On the Performance of Patents

Kenneth L. Judd
Econometrica, Volume 53, Issue 3 (May, 1985), 567-586.

Stable URL:
http://links.jstor.org/sici?sici=0012-9682%28198505%2953%3 A3%3C567%3 A0TPOP%3E2.0.CO%3B2-0

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Econometrica is published by The Econometric Society. Please contact the publisher for further permissions
regarding the use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/econosoc.html.

Econometrica
©1985 The Econometric Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2002 JSTOR

http://www.jstor.org/
Mon Feb 11 14:34:41 2002



Econometrica, Vol. 53, No. 3 (May, 1985)
ON THE PERFORMANCE OF PATENTS
By KeNNETH L. JuDD

A tractable dynamic general equilibrium model of continuous product innovation is
developed. Patents, or any imitation lag, of infinite duration may achieve too much, too
little, or the socially optimum level of innovation. Most surprising, finite-life patents may
induce undamped oscillations in innovation.

1. INTRODUCTION

IT IS UNIVERSALLY RECOGNIZED that innovation is an important source of
economic growth. There is a general presumption that patents are useful to
encourage innovation despite the market distortions of the monopolies they
create. This paper examines the impact that various patent rules have on the
positive and normative features of general equilibrium when there is a stream of
product innovation determined by profit-maximizing innovators. For reasons of
tractability, we model product differentiation in the manner developed by Dixit
and Stiglitz [3] and Spence [16] and limit preferences to a particular family.
However, we develop the dynamic evolution of innovation, substantially gen-
eralizing the static framework of Dixit-Stiglitz and Spence. Several interesting
propositions are true in this model. First, if all goods are patented forever, the
first-best allocation may be achieved, but generally there may be too little or too
much innovation in equilibrium. Second, and most surprising, patents of finite
life may contribute to cyclic behavior of equilibrium innovative effort. We deter-
mine elements of taste, technology, and patent policy which tend to give rise to
this instability and argue that it is not a perversity unique to the preferences
studied here. Third, patents may be necessary to achieve efficiency even if perfect
trade secrecy is available to innovators, since patents also prevent socially wasteful
reinvention of a good which may occur if imitation is possible.

While we discuss only patents, our analysis also applies to imperfect trade
secrecy. In viewing this model as one of trade secrecy, we implicitly assume that
imitation lags are largely fixed by technical and institutional factors, not substan-
tially affected by profit incentives.

The major contribution of this paper is the presentation of a model with a
continuing stream of product innovation by rational agents. Most previous work
examined just a single innovation [2,7,8,11,12,13] or a collection of simul-
taneous innovations [3, 16]. However, innovation actually is realized as a stream
with the existence and price of earlier innovations affecting the expected profitabil-
ity of later innovations. In such a world one is concerned about the speed and
pattern of innovation as well as the total amount. In this model, we find interesting
and unexpected interactions between the market structure and the evolution of
the market. While the model studied in this paper is special, it does show us one
case in which general equilibrium growth with endogenous technical change can
be analyzed. Our analysis is of substantive economic interest for two reasons.
This model and natural extensions can serve as a tractable case where one may
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568 KENNETH L. JUDD

evaluate and examine various policies designed to enhance technological progress
in a dynamic equilibrium context, as in Krugman [9] and Feenstra and Judd [5].
Our finding that finite-life patents may cause unstable development is just one
example of this. Second, some of the dynamic outcomes of our model correspond
to and possibly explain observed periodic behavior in innovation (see Sahal [14]).

2. OPTIMAL INNOVATION WITH CES UTILITY

In this section we shall examine the optimal path of innovation when the
common utility function is the symmetric CES utility function

(1) U=,J-Qo e_B'(wa(v, t)“dv) dt

where x(v, t) is the rate of consuming good v at time ¢, B is the rate of time
preference, and 0<c < 1. The elasticity of substitution between any two goods
and the elasticity of demand for any one good at any time are both (1 —c¢)~' and
will be denoted o. Since this will be a model of monopolistic competition, the
restriction on ¢ is needed to keep the demand faced by any one monopolist
elastic. CES utility is a valuable case to examine for two reasons. First, the
symmetry allows us to concentrate on the amount of variety and abstract from
asymmetries in preferences. Second, an important determinant of the desired
level of variety is the substitutability of goods. Assuming a constant elasticity of
substitution allows us to isolate the role of substitutability.

Since we want to concentrate on variety and substitutability, we assume that
k is the common labor cost of inventing a new good and that the marginal cost
of an invented good is one unit of labor. This model examines only product
innovation. This is an appropriate focus since the majority of R&D expen-
diture is devoted to product development (see Scherer [14]). We normalize the
initial inelastic labor supply to be unity, and assume it to grow at a constant rate,
A=0.

Given these symmetry assumptions, it is easy to formulate the problem of the
optimal path of innovation and consumption. Let [0, V(¢)] represent the interval
of goods in existence at time . x(v, t) must be zero if v is outside this interval.
Since all goods enter symmetrically into utility and there is diminishing marginal
utility of consumption for each good, the optimal consumption of each good v
at time ¢, x(v,t), is the same for all v. Let y(¢t) be that common level of
consumption. Since labor will be fully employed, and kV is the amount of labor
allocated to innovation, y(t) = (e* —kV)/ V. The problem facing our representa-
tive individual reduces to

(2) max J e P'yvde

osy=<e*v ! Jo

subject to  kV =e* —yV.



PERFORMANCE OF PATENTS 569

Since the marginal utility of consumption is infinite at 0, we can ignore the
constraint that y=0. y < e*' V™' since innovation is irreversible, implying that V
cannot decrease.

We can derive the equations describing the optimal path of V by economic
reasoning.' The crucial trade-off at any moment is between present consumption
and innovation activity which yields greater future variety. Along an optimal
path, if innovation effort, kV, is increased by AE at any time ¢ for a period of
length At, then the loss of utility due to less current consumption, ce #'y*~' AE At
must not exceed the increase in future utility due to increased variety,
® € Py°(1—c)(AEAt/ k) dr, and equality holds if V(¢)>0. Letting. AE and
At be infinitesimally small, we have the optimality conditions

(o o]

3) e Pley k= J e P y(1—c) dr,

t
(4) V=0; V>0 implies equality in (3).

Due to the autonomous structure of this control problem, it is clear that if
V(t) =0 is optimal at ¢ then it must be optimal to set V(t+ At) =0 also since the
problem at t+ At will be the same as at . Thus, if (3) ever holds with equality,
it will continue to do so even after V ceases to grow.

Differentiation of equality in (3) yields a differential equation in y:

6 y=r(Z-E).

Using the method of partial fractions, one finds three kinds of solutions to (5).
If y(0)<pBck/(c—1), y—>0 monotonically as t- oo, implying that y¢~!'>00 and
y< -0, violating (3) for large values of ¢ If y(0) > Bck/(c—1), y becomes infinite
at some finite ¢, an absurdity. Thus, if equality in (3) ever holds, the desired
solution to (5) is the stationary solution,

© =L pro-n=5

Since y = (e* —kV)/V, (6) yields the linear differential equation kV+7V=e",
which has the solution

(7) V(t)=(Vo—1) e P V4 5eM, 5=(3+Ak)7,

where V, is the initial level of variety and ¥ is the asymptotic level of variety per
capita. If V,> (7)”, there is no innovation until V,= e*'y. We can relabel time
so that innovation begins at ¢ =0. Hence, we conclude:

THEOREM 1: The optimal innovation path for CES preferences is (7) for t=0 if
t =0 is the first moment when Vo< (7)", and V(t) = V, for t <0. Since the objective

1(3) can be solved in a straightforward fashion by standard optimal control techniques. We use
an equivalent intuitive derivation here since this approach will be used in the more difficult finite
patent life analysis later.
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is concave in state and control in the feasible region, this is the unique optimal
program.

Some aspects of this optimal program should be noted. First, the asymptotic
per capita level of variety is bounded. This is expected since the marginal cost
of innovation is constant and positive, whereas the marginal benefit of variety
decreases to zero as the amount of variety increases. The optimal consumption
of any good is constant once it is invented, a property which we shall see is due
to the symmetry of the utility function. The marginal utility of income is y°
always; therefore, the implicit interest rate is constant at 8. The levels of innovative
effort and variety are decreasing functions of the elasticity of substitution, since
innovation is less important when goods are more substitutable. Variety is a
decreasing function of the cost of innovation, k, and the rate of time preference,
B, which is the intertemporal opportunity cost of resources used for invention.
The rate of convergence to the steady-state path is greater as the discount rate
and the elasticity of substitution are greater, also expected since these factors
reduce variety. Also, variety per capita is less for faster growing economies,
clearly because a high rate of population growth increases the cost of sustaining
any particular level of per capita variety. We therefore see that intuitive conjectures
concerning innovation hold in this model.

3. MARKET PROVISION OF VARIETY WITH PATENTS

Next we study a decentralized market equilibrium for the economy of Section
2. We examine a representative agent model. The agent receives wage income
and patent rents. He allocates his income between present consumption and
investment, which takes the form of inventing a new good for which he receives
a patent of duration T <o0. Since we are interested in the decentralized market
solution, we assume that he faces prices and availability of goods, costs of
innovation, and profit streams parametrically. As the producer of any particular
patented good, he assumes that the prices of all other goods are fixed, but
recognizes his monopoly position in that good due to his patent. As an innovator,
he does not consider the fact that his innovation will have an impact on his
consumption set and the profitability of other patented goods. As a consumer,
he takes prices as fixed. Alternatively one may view this model as a continuum
of identical agents and profit-maximizing firms producing existing goods and
inventing new ones. For the purposes of this study, the choice of interpretation
is a matter of taste. Labor is chosen as the numeraire.

Let V,, V, be the amount of variety of nonpatented and patented goods,
respectively. V, changes with time as patents run out, in particular

(8) V()= V,(t=T)+V,(t—=T)=V(t—T).

Nonpatented goods sell competitively at their cost, 1. Since the elasticity of
demand is (1—c)~', price will be ¢~' for all monopolized goods. Therefore,
nonpatented goods will have demand of C/(V, +d°V,) per good and patented
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goods will have demand of dC/(V,+d“V,) per good where d=c” and C is
total consumption expenditure. Profits from a patented good, w(t), will be
(1—¢)dC/(V,+d“V,). Let A be the number of patents an agent holds.
Suppose the agent faces (), V,(¢),and V,(t), and is considering an innovation
effort plan, E(t). Then 1 + wA — E is his rate of consumption expenditure, yielding
a contribution to instantaneous utility equal to (1—7A—E)‘(V,+ V,d)'"“. The
optimality conditions for E when he maximizes discounted utility® are

9) e Pe(l1+mA—E) 'k(V,+dV,)'
)4
t+T
= J e P"(1+7A—E) 'w(V,+dV,) ~“dr,

(10) E # 0 implies that (9) holds with equality.
(11) A(t)=(E(t)—E(t—T))/k.

We are assuming no trade in patents. This restriction is not substantive since the
volume of trade in patents will be zero at the equilibrium prices of this Hicksian
economy. Again, the concavity of the objective guarantees a unique optimum.
Note that the upper limit of integration in (9) is ¢+ T instead of infinity,
representing the possibly finite life of the patent.

The equilibrium conditions are V= A, C =1+ 7#A— E, E = V, and labor market
clearing. Supply of labor to goods producers must equal demand, so

V,+av,

(12) (1—kV)=<V nynY

)(1+1TA—kV),

implying that (since (1 —c)d“=d°—d)
1-kV
(13) 7r=(1—c)dc(———vn+dvp).
It will be convenient to define “effective” variety, V,, to be
(14) V,=d7'V,+ V,
The reason for the terminology ‘‘effective’ will be revealed below. Define
e —kvV

(15) y="—"vy

If there are no unpatented goods, y is consumption per good as in Section 2.
Otherwise y is consumption per “‘effective”” good. Combining (9-11), the optimal-
ity conditions, with the equilibrium conditions yields

t+T

(16) e PyTl= e_BTy‘(l—c) dr
y
t

(17) V # 0 implies that (16) holds with equality.

2 This is equivalent to value maximization by a competitive firm.
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When V is growing, differentiation of (16) yields a differential-difference equation
in y:

1—ePT(y(t+T)/y(1) = B
y-1=2|

(18) y(t)=y(t)[ R

The equivalent expression, (62), will prove useful:

_ YO B\ _ck 1" e
(19) y(t+T)—[1_<y(t)+1—6)y(t)] ey

=g(t)y(1).

Note that the constant function y = yjr=B(o—1)k/(1—ePT), solves (18). It will
be our strategy to show that it is the only feasible solution if innovation never stops.

The first simple case is when T is infinite, i.e., new goods are protected forever,
but some old goods are not monopolized. Examples of such goods would include
leisure and household production goods, which cannot be patented, as well as
goods that are allowed to be competitively produced. As in the proof of Theorem
1, consumption of each good must be bounded above and below. Equation (18)
in y reduces to equation (5), which we saw had only the constant solution. Here
that constant solution yields a linear differential equation in V,. For example, if
A =0, the equilibrium V,, is

20 V(= ( v, (0) + ( V,(0)d™! _3_(;1:1—)%» e PleD

! L
+<B((r—1)k_v"d )

If V,(0)=d(B(c—1)k)™", then V,(t)=V,= V(t). Otherwise, V, converges to
()7"'= V,(0)d™" asymptotically.

Conditions (16) and (17) provide us with insight into the behavior of the
decentralized economy when T =co. They are the Euler conditions for

e eM—kV)\¢
2 Bl —=) V., dt
(21) m‘gx L e ( v ) . d

e

subject to  V,=0, V,(0)=V,d '+ V,(0),

i.e., the market is confusing V, for V, showing why we call V, “‘effective” variety.
The decentralized economy is providing variety as if unpatented variety were
V,d~! instead of V,, because unpatented goods are cheaper and reduce demand
for patented goods. This misperception is also reflected in the fact that asymptotic
variety for the decentralized economy provides V,(d ' —1) less variety than the
optimum, the amount of underprovision being exactly the level of misperception
of unpatented variety implicit in (16) and (17). As expected, the solution for
variety, (20), shows that variety is decreasing in o, B, k. More surprising, when
V,(0) =0, we find:
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THEOREM 2:> The optimal innovation path is realized as an equilibrium of the
economy with infinite life patents on all goods when the utility functional is the
symmetric CES utility function and all goods have identical costs of innovation and
constant marginal cost production functions.

Initially it is surprising that an equilibrium with a continuum of monopolies
could achieve the first-best allocation. However, since all monopolies charge the
same price, the marginal rate of substitution equals the marginal rate of transfor-
mation, and the allocation of consumption across goods will be efficient at any
instant given the allocation of labor between innovation and production. The
surprising aspect of the efficiency of equilibrium is that the dynamic allocation
of resources is also efficient. Later we shall see that with non-CES utility infinite-
life patents may lead to excessive or deficient innovation in equilibrium.

We have seen that as long as the patents are of infinite duration, innovation
will continue indefinitely if the initial level were sufficiently small. We now
examine whether this property still holds when patent lives, or trade secrecy
durations, are finite. We shall find that lags in the diffusion of information may
cause rather different dynamic behavior.

We first examine the case of no growth, A =0. If innovation were to continue
forever, the solution of each innovator’s problem would always be an interior
solution, implying that (16) would always hold with equality. The constant
solution y solves (16). If y becomes arbitrarily large, then V must become
arbitrarily close to zero, implying that if V(0) > 0, then V(t) <0 at some t, violating
the V=0 constraint. Since (16) cannot hold with equality for sufficiently small
y, there are positive bounds, B and b, such that

(22) 0<b<y(t)<B, Vt

To complete the demonstration that jr is the desired solution to (16) we show
that it is the only solution to (18) satisfying (22).

If y satisfies (16) with equality but not (22), there are four cases: (A)
lim,,« y(t) = B’ and y(t)> 0, for all sufficiently large ¢; (B) lim,. y(¢)=b' and
y(t) <0, for all sufficiently large ¢; (C) y(¢) =0 and y(t) > jr, for an unbounded
set of ¢’s; (D) y(t)=0 and y(t) <jr, for an unbounded set of t’s.

In case (A), y(t)>0 and y(t+ T)=y(t)-> B’ as t becomes infinite. Using this
fact, (18) shows that y(t)~> jr. Hence B'=jr. (A similar analysis in (B) shows
b'=j5) Thus y(t) increases to jr (in (B), y(t) decreases to yr). But y(t)<
y(t+ T) < yr implying via (18) that y(¢) <0, a contradiction. (Similarly, (B) can
be ruled out.)

In case (C), let t, be such that y(t,) =0, y(t) = yo> j. From (19) y(t,+T)=
g (1) y(to) = goyo- Since y(t,) =0 and yo> 7, go> 1, and y(t,+ T)> y,. Since y is
not monotonically increasing after f,, there is a local maximum y,=y(t)>
y(to+ T) for some t,>1t, Then y,>y(to+T)=goyo>y, and y(t,+T)=
g(t)y(t)) = g.y.. Since y,> yo, 81> go- So y(t;+ T)> giy,. Again, find a local

3 The author has also established that Theorem 2 also holds if the instantaneous utility function

is (_[8" x(v, 1) dv)”. Since later analysis does not continue to hold if y # 1, we examine only the case
y=1.
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maximum y,=y(t,)> y(t,+ T), for some t,> t,. Continuing this process yields
a sequence of times, {#}%_, such that y(#.)> g&y,, where g,> 1, showing that
y(t) is unbounded, violating (22). Similarly, (D) implies that y(t)->0, which
violates (22). From these arguments, we can conclude that if the equilibrium
never lies on the corner of the representative innovator’s problem, then the
equilibrium y is the constant solution j, implying that the variety variables satisfy

(1 kV)d _
(23) V,+av, ’T
By (8), (23) reduces to
) K0+ + =D v -y =1.

The characteristic equation for this differential-difference equation is
1-d
(25) sk+yT+(T jreT=0.

(See [1 and 4] for the theory of differential-difference equations.)

The complete analysis of (24) is beyond the scope of this paper and unnecessary
for our purposes. To determine whether innovation would continue forever we
examine the Laplace transform of (24). Define, for complex s with sufficiently
large positive real part,

w(s)= r eV, (1) di,

i.e., ¢ is the Laplace transform of V,. By Laplace transform techniques, we know
that for all s in some right half plane of the complex plane

1
V(0 + - Ti(s) LD
Y p
s+yr/k+e 4 X

where I(s) is the Laplace transform of the initial condition,

0
I(s) =J e "'V, (1) dt
-T

Let u be a root to the characteristic equation with positive real part. Then the
denominator in (u) is zero and () could be defined only if the numerator
were also zero. That would happen only accidentally since it depends on the
underlying parameters and the history of V, before ¢=0, which cannot be
reasonably restricted so that ¢(«) would be finite. Hence, it is generically true
that if there are roots of (25) with positive real parts, the Laplace transform of
V,, will not be defined at such values, implying that V,, must grow asymptotically
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at a positive rate. This contradicts the boundedness of V which was demonstrated
above. Hence we have proved Lemma 1.

LEMMA 1: If there are roots to (25) with positive real parts, then it is generically
true that innovation must cease at some finite time if A =0.

Since the dynamic behavior of the solution to (24) is governed by the sign of
the real part of the roots of (25), we adapt the usual tests to yield the following
conditions:

(Necessity) If all roots of (24) have negative real parts, then

((l—d)BT(U_l))2<W2+<M)Z.

d(1—e™PT) 1—e P
(Sufficiency) All roots of (24) have negative real parts if

(1-d)BT(c—1)\*> = (BT(c—1)\>
( d(1—e ) )<Z+< 1—e—'”)

where 7=3.1459.... Since d <e™', (1—d)/d < 1. Therefore, for large values of
T, unstable roots appear. Other conditions guaranteeing roots with positive real
part can be derived. For example, if o is sufficiently large, then for any T> 0,
some root has positive real part. This indicates that a bias toward unstable
solutions to (24) is induced by the finite life patent, and therefore innovation
must cease at some finite time in equilibrium. The necessity condition for roots
with negative real part yields Theorem 3.

THEOREM 3: (i) For any o, (24) has positive real roots for sufficiently large BT.
(ii) For sufficiently large o, some root of (24) will have positive real part for all
BT > 0. Therefore, if A =0 innovation will cease at a finite time if the patent life is
long, discount rate is high, or if goods are highly substitutable.

These biases towards cessation of innovation have an intuitive explanation. If
innovation ends at t; then all goods are unpatented at t+ T. If the net profits
to innovation are small at ¢; then they are likely to be negative at t,+ T since
all goods which were patented at ;, hence selling at ¢™', are unpatented at t,+ T,
selling at 1. This decline in price for a nonnegligible number of substitutes reduces
the demand curve facing any potential innovator, making innovation unprofitable
and causing it to cease prematurely at a finite time.

We have focused on finding conditions which cause innovation to cease at
some finite time. Next, suppose innovation never ends. Therefore, equation (24)
holds forever. A complete solution is not feasible; however, we can determine
the initial rate of innovation. Rearranging (24) shows that

V(0) = V,(T)=k™" = 51(= V,(0) + V,(T)+d "'V, (0)).

Since V,,(0) and V,(T) are given by the initial condition, we can directly compute
the initial amount of innovation from the initial condition. This expression shows
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that the initial level of innovation is greater as (i) the cost of innovation is less;
(ii) as the number of currently patented goods, V,(T)— V,(0), and the number
of currently unpatented goods, V,,(T), is less; and, (iii) the ‘“‘steady-state’ number
of goods, (71) ', increases. If there are no outstanding patents, then V,,(0) = V,(T)
and the initial innovative effort increases as T is greater and substitutability is less.

Straightforward manipulation of the equilibrium equations shows that if there
are too many unpatented goods initially, in particular, if V,(0) exceeds (1—
e PT)(1—c)d/ Bck, then no innovation occurs. Note that this critical initial value
is below the level which makes innovation socially desirable. If V,(0) is not too
big, the asymptotic level of variety is bounded above by (1 —e ?7)(1—¢)/Bck—
(d~'=1)V,(0), which is exact at T =co.

At this point, it is useful to summarize our investigation of innovation in a
dynamic model where utility is CES over all possible goods. First, if all goods
are patented and the patents have infinite life, then the first-best is achieved.
Second, if some goods are not patented then there will be an underprovision of
variety in equilibrium with infinite patents. The amount of the deficiency in variety
is proportional to the number of unpatented goods with the proportionality
constant increasing as goods are less substitutable. Exact solutions for the path
of innovation are not given, but an upper bound for variety is found. This upper
bound decreases as patent life decreases and is a tight upper bound since it is
exact at T = oo. Third, if patents have finite lives, there is a tendency for innovation
to cease at some finite time, in contrast to the continuous (though diminishing)
innovation which occurs in the optimal program. This will happen in particular
when the patent life is long or if goods are highly substitutable. Next we show
that this dynamic has interesting effects in a growing economy.

Suppose A >0. We saw that no nonstationary solution to equality in (16) is
dominated by any multiple of e*' if @ <8/ c. In particular, such a solution would
not be not dominated by any multiple of e** if A <8/, since that would cause
V,(t)/e*" to be unbounded, an impossibility since the cost of innovation implies
that V,(t)/e* is bounded. Since ¢ < 1, a sufficient condition to rule out nonstation-
ary solutions to (16) is A <p, i.e., the growth rate is less than the discount rate,
a natural condition often needed to ensure efficiency of competitive equilibrium
in growth models. So, if the patent life is sufficiently long or the goods are
sufficiently substitutable, the only interior solution to the equilibrium conditions
is again described by y(t)=jr, and the definition of y implies a differential-
difference equation for V,.

1-d

d)%%U—D=&WU

The particular solution to (32) for V,, V%, is

eA(z—T)

k)t+y-(1+<l%d) e‘”)/(l—e‘“)

(27) Vi(t) =
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which is always feasible. This particular solution is the logical candidate for the
steady-state solution to which the equilibrium tends, since we expect product
variety to grow at the same rate as population. From the particular solution V7
we also may compute the particular solutions for patented variety, V4, and total
variety, V?, finding that

(28) VP()=e"Vi(t), VE(t)=(e*T—1)VAi(2).

Comparing (27) and (28) with (7) shows the extent to which variety is undersup-
plied when patent life is finite. Equations (27) and (28) isolate the separate effects
of finite life patents and the monopoly distortions. As goods are less substitutable,
d is smaller, (1—d)/d is larger, and the monopoly price mark-up is greater
causing more demand to go to unpatented goods and reducing profitability of
innovation. This distortion is less when the proportion of unpatented goods, e *7,
is small. Also, there is a loss of goods due to the reduced incentive to innovate,
reflected as before in the 1—e 7 term.

It is doubtful, however, that the equilibrium will be this steady state. We saw
above that (26) often has unstable roots, which will exceed A for small A and
that these unstable solutions will contribute to any equilibrium in which innova-
tion never ceases. This appears also to be the case here. It seems highly unlikely
that when innovation begins, the initial condition is just right to assign a zero
coefficient to all unstable roots. These considerations yield Lemma 2.

LEMMA 2: If A is less than the real part of some root of (25), innovation generically
cannot continue indefinitely ; hence, innovation will proceed for a while, cease, and
then resume when demand is sufficiently large.

Recall that Theorem 3 gives conditions for some root of (26) having a positive
real part. This observation yields Theorem 4.

THEOREM 4: (i) For any o the necessary condition of Lemma 2 is satisfied for
sufficiently small A and sufficiently large BT. (ii) For sufficiently large o the necessary
condition of Lemma 2 is satisfied for any BT and sufficiently small A.

Theorem 4 shows us that as patent life is longer, goods are more substitutable,
and for small rates of population growth we will not get smooth continuous
innovation, but rather will have a period of no innovation between the initial
and later periods of innovation. The intuition is the same as discussed after
Theorem 3.

Since population is growing, at some point after innovation ceases it will begin
again. A reasonable conjecture is that the initial condition again will not be just
right to prevent explosive innovation. What would be desirable to find are
conditions under which these periods of no innovation recur infinitely often. This
is very difficult to do in this continuous-time model. Therefore, we next examine
the issue of stable equilibrium innovation in the context of a discrete-time model.
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4. A DISCRETE-TIME MODEL

Suppose we have a discrete-time model with population at ¢, L, obeying
L,=(+8)L,=(1+8)"", 6> 0. Suppose that a good is invented at the begin-
ning of a period and is granted a patent which lasts only for that same period.
Again V,(t) and V,(¢) will be unpatented and patented variety in period ¢,
respectively, with V(¢) being their sum. Let C(¢) be the consumption expenditure,
which in equilibrium must equal net income; but net income must be equal to
labor endowment, L, since equilibrium net profit* must be zero if there is
innovation. Therefore,

(29)  k=(1=c)dL,/[ V(1) +d V,(1)]

if V,(¢)>0. If (29) implies a negative V,(t) given V,(t), then net profits from
any innovation must be negative, and V,(¢) is zero. Therefore, if P, = V,,(¢)/(1+8)'
is “per capita” unpatented variety,

1- P,
(30) (1+8)P,., = P,+max (0, —c(k—c)—d—;> =h(P,)(1+86)
where P,= V,(t)/L, is unpatented variety per capita. The steady state value of
P in (30) is c(1—c)(6+d ) "'k™'=P. Let y, be the deviation from this steady
state, i.e., u, = P,— P. If the equilibrium has continuous innovation, then V,(¢)
is always positive and equilibrium obeys

1-d™°
(31 M1 = My (m)

1 —d "¢ is always negative since 1 —d °<1—e<0. Thus (31) oscillates.

If 6<d °-—2, these oscillations are explosive, hence eventually infeasible.
w,=0; there is a first ¢, ¢, such that u,=0. Following the difference equation
back to time 0 shows that only a finite number of initial conditions could cause
w, =0. Therefore, only a countable set of initial conditions could result in the
equilibrium achieving the steady state. Outside of this set of initial conditions,
the equilibrium w sequence is a sequence of explosive oscillations followed by
periods of .= u,(1+8)”", where no innovation occurs.

The sufficient condition for undamped cycling of innovation is satisfied for ¢
close to one if § <e—2=0.7128, a reasonable assumption on the time unit if
protection from imitation is not long. If ¢ is close to zero, however, undamped
cycling will not occur. Hence, this persistent fluctuation will arise only if growth
is not too rapid and if goods are moderately or highly substitutable. These are
the same biases we discovered in the continuous time case. The important feature
of this analysis is the demonstration of the possibility of continued alternation
between no innovation and much innovation. Even if the roots to (30) are stable,

“ Since the patent is valid only during that period in which the good was invented, we do not have
any discounting.
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FIGURE 1.—Difference equation for one-period patents in the discrete-time model.

we will generically have damped fluctuations converging to the steady state.
Hence, the finite duration of the monopoly power induces an undesirable fluctu-
ation in innovative effort.

The difference equation in (30) can be graphically analyzed, showing clearly
this oscillatory behavior. The graph of h(P) is illustrated in Figure 1. h(-) consists
of two linear segments. If P,€[0,(1—c)d/k], innovation occurs and P, =
P,(1-d °)+(1—c)d/k However, as P, increases, innovation drops even faster,
in fact d™° times faster, reducing P,.,. This continues until P,=(1—c)d/k. In
this region, P,,.;=(1+8)"'P, since no innovation occurs, yielding the segment
with slope (1+8)~". The steady-state value of P is the intersection of h(-) with
the 45° line, at P,= P. If P<(1—c)d/k, innovation occurs but we are in the
unstable region where h(-) has greater absolute slope than the 45° line. Unless
P is hit, an explosive cobweb appears until P,> (1 —c)d/k. Then P falls until
innovation begins again.

We can compute a bound on the amplitude of these oscillations. From (30)
and Figure 1, it is clear that the amount of innovation is negatively related to
the amount of unpatented variety and that unpatented variety always exceeds
(1—c)d'k™'. Hence, the largest amount of innovation per capita that would
ever occur is V,(t)/L, when V,(t)=(1—c)d'k™’, at which time V,/L become
(1=c)(c—d)/k. Since d >0 as ¢~>0, and c=d for all c€[0, 1], the maximum
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possible amplitude in the oscillations occurs for an intermediate value of o, being
zero when o is one or infinite.

We can say a little more about this cyclic behavior. The average rate of growth
of the goods space cannot exceed A, since that is infeasible. In equilibrium, it
cannot be less than A, since that would eventually imply positive net profits.
Therefore the goods space grows on average at rate A.

In summary, we have demonstrated Theorem 5.

THEOREM 5: If 0< 8 <d™°—2, then, for almost all initial conditions the discrete-
time, symmetric CES economy with one-period patents alternates between periods
of innovation and no innovation. The amplitude is greatest for intermediate values
of ¢, being zero if c=0 or c=1.

The obvious question to ask is whether there is any evidence of this cyclicity
in innovation which we have demonstrated. In fact, there is such evidence in
several indices of innovative behavior. For a more detailed discussion, see Sahal
[14]. For example, analysis of the time series of patented inventions in the
construction industry indicates cycles of 40, 20, and 13 years. Similar evidence
exists for the farm equipment, railroad, and electric generation industries. Sahal,
among others, argues that the observed temporal clustering of innovation in these
industries cannot be explained by the existence of major innovations which
generate several minor ones, nor by other interactions between current and past
innovations. Also, the cycles are too long to be driven by business cycle fluctu-
ations. Our models show that fluctuation in innovation is a possible equilibrium
phenomenon within an otherwise constant structure.

The simple intuitive explanation for this instability is most clearly illustrated
in this discrete-time model. Suppose that initially there is little variety; then the
demand for any good will be high and incentives to innovate will be relatively
large. However, as goods are invented, the demand for any particular good will
decline, and drop precipitously when patents expire and prices for those goods
drop to marginal cost. At such times profits available to a potential patent holder
will be low, choking off innovation. This will not be the end of the story, however,
since growth will imply that demand for the marginal good will increase, leading
to a new phase of innovation. We have seen in the discrete-time model that these
oscillations in innovative effort may not be damped, leading to equilibria which
have an infinite number of alternations between periods of innovation and no
innovation. In the continuous-time model, we saw under similar conditions that
continuous innovation would generically not proceed smoothly from the begin-
ning. We would argue for a presumption that the continuous-time model would
also display the unstable innovation path under plausible conditions.

We see that the instability is driven by a simple intuition: spurts of innovation
will flood the market with variety which throttles future innovation because the
current patents will expire, lowering prices. Given that this simple intuition lies
at the heart of Theorems 4 and 5, it is likely that they are robust to changes in
the preferences, indicating that innovation with finite-life patents may often
display unstable behavior.
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5. THE GENERAL SYMMETRIC CASE: OPTIMAL AND MARKET DEVELOPMENT

In this section we examine the market and optimal development of innovation
and consumption when the utility function is symmetric, not necessarily CES,
ie, U=J; e (J5 g(x(v, 1)) dv) dt for some g. We assume that g'>0>g",
g'(0) =00, and g'(c0) =0. All other assumptions of Section 2 remain unchanged.

By symmetry, optimality reduces to maximizing

oo At y
_p_ € —kV) Vs
L ¢ g( %

subject to feasibility. The solution here is found exactly as before. If y is
consumption per good, (e*' —kV)/V, optimality implies

fe o)

(32) e Pkg'(y)= J e Plg(y)—g'(M(y)ldr;

t
(33) if V>0, equality holds in (32).

There is a constant function y(t) = y,, which solves (32), where y, solves

1
(34 Bk= (;»(yo)_ 1) Yo,

where p(y) is the elasticity of utility yg'(y)/g(»). Due to the assumptions placed
on g, y, exists and is unique. Due to the concavity of the functional in the feasible
region, this is the unique maximum.

Next we turn to the market solution. The elasticity of demand for a good is
n(x) =g'(x)/xg"(x) if x units of that good are consumed. Hence, the monopoly
price is (1+7(x)~")”" when x units are sold. The usual manipulations show that
there is a constant, y,s, which solves

(35) Bk=(1+77(J’M))_1,VM

and is the constant equilibrium rate of consumption of each good once it is
invented. Since y,, is a constant solution to the equilibrium, the corresponding
price is constant for all goods at all times. This does not show that the only
equilibria are ones with constant price, but only that such equilibria are described
by (35). There may be many such equilibria since the behavior n has not been
sufficiently restricted. If demand is less elastic.as consumption increases, and
|m|> 1, then there is a unique yps.

We would like to compare the market provision of variety with the optimal
provision. As in Dixit-Stiglitz, the identity xp'/p =1—(1/7)p, together with the
definitions of y, and y,,, implies that ya, = y, as p'(ya) 20, proving the following
theorem.

THEOREM 6: A market equilibrium, when the utility functional is additive sym-
metric, has a socially excessive consumption per good (implying socially deficient
innovation) if and only if the elasticity of utility is increasing at the market value

of y.
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These results are similar to the results that Dixit and Stiglitz [3] have shown
in the context of a static model of monopolistic competition with fixed costs of
production. In fact, this model can be regarded as a dynamic version of their
problem. The intuition which they give also applies here: revenue to producers
is proportional to xg'(x) whereas the social benefit is g(x); p(x) is the ratio and
if p'(x) is positive then the benefit to the firm from expansion of production
exceeds the social benefit.

6. THE GENERAL CES CASE: OPTIMAL AND MARKET DEVELOPMENT

In this section, we move away from the symmetric CES utility functional and
examine the general CES utility functional:

U= J‘w e P (J a(v)x(v, t)”dv)
0 Q@)

where a(-) is bounded and measurable, c€(0, 1), and 2(¢)<R is the set of
goods in existence at time ¢.
The social problem is

max Jw e P (J‘ a(v)x(v, t)cdv)
0 0(t)

d
subject to k— (l(ﬂ(t)))+J x(v, t)dv=1
dt Q(t)
where I(-) is Lebesque measure. Comparison of equilibrium and optimality
conditions again’ yields the following theorem.

THEOREM 7: The optimal development of innovation is an equilibrium, when we
have a general CES utility function and all goods are covered by patents of infinite

life.

Therefore, even when utility is not symmetric across goods, infinite-life patents
may still realize the first-best. The crucial difference between this case and the
symmetric case is that the interest rate varies with time. At first, the very desirable
goods are innovated and later the less desirable goods are innovated. Free entry
implies that the discounted profits of all firms must be zero after accounting for
the costs of innovation. This is possible with unequal demands because the initial
high rate of innovation drops sufficiently that consumption per good rises and
marginal utility of income falls, driving up the interest rate, and causing the
future high profit flows to be discounted heavily, whereas later when less desirable
goods are innovated, there will be much less innovation, marginal utility of
income stabilizes, and the interest rates will be lower.

% Since one proceeds just as in the earlier CES case, the details are omitted. They are available in
the author’s thesis [6].
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There has been a presumption in the literature that monopolistic competition
results in excessive product diversity, since each firm produces at a point where
price exceeds marginal cost. This argument is invalid because it ignores the fact
that these goods are distinct and are not perfect substitutes for a consumer. One
way to view the results obtained here is as an extension of this point and other
similar points made by Dixit and Stiglitz to a dynamic context.

A more substantive interpretation of these results relates to the exact nature
of the Dixit-Stiglitz optimality results, i.e., when utility over all goods is symmetric
CES, the monopolistically competitive equilibrium realizes the social optimum.
In Dixit and Stiglitz, two conceptually different interpretations may be given to
k: first, k is a fixed set-up cost borne by any entrant, and second, k is the cost
of the R & D necessary to invent the good. In the symmetric CES case, these two
yield the same equilibrium if innovators can keep the R & D results secret. This
also is the equilibrium when R & D results cannot be kept secret but infinite life
patents keep all potential competitors out, whether imitators or independent
innovators. This latter equilibrium equivalence holds because symmetry in
demand implies that no entrant would pay k in order to enter an existing market
and receive duopoly profits since with the same expenditure he can invent a new
good and receive monopoly profits.

This equivalence breaks down when we have an asymmetric CES utility
function. In this case it is possible that duopoly profits from producing a very
desirable good may exceed the monopoly profits which would flow from inventing
the most desirable good not yet in existence. If k is either a fixed set-up cost or
a cost of innovation when trade secrecy is possible, then this entry into existing
markets may occur. If there was an infinite life patent available, then this entry
would be prohibited.

Since infinite life patents yield the social optimum in the CES case and a
monopoly for each good, monopolistic competition without patents won’t gen-
erally yield the optimum because that equilibrium would likely have a mixture
of oligopoly and monopoly. The only case where this would not happen is where
one presumes that Bertrand price competition would result from entry. Hence,
the general theorem is that infinite life patents yield the social optimum with
CES utility, not that monopolistic competition achieves the optimum. Since
monopolistic competition with fixed costs is equivalent to R & D protected by
secrecy we also see that infinite patent life in this case is a strictly superior policy
to relying on secrecy.

7. CONCLUSIONS

In this paper, we have provided the basis for the study of patents in an economy
with a continuum of goods. First we examined the case where the utility functional
was symmetric and CES. This yielded the initially surprising result that the
decentralized equilibrium with patent rights yielded the optimum dynamic alloca-
tion between consumption and innovation. In Section 5, the general symmetric
utility function was postulated and a condition for determining the bias in the
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patent economy was derived. It depended on the elasticity of the utility function:
if the elasticity of utility is rising at the market equilibrium, then there is too little
variety, generalizing the static model of Dixit and Stiglitz.

Using the CES utility function, we then investigated an economy where not
all goods are patented. Since infinite life patents on all goods achieve the social
optimum in this case, any loss in efficiency with finite-life patents and incomplete
coverage is due to these limitations. In this model, we examined how much variety
is lost due to the presence of goods which are either unpatentable, e.g., leisure,
or unpatented because its patent had expired. In the case of finite patent life and
growth in labor endowment, we discovered a tendency towards cyclic behavior
in investment in innovation and explicitly demonstrated it in a discrete-time
model. Since the optimal program calls for a constant rate of innovation, finite
imitation lags introduce an undesirable cyclical component to the innovation
path. The intuition for this instability is quite simple. Initially, there may be little
variety per capita in which case profits to innovators are high. However, as the
resulting patents expire, prices will drop and profits to an innovator will be
insufficient. With growth, this period of innovative inactivity will cease since
growth will cause the demand curve for any potential good to increase at the
rate of population growth. This new surge of innovative effort begins anew the
cycle.

The utility functions used in this paper are very special. In particular, they
assumed additive separability in time and across goods, ignoring any aspect of
closeness of two particular goods and concentrating only on the substitutability
of one good with respect to all others as a group. However, sacrificing generality
is not without reward since we are able to simply and compactly formalize
important ideas about the dynamics of innovation.

Northwestern University
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