost all realizations of the continuum of random variables have 
distribution functions. 

It appears that we may have discovered a solution to the problem: assign 
measure zero to all bad realizations. This effectively erases them from 
consideration without violating the basic i.i.d. assumptions. Since this 
procedure would be arbitrary, there may be some debate over the legitimacy 
of this move even if it solved the problem. The next result tells us, however, 
that our problems are not over. 

3. THE ABSENCE OF A LAW OF LARGE NUMBERS 

Remember what the usual assertion is: first, the law of large numbers can 
be stated, and second, it is true. The second step of the assertion remains 
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unproved. In fact, the following claim shows that the law of large numbers 
does not generally hold, even when it can be stated for all ~IJ. Suppose ji* 
and ,i& are the outer and inner measures, respectively, corresponding to ,U. 

THEOREM 2. Let 

L = {u]FU exists and FW # F} 

be the set of realizations where the law of large numbers fails. Then 

(i) p*(L)= 1, 

(ii) j&(L) = 0. 

Hence, 

(iii) L is not p-measurable, 

(iv) there are extensions of ,U where Fu exists almost surely and the 
law of large numbers, Fu = F, holds with probability a, for any a E [O, 11. 

ProoJ Again (i) is demonstrated if all Bore1 sets of positive measure 
intersect L. Choose BE %F, u E F with p(g) > 0. By construction of LF, 
g= B n NC, for some B E .F, B # 0. Detine RB as in the proof of Theorem 
1. We will adopt the same approach: show that L intersects all sets of 
positive measure in (L’, *F, ,L). We need to construct a U’ E L C’ B C-I NC. If 
FW #F, let U’ = m. Otherwise, choose c such that Fu # l,c,al. Deline 

Since B only restricts realizations on the countable set R8, and u’ agrees 
with UI on B, we conclude that IX’ E B. FW, = l,c,a, since c~ is c at all except 
a countable set of points. Hence, Fur # FW = F and c~’ E L. By construction, 
CL’ is measurable, hence, m’ e NC. This proves (i). Part (ii) is also proved as 
in Theorem I. Parts (iii) and (iv) follow immediately. Q.E.D. 

The content of Theorem 2 is that the natural probability measure on 
realizations cannot tell us that most realizations have sample distributions 
equal to the sampled distribution, which is precisely what is done in the 
usual strong law of large numbers. For example, in search models with a 
continuum of agents, one cannot say that all but a few realizations reproduce 
the sampled distribution. 

Frequently, the weaker law is invoked: the mean of the realized 
distribution equals the mean of the sample distribution. This law is also 
disproved in the proof of Fact 2 since the choice of c was arbitrary. 
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4. CONCLUSIONS 

Does this have any relevance for economic theory? Absolutely not. What 
has been shown is that continuum models do not provide us with good 
approximations to tinite models in this context. We have two alternatives. 
First, we may just ignore the problem by assuming that the measures we 
work with have the desirable properties that almost all paths are measurable 
and that a law of large numbers holds. This paper has shown that such 
measures do exist. The problem with this approach is that there is no direct 
way to relate the continuum model with limits of large but finite models, 
which is desirable in economic applications. If we want a “large numbers” 
model which is a good approximation to finite models, we must look for 
other mathematical objects which yield the desired approximations. Hyper- 
finite discrete models from nonstandard analysis have been used in other 
contexts for this purpose and would presumably assist in solving the 
modeling problems discussed here. These models have the advantage of 
simultaneously approximating both the function theory of the real line and 
the probability theory of large discrete models, as shown in Keisler [4]. 
Furthermore, they automatically yield theorems about the limiting behavior 
of finite economies, as in Brown and Robinson 131. Since a law of large 
numbers does exist for these hyperfinite models, we suggest that working 
economists assume that they have an extension of the Kolmogorov measure 
which satisfies the law of large numbers when they use these continuum 
models. Theorem 2 shows that such an extension exists and its similarity to 
hyperfmite models indicates that it is the one of economic interest. 

In this paper we have examined the mathematical problems of modeling a 
continuum of random variables and using a law of large numbers. This 
problem occurs in a large number of economic models where a writer wants 
an individual to face uncertainty, but that there be no aggregate uncertainty. 
Two basic facts concerning this problem are established here. First, there are 
measures consistent with the implicit finite-dimensional distributions where 
all realizations are measurable, thereby making it possible to define the 
realized distribution. This lays to rest the fear of some that this would not be 
possible and makes it possible to state a law of large numbers. However, we 
also established that even if there are no problems with the measurability of 
the paths, the law of large numbers may fail to be true. The sole constructive 
result is that it is always possible to construct measures where the law of 
large numbers can be stated and is true. While this may appear to be a weak 
straw to clutch, it does show that the work which uses the law of large 
numbers with a continuum of random variables is not inconsistent with basic 
mathematics. 
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