
Numerical Methods in Economics
MIT Press, 1998

Lecture Notes: Finite-Difference Methods

March 18, 2020

1



Classification of Ordinary Differential Equations

• A first-order ordinary differential equation (ODE) has the form

dy

dx
= f (y, x), (10.1.1)

where f : Rn+1 → Rn and the unknown is y(x) : [a, b] ⊂ R→ Rn.

– When n = 1, we have a single differential equation

– If n > 1, (10.1.1) is a system of differential equations.

• Need boundary conditions to fix unknown function y(x).

– Initial value problem (IVP): impose y(x0) = y0 for some x0 ∈ [a, b]

– Two-point boundary value problem: impose n conditions

gi(y(a)) = 0, i = 1, · · · , n′, (10.1.2)

gi(y(b)) = 0, i = n′ + 1, · · · , n,

where g : Rn → Rn.

– General BVP: impose

gi(y(xi)) = 0 (10.1.3)

for a set of points, xi, a ≤ xi ≤ b, 1 ≤ i ≤ n.
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• All problems have form (10.1.2). For example, replace

d2y

dx2
= g(

dy

dx
, y, x)

with
dy

dx
= z,

dz

dx
= g(z, y, x),

• IVP and BVP definitions apply to discrete-time systems.
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Finite-Difference Methods for IVPs

• Consider the IVP

y′ = f (x, y), y(x0) = y0. (10.3.1)

• Specify a grid for x, xi = x0 + ih , i = 0, 1, · · · , N

• Objective: find Yi which approximates y(xi).

• Construct a difference equation on the grid

– An explicit scheme Yi+1 = F (Yi, Yi−1, · · · , xi+1, xi, · · · ),
– or an implicit scheme Yi+1 = F (Yi+1, Yi, Yi−1, · · · , xi+1, xi, · · · )

• Y0 is fixed by the initial condition, Y0 = y(x0) = y0.

• Solve difference scheme, and hope that Yi
.
= y(xi)

• Find scheme using as few grid points as possible
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Euler Method

• Algorithm:

Y0 = y(x0) = y0; Yi+1 = Yi + hf (xi, Yi)

• Geometry of Euler’s method

– Current iterate is P = (xi, Yi); y(x) is the true solution

– At P, y′(xi) is the tangent vector ~PQ. Euler’s method follows ~PQ until x = xi+1 at Q.

– Euler estimate of y(xi+1) is Y E
i+1.

E 
Yi+l 

RK 
Yi+l 

/ 
/ 

- - / T __________ L. 
/ - - 1 __;.....----i 

Xj+} 

y(x) 

hf(xi,Y;l) 

hfl(x· Y·) 1' 1 

5



• Convergence Theorem:

Theorem 1 Suppose that the solution to y′(x) = f (x, y(x)), y(0) = y0, is C3 on [a, b], that f is C2,

and that fy and fyy are bounded for all y and a ≤ x ≤ b. Then the error of the Euler scheme with

step size h is O(h); that is, it can be expressed as

y(xi)− Yi = D(xi)h +O(h2)

where D(x) is bounded on [a, b] and solves the differential equation

D′(x) = fy(x, y(x))D(x) +
1

2
y′′(x), D(x0) = 0
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Runge-Kutta Methods

• First-order Runge-Kutta (RK1)

– Euler estimate of y(xi+1) is Y E
i+1.

– Slope of vector field at (xi, Y
E
i+1) is f (xi, Y

E
i+1), not f (xi, Y

E
i ) as assumed by Euler

– Slope at (xi, Y
E
i+1) says Yi+1 should be Yi + h f (xi, Y

E
i+1), point S in figure 10.1

– RK1 takes average of these two approximations:

Yi+1 = Yi +
h

2
[f (xi, Yi) + f (xi+1, Yi + hf (xi, Yi))] (10.3.9)
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• RK1 asymptotic error is O(h2)

• RK1 evaluates f twice per step

• Typo: To the left of point S, the expression should be hf
(
xi+1, Y

E
i+1

)
.

• Fourth-order Runge-Kutta (RK4)

z1 = f (xi, Yi),

z2 = f (xi + 1
2h, Yi + 1

2hz1)

z3 = f (xi + 1
2h, Yi + 1

2hz2)

z4 = f (xi + h, Yi + hz3)

Yi+1= Yi + h
6 [z1 + 2z2 + 2z3 + z4]

(10.3.10)

• RK4 asymptotic error is O(h5)

• RK4 evaluates f four times per step
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Systems of Differential Equations

y′1(x) = f1(x, y1, y2, · · · yn)
...

y′n(x)= fn(x, y1, y2, · · · , yn)

(10.3.11)

• Euler:

Y i+1
` = Y i

` + hf` (xi, Y
i
1 , · · · , Y i

n), ` = 1, · · · , n (10.3.12)

• RK1:

Y i+1 = Y i +
h

2

[
f (xi, Y

i) + f (xi+1, Y
i + hf (xi, Y

i))
]

(10.3.14)

• RK4:
z1 = f (xi, Y

i)

z2 = f (xi + 1
2h, Y

i + 1
2hz

1)

z3 = f (xi + 1
2h, Y

i + 1
2hz

2)

z4 = f (xi + h, Y i + hz3)

Y i+1= Y i + h
6 [z1 + 2z2 + 2z3 + z4]

(10.3.15)
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Spence Signaling Equilibrium

• Education signalling model implies the nonlinear equation

N ′(y) =
N(y)−1 − αN(y)yα−1

yα
(10.4.3)

with initial condition N(ym) = nm, and closed-form solution

N(y) = y−α
(

2(y1+α + D)

1 + α

)1/2

, D =
1 + α

2

(
nm
y−αm

)2

− y1+αm (10.4.5)

Table 10.1: Signalling Model Errors

Euler RK1 RK4
h: .01 .001 .0001 .01 .001 .0001 .01 .001

y − ym
0.1 3(-2) 1(-3) 1(-4) 1(-3) 1(-4) 1(-6) 3(-3) 2(-6)
0.2 2(-2) 1(-3) 1(-4) 1(-3) 5(-4) 1(-6) 2(-3) 1(-6)
0.4 1(-2) 7(-4) 7(-5) 4(-4) 3(-4) 4(-7) 1(-3) 6(-7)
1.0 6(-3) 4(-4) 4(-5) 2(-4) 1(-4) 2(-7) 4(-4) 3(-7)
2.0 4(-3) 3(-4) 3(-5) 1(-4) 7(-5) 1(-7) 2(-4) 1(-7)

10.0 1(-3) 1(-4) 1(-5) 2(-5) 2(-6) 0(-7) 6(-5) 0(-7)
time: .11 1.15 9.17 .16 1.49 14.4 .27 2.91
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Boundary Value Problems for ODEs: Shooting

• Consider the BVP
ẋ= f (x, y, t),

ẏ= g(x, y, t),

x(0) = x0, y(T ) = yT

x ∈ Rn, y ∈ Rm

(1)

• For any guess y(0) = y0, solve IVP in (10.5.2)

ẋ=f (x, y, t)

ẏ=g(x, y, t) (2)

x(0)=x0, y(0) = y0

– Let Y (T, y0) denote the resulting value of y(T )

– Y (T, y0) depends on y0

– Find correct value of y0 by solving the nonlinear equation Y (T, y0) = yT

• Programming strategy

– write procedure which computes Y (T, y0)− yT given input y0.

– send that routine to a nonlinear equation solver to solve Y (T, y0)− yT = 0.
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Life-Cycle Model of Consumption and Labor Supply

• Simple life-cycle model:

maxc
∫ T
0 e−ρtu(c) dt,

Ȧ = f (A) + w(t)− c(t)
A(0) = A(T ) = 0

(10.6.10)

– u(c) is concave utility function over consumption c

– w(t) is wage rate at t

– A(t) is assets at time t

– f (A) is return on invested assets.

• Hamiltonian is H = u(c) + λ(f (A) + w(t)− c).

– Costate equation: λ̇ = ρλ− λf ′(A).

– First-order condition: 0 = u′(c)− λ, implying consumption function c = C(λ).

– The final system:
Ȧ= f (A) + w − C(λ)

λ̇ = λ(ρ− f ′(A))
(10.6.11)

with the boundary conditions

A(0) = A(T ) = 0 (10.6.12)
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• Convert to a system for observable variables.

– u′(c) = λ implies that (10.6.11) can be replaced by

ċ = − u′(c)
u′′(c)(f

′(A)− ρ)

Ȧ= f (A) + w − c
(10.6.13)

– Phase diagram:
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• Shooting: Consider implications of different c(0).

– If A(T ) < 0 if c(0) = cH , but A(T ) > 0 if c(0) = cL, then correct c(0) lies between cL and cH .

– Find true c(0) by using the bisection method presented in algorithm 5.1.

• In general, if A(T ; c0) is terminal wealth for initial consumption c0, then find c0 by solving nonlinear

equation A(T ; c0) = 0.

• Phase diagram:
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Optimal Growth

• Optimal control problem
maxc

∫∞
0 e−ρt u(c) dt

s.t. k̇ = f (k)− c
k(0) = k0

(10.7.2)

– k is the capital stock

– c consumption

– f (k) the aggregate net production function

• c(t) and k(t) satisfy

ċ = u′(c)
u′′(c) (ρ− f ′(k))

k̇= f (k)− c
(10.7.3)

and boundary conditions are

k(0) = k0, 0 < lim
t→∞
| k(t) |<∞
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• Forward system:

– We want to compute MS, but shooting is numerically unstable.

– Computing MU would be easy since it attracts deviations

– If we computed

ċ = u′(c)
u′′(c) (ρ− f ′(k))

k̇= f (k)− c
(10.7.3)

with initial condition near steady state, we would move along one of the branches of MU
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• Reversed system:

– MU in this system is numerically stable and is our consumption function

– Find MU by solving

ċ = − u′(c)
u′′(c) (ρ− f ′(k))

k̇= − (f (k)− c)
with initial conditions close to steady state.

c 
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Table 10.2: Optimal Growth with Reverse Shooting

k c Errors
h = 0.1 h = 0.01 h = 0.001

0.2 0.10272 0.00034 3.1(-8) 3.1(-12 )
0.5 0.1478 0.000025 3.5(-9 ) 4.1(-13 )
0.9 0.19069 -0.001 -3.5(-8) 1.8(-13 )
1. 0.2 0. 0. 0.

1.1 0.20893 -0.00086 -5.3(-8) -1.2(-12 )
1.5 0.24179 -0.000034 -1.8(-9) -2.1(-14 )
2. 0.2784 -9.8(-6) -5.(-10) 3.6(-15)

2.5 0.31178 -5.(-6) -2.6(-10) -1.3(-14 )
2.8 0.33068 -3.8(-6) -1.9(-10) -1.2(-14 )
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