Numerical Methods in Economics MIT Press, 1998

Lecture Notes: Finite-Difference Methods

March 18, 2020

Classification of Ordinary Differential Equations

• A first-order ordinary differential equation (ODE) has the form

$$\frac{dy}{dx} = f(y, x), \tag{10.1.1}$$

where $f: \mathbb{R}^{n+1} \to \mathbb{R}^n$ and the unknown is $y(x): [a, b] \subset \mathbb{R} \to \mathbb{R}^n$.

– When n = 1, we have a single differential equation

– If n > 1, (10.1.1) is a system of differential equations.

- Need boundary conditions to fix unknown function y(x).
 - Initial value problem (IVP): impose $y(x_0) = y_0$ for some $x_0 \in [a, b]$

- Two-point boundary value problem: impose n conditions

$$g_i(y(a)) = 0, \quad i = 1, \cdots, n',$$
 (10.1.2)
 $g_i(y(b)) = 0, \quad i = n' + 1, \cdots, n,$

where $g: \mathbb{R}^n \to \mathbb{R}^n$.

– General BVP: impose

$$g_i(y(x_i)) = 0 \tag{10.1.3}$$

for a set of points, x_i , $a \le x_i \le b$, $1 \le i \le n$.

• All problems have form (10.1.2). For example, replace

$$\frac{d^2y}{dx^2} = g(\frac{dy}{dx}, y, x)$$

with

$$\frac{dy}{dx} = z, \quad \frac{dz}{dx} = g(z, y, x),$$

• IVP and BVP definitions apply to discrete-time systems.

Finite-Difference Methods for IVPs

• Consider the IVP

$$y' = f(x, y), \quad y(x_0) = y_0.$$
 (10.3.1)

- Specify a grid for $x, x_i = x_0 + ih$, $i = 0, 1, \cdots, N$
- Objective: find Y_i which approximates $y(x_i)$.
- Construct a difference equation on the grid
 - An explicit scheme $Y_{i+1} = F(Y_i, Y_{i-1}, \cdots, x_{i+1}, x_i, \cdots),$
 - or an implicit scheme $Y_{i+1} = F(Y_{i+1}, Y_i, Y_{i-1}, \cdots, x_{i+1}, x_i, \cdots)$
- Y_0 is fixed by the initial condition, $Y_0 = y(x_0) = y_0$.
- Solve difference scheme, and hope that $Y_i \doteq y(x_i)$
- Find scheme using as few grid points as possible

Euler Method

• Algorithm:

$$Y_0 = y(x_0) = y_0;$$
 $Y_{i+1} = Y_i + hf(x_i, Y_i)$

- Geometry of Euler's method
 - Current iterate is $P = (x_i, Y_i); \quad y(x)$ is the true solution
 - At $P, y'(x_i)$ is the tangent vector \vec{PQ} . Euler's method follows \vec{PQ} until $x = x_{i+1}$ at Q.
 - Euler estimate of $y(x_{i+1})$ is Y_{i+1}^E .

• Convergence Theorem:

Theorem 1 Suppose that the solution to y'(x) = f(x, y(x)), $y(0) = y_0$, is C^3 on [a, b], that f is C^2 , and that f_y and f_{yy} are bounded for all y and $a \le x \le b$. Then the error of the Euler scheme with step size h is $\mathcal{O}(h)$; that is, it can be expressed as

$$y(x_i) - Y_i = D(x_i)h + \mathcal{O}(h^2)$$

where D(x) is bounded on [a, b] and solves the differential equation

$$D'(x) = f_y(x, y(x)) D(x) + \frac{1}{2}y''(x), \quad D(x_0) = 0$$

Runge-Kutta Methods

- First-order Runge-Kutta (RK1)
 - Euler estimate of $y(x_{i+1})$ is Y_{i+1}^E .
 - Slope of vector field at (x_i, Y_{i+1}^E) is $f(x_i, Y_{i+1}^E)$, not $f(x_i, Y_i^E)$ as assumed by Euler
 - Slope at (x_i, Y_{i+1}^E) says Y_{i+1} should be $Y_i + h f(x_i, Y_{i+1}^E)$, point S in figure 10.1
 - RK1 takes average of these two approximations:

$$Y_{i+1} = Y_i + \frac{h}{2} \left[f(x_i, Y_i) + f(x_{i+1}, Y_i + hf(x_i, Y_i)) \right]$$
(10.3.9)

- RK1 asymptotic error is $\mathcal{O}(h^2)$
- RK1 evaluates f twice per step
- Typo: To the left of point S, the expression should be $hf(x_{i+1}, Y_{i+1}^E)$.
- Fourth-order Runge-Kutta (RK4)

$$z_{1} = f(x_{i}, Y_{i}),$$

$$z_{2} = f(x_{i} + \frac{1}{2}h, Y_{i} + \frac{1}{2}hz_{1})$$

$$z_{3} = f(x_{i} + \frac{1}{2}h, Y_{i} + \frac{1}{2}hz_{2})$$

$$z_{4} = f(x_{i} + h, Y_{i} + hz_{3})$$

$$Y_{i+1} = Y_{i} + \frac{h}{6}[z_{1} + 2z_{2} + 2z_{3} + z_{4}]$$
(10.3.10)

- RK4 asymptotic error is $\mathcal{O}(h^5)$
- RK4 evaluates f four times per step

Systems of Differential Equations

$$y'_{1}(x) = f_{1}(x, y_{1}, y_{2}, \cdots y_{n})$$

$$\vdots$$

$$y'_{n}(x) = f_{n}(x, y_{1}, y_{2}, \cdots, y_{n})$$

(10.3.11)

• Euler:

$$Y_{\ell}^{i+1} = Y_{\ell}^{i} + hf_{\ell}(x_{i}, Y_{1}^{i}, \cdots, Y_{n}^{i}), \ \ell = 1, \cdots, n$$
(10.3.12)

• RK1:

• RK4:

$$z^{1} = f(x_{i}, Y^{i})$$

$$z^{2} = f(x_{i} + \frac{1}{2}h, Y^{i} + \frac{1}{2}hz^{1})$$

$$z^{3} = f(x_{i} + \frac{1}{2}h, Y^{i} + \frac{1}{2}hz^{2})$$

$$z^{4} = f(x_{i} + h, Y^{i} + hz^{3})$$

$$Y^{i+1} = Y^{i} + \frac{h}{6}[z^{1} + 2z^{2} + 2z^{3} + z^{4}]$$
(10.3.15)

(10.3.14)

 $Y^{i+1} = Y^{i} + \frac{h}{2} \left[f(x_i, Y^i) + f(x_{i+1}, Y^i + hf(x_i, Y^i)) \right]$

Spence Signaling Equilibrium

• Education signalling model implies the nonlinear equation

$$N'(y) = \frac{N(y)^{-1} - \alpha N(y) y^{\alpha - 1}}{y^{\alpha}}$$
(10.4.3)

with initial condition $N(y_m) = n_m$, and closed-form solution

$$N(y) = y^{-\alpha} \left(\frac{2(y^{1+\alpha} + D)}{1+\alpha}\right)^{1/2}, \ D = \frac{1+\alpha}{2} \left(\frac{n_m}{y_m^{-\alpha}}\right)^2 - y_m^{1+\alpha}$$
(10.4.5)

Table 10.1: Signalling Model Errors

	Euler			RK1			RK4	
h:	.01	.001	.0001	.01	.001	.0001	.01	.001
$y - y_m$					<i>,</i> , ,			<i>,</i> , ,
0.1	3(-2)	1(-3)	1(-4)	1(-3)	1(-4)	1(-6)	3(-3)	2(-6)
0.2	2(-2)	1(-3)	1(-4)	1(-3)	5(-4)	1(-6)	2(-3)	1(-6)
0.4	1(-2)	7(-4)	7(-5)	4(-4)	3(-4)	4(-7)	1(-3)	6(-7)
1.0	6(-3)	4(-4)	4(-5)	2(-4)	1(-4)	2(-7)	4(-4)	3(-7)
2.0	4(-3)	3(-4)	3(-5)	1(-4)	7(-5)	1(-7)	2(-4)	1(-7)
10.0	1(-3)	1(-4)	1(-5)	2(-5)	2(-6)	0(-7)	6(-5)	0(-7)
time:	Ì.11	1.15	9.17	`.16	Ì.49	Ì4.Á	`.2Ź	2.91

Boundary Value Problems for ODEs: Shooting

• Consider the BVP

$$\begin{aligned} \dot{x} &= f(x, y, t), \\ \dot{y} &= g(x, y, t), \\ x(0) &= x^0, \quad y(T) = y^T \\ x &\in R^n, \ y \in R^m \end{aligned} \tag{1}$$

• For any guess $y(0) = y^0$, solve IVP in (10.5.2)

$$\dot{x} = f(x, y, t)$$

$$\dot{y} = g(x, y, t)$$

$$x(0) = x^{0}, \quad y(0) = y^{0}$$
(2)

– Let
$$Y(T, y^0)$$
 denote the resulting value of $y(T)$

– $Y(T, y^0)$ depends on y^0

– Find correct value of y^0 by solving the nonlinear equation $Y(T, y^0) = y^T$

- Programming strategy
 - write procedure which computes $Y(T, y^0) y^T$ given input y^0 .
 - send that routine to a nonlinear equation solver to solve $Y(T, y^0) y^T = 0$.

Life-Cycle Model of Consumption and Labor Supply

• Simple life-cycle model:

$$\max_{c} \int_{0}^{T} e^{-\rho t} u(c) dt,$$

$$\dot{A} = f(A) + w(t) - c(t)$$
(10.6.10)

$$A(0) = A(T) = 0$$

- u(c) is concave utility function over consumption c
- w(t) is wage rate at t
- A(t) is assets at time t
- f(A) is return on invested assets.
- Hamiltonian is $H = u(c) + \lambda(f(A) + w(t) c)$.
 - Costate equation: $\dot{\lambda} = \rho \lambda \lambda f'(A)$.
 - First-order condition: $0 = u'(c) \lambda$, implying consumption function $c = C(\lambda)$.
 - The final system:

$$\dot{A} = f(A) + w - C(\lambda)$$

$$\dot{\lambda} = \lambda(\rho - f'(A))$$
(10.6.11)

with the boundary conditions

$$A(0) = A(T) = 0 \tag{10.6.12}$$

- Convert to a system for observable variables.
 - $u'(c) = \lambda$ implies that (10.6.11) can be replaced by

$$\dot{c} = -\frac{u'(c)}{u''(c)}(f'(A) - \rho)$$

$$\dot{A} = f(A) + w - c$$
(10.6.13)

– Phase diagram:

- Shooting: Consider implications of different c(0).
 - If A(T) < 0 if $c(0) = c_H$, but A(T) > 0 if $c(0) = c_L$, then correct c(0) lies between c_L and c_H .
 - Find true c(0) by using the bisection method presented in algorithm 5.1.
- In general, if $A(T; c_0)$ is terminal wealth for initial consumption c_0 , then find c_0 by solving nonlinear equation $A(T; c_0) = 0$.
- Phase diagram:

Optimal Growth

• Optimal control problem

$$\max_{c} \int_{0}^{\infty} e^{-\rho t} u(c) dt$$

s.t. $\dot{k} = f(k) - c$ (10.7.2)
 $k(0) = k_{0}$

- k is the capital stock
- c consumption

– f(k) the aggregate net production function

• c(t) and k(t) satisfy

$$\dot{c} = \frac{u'(c)}{u''(c)} \ (\rho - f'(k))$$

$$\dot{k} = f(k) - c$$
(10.7.3)

and boundary conditions are

$$k(0) = k_0, \ 0 < \lim_{t \to \infty} |k(t)| < \infty$$

- Forward system:
 - We want to compute M_S , but shooting is numerically unstable.
 - Computing M_U would be easy since it attracts deviations
 - If we computed

$$\dot{c} = \frac{u'(c)}{u''(c)} \ (\rho - f'(k))$$

$$\dot{k} = f(k) - c$$
(10.7.3)

with initial condition near steady state, we would move along one of the branches of M_U

- Reversed system:
 - M_U in this system is numerically stable and is our consumption function
 - Find M_U by solving

$$\dot{c} = -\frac{u'(c)}{u''(c)} \ (\rho - f'(k)) \dot{k} = - (f(k) - c)$$

with initial conditions close to steady state.

Table 10.2: Optimal Growth with Reverse Shooting

k	c		Errors	
		h = 0.1	h = 0.01	h = 0.001
0.2	0.10272	0.00034	3.1(-8)	3.1(-12)
0.5	0.1478	0.000025	3.5(-9)	4.1(-13)
0.9	0.19069	-0.001	-3.5(-8)	1.8(-13)
1.	0.2	0.	0.	Ó.
1.1	0.20893	-0.00086	-5.3(-8)	-1.2(-12)
1.5	0.24179	-0.000034	-1.8(-9)	-2.1(-14)
2.	0.2784	-9.8(-6)	-5.(-10)	3.6(-15)
2.5	0.31178	-5.(-6)	-2.6(-10)	-1.3(-14)
2.8	0.33068	-3.8(-6)	-1.9(-10)	-1.2(-14)