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This note examines a technique for the computation of the welfare impact of a perturbation 

of the steady state in a typical perfect foresight model. The major innovation is the ability 

to analyze non-stationary perturbations. 

The rational expectations hypothesis and its deterministic counterpart, 
the perfect foresight hypothesis, have had a tremendous influence on 
economic theory in the past decade. However, their influence in applied 
economic analysis has been limited by the technical difficulties inherent 
in computing such equilibria and their associated comparative dynamics. 
It is the intent of this note to illustrate a technique which demonstrates 
that comparative dynamics in a perfect foresight model is not impracti- 
cal. In fact, this technique is able to handle non-stationary as well as 
stationary perturbations of the steady state. We will thereby have a 
tractable alternative to steady-state analysis and a generalization of 
linearization approximations of adjustment processes. 

We shall examine an economy described by the differential equations, 

P = g’(p, k, YW), (la> 

and the boundary conditions, 

lim =k(t)<co, k(O) =ko, (2) 
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where p, k are economic variables, y is a scalar parameter, initially equal 
to zero, and h(t) is bounded and eventually constant. One example of 
this is the simple one-good optimal growth model where k is the capital 
stock, u(c) is the instantaneous flow of utility if c is the rate of 
consumption, p is the instantaneous rate of discount, p = u’(p) is the 
instantaneous marginal utility of instantaneous rate of discount, p = U’(C) 
is the instantaneous marginal utility of consumption, and the production 
function is (1 + yh(t))f(k), with h(t) = 1, where we can interpret y as a 
productivity parameter. A change in y away from zero would represent 
the perturbation of the economy away from the steady state due to an 

unanticipated output-augmenting change in the production function. In 

this case g’(p,k,v) =P(P -f’(k)(l + Y)) and g’(p, k, Y) = (1 + y)f(k) 
- c(p), where c( .) is defined by u’( c( p)) = p. 

Suppose we are initially in a steady state of the system, i.e., k,, p. are 
such that g’( pO, k,, 0) = g2( po, k,, 0) = 0, and that there is an unantic- 
ipated change in y from its initial value of zero. We usually are interested 
in the induced change of a dynamic evaluation function: 

w= J cc e-"'u( p( t), k( t))dt, 
0 

i.e., we want to know dW/dy given the initial condition, k,. If the 
perturbation of the system were autonomous, the direct way to do this is 
to linearize the system (1) around ( p0 + dp, k, + dk), where dp and dk 
are the steady-state changes in p and k, and solve the resulting linear 
vector differential equation. However, for non-autonomous perturba- 
tions, the linearization technique may involve the solution of many 

intermediate systems or be impossible; for these more complex problems 
the following method is a tractable solution. 

Before continuing, we should note two things. Since the perturbation 
h(t) is assumed to be eventually constant, after some point the system is 
autonomous and the stability conditions assure us that the solution 
converges to the new steady state, around which the system behaves 
according to the aforementioned linear approximation. This tells us how 
the system behaves asymptotically. Also note that the problem discussed 
here is a boundary value problem as opposed to an initial value problem 
_ we are specifying the initial value and asymptotic behavior of one 
variable, k, as opposed to specifying the initial values of both variables. 
In order for this problem to be well-defined, we may need some informa- 
tion on the nature of the linearized system; in particular, in order for the 
solution to exist and be unique, we are assuming that the eigenvalues of 
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the linearization are distinct and of opposite signs. This is the case in the 
anticipated economic applications, such as the optimal growth example 
cited above. Let p be the positive eigenvalue and h the negative eigen- 
value. 

The change in W due to an infinitesimal change in y is 

(3) 

where p,(t), ky( t) are the partial derivatives of p( t), k(t) with respect to 
the change in y which occurs at t = 0. [I am following the standard 
practice of suppressing the dependence of p and k on the parameter y in 
writing p(r) and k(t).] Note that the integral above is actually the 
Laplace transform of ( pu, k,)T, which we denote by (P,(S), K,(s))r, 
evaluated at p. [In general, if f(t): R’ + R” is a function of exponential 
order, then the Laplace transform of f(t) is L{ f}: R’ + R”, where 

/I? e -“‘f(t)dt --L(f)(s) defines L(f)(s).] 

Differentiation of the system (1) with respect to y yields 

(4) 

where J is the Jacobian of the vector function G: R2 + R2 evaluated at 
( po, k,) where G( p, k) = (g’( p, k, 0), g2( p, k, O))? The Laplace trans- 
form of (4) yields an algebraic equation in the transforms K,, P,: 

p,(O) +d(pm k,> O>H(s) 
g:(po, k,, O)ff(s) I ’ (5) 

where p,(O) is the change in p at t = 0 induced by y and H(s) is the 
Laplace transform of h(t). p,(O) is an unknown at this point since the 
initial value of only k is fixed, and fixed at k,. This fact does however 
yield an initial condition for (5) k,(O) = 0. The basic equation in the 
transforms solves easily since it is linear in the unknown functions P,,(s), 
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K,(s). Hence 

(6) 

gives the solution for P,(s) and K,(s) in terms of p,(O). 
To pin down p,,(O), we need another boundary condition for (5). To 

that end we assume that k,(t) must be bounded as well as k(t). This is 
expected to hold in the envisaged applications since capital is necessarily 
a continuous function of time, h is eventually constant, we expect k,(t) 
to converge to the derivative of the steady-state value of k with respect to 
y, and usually the steady state is continuously differentiable in the 
parameters. Under this assumption, K,(s) must be finite for all s > 0, 
since K,(s) is lo” e -S’ky(t)dt. In particular, K,(p) must be finite. 
Straightforward manipulations show that this implies 

P,(O) = 
- (P-J&!fH(d _g:H(p) 

J 12 
(7) 

Substituting (7) into (6) and substituting the results into (3) yields 

tw(P) - fG-4) -q%Iw 
12 . (8) 

M(P) / 

The example discussed in this note is only one application of Laplace 
transforms to general equilibrium dynamics that is possible. The generali- 
zation to higher dimensions is straightforward. For example, the author 
has used this technique to analyze the problem of capital crowding out 
effects of government financing decisions in a perfect foresight model of 
capital accumulation. Other applications will include a large variety of 
dynamic taxation questions. Given the relative ease of these manipula- 
tions, it is clear that many questions in dynamic welfare economics can 
be analyzed taking into account the dynamic adjustment paths, yielding 
answers which will be more sound than comparative steady-state analy- 
sis. 
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