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Classification of Ordinary Differential Equations

e A first-order ordinary differential equation (ODE) has the form

Y fy.x) (10.1.1)

where f: R™™ — R" and the unknown is y(z) : [a,b] C R — R"

~ When n = 1, we have a single differential equation

~Ifn > 1, (10.1.1) is a system of differential equations.

« Need boundary conditions to fix unknown function y(x).

— Initial value problem (IVP): impose y(xy) = yo for some z¢ € |a, b]

— Two-point boundary value problem: impose n conditions

g9i(y(a)) =0, i=1,--- 0, (10.1.2)
gily(b)) =0, i=n"+1,---n,
where g : R" — R".
— General BVP: impose

gi(y(z;)) =0 (10.1.3)
for a set of points, x;, a < z; < b, 1< <n.



o All problems have form (10.1.2). For example, replace

dy _ dy
2 =90y, 2)
with

dy dz

ar 2 ar 9(z,y, ),
« IVP and BVP definitions apply to discrete-time systems.



Finite-Difference Methods for IVPs

e Consider the IVP

e Specify a grid for x, x; = xg+th, 1 =0,1,--- | N
« Objective: find Y; which approximates y(x;).
« Construct a difference equation on the grid
— An explicit scheme Y; 1 = F(Y;, Y1, X1, @, - ),
— or an implicit scheme Y; 1 = F(Y;1, Y, Yiq, - s i1, @iy -+ )
« Yj is fixed by the initial condition, Yy = y(xg) = yo.
« Solve difference scheme, and hope that Y; = y(x;)

« Find scheme using as few grid points as possible



Euler Method

o Algorithm:
Yo = y(wo) = yo; Yin=Yi+hf(x,Y)

o Geometry of Euler’s method

— Current iterate is P = (x;,Y;);  y(z) is the true solution
- At P,y/(z;) is the tangent vector PQ. Euler's method follows PQ until z = x4 at Q.

~ Euler estimate of y(z;41) is Y7,
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o Convergence Theorem:

Theorem 1 Suppose that the solution to y'(x) = f(x,y(x)), y(0) = yo, is C* on |a,b], that f is C?,
and that f, and f,, are bounded for all y and a < x <b. Then the error of the Euler scheme with
step size h is O(h); that is, it can be expressed as

y(x;) —Y; = D(x;)h + O(R?)

where D(x) is bounded on [a,b] and solves the differential equation

D'(x) = (. y(@) Dia) + 9/(@),  Dian) =0



Runge-Kutta Methods

e First-order Runge-Kutta (RK1)
~ Euler estimate of y(z;41) is Y2,
— Slope of vector field at (z;, ;%) is f(z;, Y;E,), not f(x;, Y;¥) as assumed by Euler
- Slope at (z;, ;%) says Y1 should be Y; + h f(z;, Y;%,), point S in figure 10.1

— RK1 takes average of these two approximations:

Vi = Yt 5 S0, Y0) + f(oien, Yo+ hf (01, Y0)
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« RK1 asymptotic error is O(h?)
o RK1 evaluates f twice per step
e Typo: To the left of point S, the expression should be A f (asiﬂ, Y;f{l)

o Fourth-order Runge-Kutta (RK4)
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S
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23 = flzi+ih, Y+ sha) (10.3.10)
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« RK4 asymptotic error is O(h°)

o RK4 evaluates f four times per step



Systems of Differential Equations

e Euler:

° RKl

° RK4

vi(z) = filz,y1,y2, - Yn)

ygl(x): fn(ﬂf, Y1, Y2, 7yn)

YﬁleZJrhfg(:Ui,Yf,--- 7yni)7 (=1,---.,n

yirl =yl 4 g [f(«% Yi) + f(@iy1, Y+ hf(x;, YZ))]

2= f(z, Y

22 = flzi+3h, Y+ 5ha?)
2 = flzi+ih, Y + Sh2?)
2 = flzi+h, Y+ h2d)

Y =Yi 4 220 4+ 222 4+ 223 4 2]

(10.3.11)
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Spence Signaling Equilibrium

« Education signalling model implies the nonlinear equation

N -1 N a—1
N'(y) = () « (v)y (10.43)
Y
with initial condition N (y,,) = n,, and closed-form solution
2yt + D) /2 l+a (nm\
Ny =y “ D = — g 10.4.5
w=v () o=t () (10.45)

Table 10.1: Signalling Model Errors

Euler RK1 RK4
h: 01 .001 .0001 .01 .001 .0001 .01 .001
y (:9)/.1 3(-2) 1(-3) 1(4) 1(-3) 1(4) 1(-6) 3(-3) 2(-6)
0.2 2(-2) 1(-3) 1(4) 1(-3) 5(-4) 1(-6) 2(-3) 1(-6)
04 1(-2) 7(-4) 7(-5) 4(-4) 3(-4) 4(-7) 1(-3) 6(-7)
1.0 6(-3) 4(-4) 4(-5) 2(-4) 1(-4) 2(-7) 4(-4) 3(-7)
20 4(-3) 3(-4) 3(-5) 1(4) 7(-5) 1(-7) 2(4) 1(-7)
10.0  1(-3) 1(4) 1(-5) 2(-5) 2(-6) 0(-7) 6(-5) 0(-7)
time: 11 1.15  9.17 16 149 144 27 291
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Boundary Value Problems for ODEs: Shooting

e Consider the BVP
T = f(il),y,t),
y=g(z,y,t),
2(0) =2, y(T)=y"
re R", ye R"

o For any guess y(0) = ¢, solve IVP in (10.5.2)

r=f(z,y,1)

y=9(z,y,1)
z(0)=a", y(0) =y’

~ Let Y(T,4") denote the resulting value of y(T)

- Y(T,y") depends on 3"

|
8

- Find correct value of 3° by solving the nonlinear equation Y (T, 3°) = 3!

o Programming strategy

— write procedure which computes Y (T, 3°) — y! given input 3.

- send that routine to a nonlinear equation solver to solve Y (T',4°) — y! = 0.
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Life-Cycle Model of Consumption and Labor Supply
 Simple life-cycle model:
max, fOT e "u(c) dt,
A = f(A) +w(t) — ct)
A(0) = A(T) =0
— u(c) is concave utility function over consumption ¢
(t) is wage rate at t
(t) is assets at time ¢
f(A) is return on invested assets.

o Hamiltonian is H = u(c) + A(f(A) + w(t) — ¢).

~ Costate equation: A = pA — Af(A).

- First-order condition: 0 = u/(¢) — A, implying consumption function ¢ = C'(X).

— The final system: .
A= f(A)+w —C(N)

= AMp — f'(4))

with the boundary conditions

A(0) = A(T) =0
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« Convert to a system for observable variables.

—u'(c) = X implies that (10.6.11) can be replaced by

(10.6.13)

— Phase diagram:

c=1(A)
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« Shooting: Consider implications of different ¢(0).

~If A(T) < 0if ¢(0) = ¢, but A(T) > 0 if ¢(0) = ¢, then correct ¢(0) lies between ¢z, and cp.
- Find true ¢(0) by using the bisection method presented in algorithm 5.1.

e In general, if A(T';cp) is terminal wealth for initial consumption ¢y, then find ¢y by solving nonlinear
equation A(T'; ¢g) = 0.

o Phase diagram:

c=f(A)

14



Optimal Growth

o Optimal control problem
max. [, e " u(c) dt
st. k= f(k)—c
k(0) = kg

— k is the capital stock

— ¢ consumption

~ f(k) the aggregate net production function

e ¢(t) and k() satisty
u/(c

19 (o~ (k)
(k) — ¢

—

C =

k:

~—

N

—

and boundary conditions are

k(0) = ko, 0 < Tim | k(£) |< oo

t—00
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(10.7.2)
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o Forward system:

~ We want to compute Mg, but shooting is numerically unstable.
— Computing My would be easy since it attracts deviations
— If we computed

¢ =g (p = f'(k)

k= f(k)—c

with initial condition near steady state, we would move along one of the branches of M;;

(10.7.3)

@
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o Reversed system:

— My in this system is numerically stable and is our consumption function

~ Find My by solving
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Table 10.2: Optimal Growth with Reverse Shooting

k C Errors
h=01 h=0.01 h=0.001
0.2 0.10272 0.00034 3.1(-8)  3.1(-12)
0.5 0.1478 0.000025  3.5(-9) 4.1(-13)
0.9 0.19069 -0.001  -35(-8)  1.8(-13)
1. 0.2 0. 0. 0.
1.1 0.20893 -0.00086  -5.3(-8) -1.2(-12)
1.5 024179 -0.000034  -1.8(-9) -2.1(-14)
2. 0.2784 -9.8(-6)  -5.(-10) 3.6(-15)
2.5 0.31178 -5.(-6)  -2.6(-10) -1.3(-14)
2.8  0.33068 -3.8(-6) -1.9(-10) -1.2(-14)
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