# Numerical Methods in Economics MIT Press, 1998 <br> Lecture Notes: Finite-Difference Methods 

March 18, 2020

## Classification of Ordinary Differential Equations

- A first-order ordinary differential equation (ODE) has the form

$$
\begin{equation*}
\frac{d y}{d x}=f(y, x) \tag{10.1.1}
\end{equation*}
$$

where $f: R^{n+1} \rightarrow R^{n}$ and the unknown is $y(x):[a, b] \subset R \rightarrow R^{n}$.

- When $n=1$, we have a single differential equation
- If $n>1$, (10.1.1) is a system of differential equations.
- Need boundary conditions to fix unknown function $y(x)$.
- Initial value problem (IVP): impose $y\left(x_{0}\right)=y_{0}$ for some $x_{0} \in[a, b]$
- Two-point boundary value problem: impose $n$ conditions

$$
\begin{gather*}
g_{i}(y(a))=0, \quad i=1, \cdots, n^{\prime},  \tag{10.1.2}\\
g_{i}(y(b))=0, \quad i=n^{\prime}+1, \cdots, n,
\end{gather*}
$$

where $g: R^{n} \rightarrow R^{n}$.

- General BVP: impose

$$
\begin{equation*}
g_{i}\left(y\left(x_{i}\right)\right)=0 \tag{10.1.3}
\end{equation*}
$$

for a set of points, $x_{i}, a \leq x_{i} \leq b, \quad 1 \leq i \leq n$.

- All problems have form (10.1.2). For example, replace

$$
\frac{d^{2} y}{d x^{2}}=g\left(\frac{d y}{d x}, y, x\right)
$$

with

$$
\frac{d y}{d x}=z, \quad \frac{d z}{d x}=g(z, y, x),
$$

- IVP and BVP definitions apply to discrete-time systems.

Finite-Difference Methods for IVPs

- Consider the IVP

$$
\begin{equation*}
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} . \tag{10.3.1}
\end{equation*}
$$

- Specify a grid for $x, x_{i}=x_{0}+i h, i=0,1, \cdots, N$
- Objective: find $Y_{i}$ which approximates $y\left(x_{i}\right)$.
- Construct a difference equation on the grid
- An explicit scheme $Y_{i+1}=F\left(Y_{i}, Y_{i-1}, \cdots, x_{i+1}, x_{i}, \cdots\right)$,
- or an implicit scheme $Y_{i+1}=F\left(Y_{i+1}, Y_{i}, Y_{i-1}, \cdots, x_{i+1}, x_{i}, \cdots\right)$
- $Y_{0}$ is fixed by the initial condition, $Y_{0}=y\left(x_{0}\right)=y_{0}$.
- Solve difference scheme, and hope that $Y_{i} \doteq y\left(x_{i}\right)$
- Find scheme using as few grid points as possible


## Euler Method

- Algorithm:

$$
Y_{0}=y\left(x_{0}\right)=y_{0} ; \quad Y_{i+1}=Y_{i}+h f\left(x_{i}, Y_{i}\right)
$$

- Geometry of Euler's method
- Current iterate is $P=\left(x_{i}, Y_{i}\right) ; \quad y(x)$ is the true solution
- At $P, y^{\prime}\left(x_{i}\right)$ is the tangent vector $\overrightarrow{P Q}$. Euler's method follows $\overrightarrow{P Q}$ until $x=x_{i+1}$ at $Q$.
- Euler estimate of $y\left(x_{i+1}\right)$ is $Y_{i+1}^{E}$.

- Convergence Theorem:

Theorem 1 Suppose that the solution to $y^{\prime}(x)=f(x, y(x)), y(0)=y_{0}$, is $C^{3}$ on $[a, b]$, that $f$ is $C^{2}$, and that $f_{y}$ and $f_{y y}$ are bounded for all $y$ and $a \leq x \leq b$. Then the error of the Euler scheme with step size $h$ is $\mathcal{O}(h)$; that is, it can be expressed as

$$
y\left(x_{i}\right)-Y_{i}=D\left(x_{i}\right) h+\mathcal{O}\left(h^{2}\right)
$$

where $D(x)$ is bounded on $[a, b]$ and solves the differential equation

$$
D^{\prime}(x)=f_{y}(x, y(x)) D(x)+\frac{1}{2} y^{\prime \prime}(x), \quad D\left(x_{0}\right)=0
$$

Runge-Kutta Methods

- First-order Runge-Kutta (RK1)
- Euler estimate of $y\left(x_{i+1}\right)$ is $Y_{i+1}^{E}$.
- Slope of vector field at $\left(x_{i}, Y_{i+1}^{E}\right)$ is $f\left(x_{i}, Y_{i+1}^{E}\right)$, not $f\left(x_{i}, Y_{i}^{E}\right)$ as assumed by Euler
- Slope at $\left(x_{i}, Y_{i+1}^{E}\right)$ says $Y_{i+1}$ should be $Y_{i}+h f\left(x_{i}, Y_{i+1}^{E}\right)$, point $S$ in figure 10.1
- RK1 takes average of these two approximations:

$$
\begin{equation*}
Y_{i+1}=Y_{i}+\frac{h}{2}\left[f\left(x_{i}, Y_{i}\right)+f\left(x_{i+1}, Y_{i}+h f\left(x_{i}, Y_{i}\right)\right)\right] \tag{10.3.9}
\end{equation*}
$$



- RK1 asymptotic error is $\mathcal{O}\left(h^{2}\right)$
- RK1 evaluates $f$ twice per step
- Typo: To the left of point $S$, the expression should be $h f\left(x_{i+1}, Y_{i+1}^{E}\right)$.
- Fourth-order Runge-Kutta (RK4)

$$
\begin{align*}
z_{1} & =f\left(x_{i}, Y_{i}\right), \\
z_{2} & =f\left(x_{i}+\frac{1}{2} h, Y_{i}+\frac{1}{2} h z_{1}\right) \\
z_{3} & =f\left(x_{i}+\frac{1}{2} h, Y_{i}+\frac{1}{2} h z_{2}\right)  \tag{10.3.10}\\
z_{4} & =f\left(x_{i}+h, Y_{i}+h z_{3}\right) \\
Y_{i+1} & =Y_{i}+\frac{h}{6}\left[z_{1}+2 z_{2}+2 z_{3}+z_{4}\right]
\end{align*}
$$

- RK4 asymptotic error is $\mathcal{O}\left(h^{5}\right)$
- RK4 evaluates $f$ four times per step

Systems of Differential Equations

$$
\begin{gather*}
y_{1}^{\prime}(x)=f_{1}\left(x, y_{1}, y_{2}, \cdots y_{n}\right)  \tag{10.3.11}\\
\vdots \\
y_{n}^{\prime}(x)=f_{n}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right)
\end{gather*}
$$

- Euler:

$$
\begin{equation*}
Y_{\ell}^{i+1}=Y_{\ell}^{i}+h f_{\ell}\left(x_{i}, Y_{1}^{i}, \cdots, Y_{n}^{i}\right), \ell=1, \cdots, n \tag{10.3.12}
\end{equation*}
$$

- RK1:

$$
\begin{equation*}
Y^{i+1}=Y^{i}+\frac{h}{2}\left[f\left(x_{i}, Y^{i}\right)+f\left(x_{i+1}, Y^{i}+h f\left(x_{i}, Y^{i}\right)\right)\right] \tag{10.3.14}
\end{equation*}
$$

- RK4:

$$
\begin{align*}
z^{1} & =f\left(x_{i}, Y^{i}\right) \\
z^{2} & =f\left(x_{i}+\frac{1}{2} h, Y^{i}+\frac{1}{2} h z^{1}\right) \\
z^{3} & =f\left(x_{i}+\frac{1}{2} h, Y^{i}+\frac{1}{2} h z^{2}\right)  \tag{10.3.15}\\
z^{4} & =f\left(x_{i}+h, Y^{i}+h z^{3}\right) \\
Y^{i+1} & =Y^{i}+\frac{h}{6}\left[z^{1}+2 z^{2}+2 z^{3}+z^{4}\right]
\end{align*}
$$

## Spence Signaling Equilibrium

- Education signalling model implies the nonlinear equation

$$
\begin{equation*}
N^{\prime}(y)=\frac{N(y)^{-1}-\alpha N(y) y^{\alpha-1}}{y^{\alpha}} \tag{10.4.3}
\end{equation*}
$$

with initial condition $N\left(y_{m}\right)=n_{m}$, and closed-form solution

$$
\begin{equation*}
N(y)=y^{-\alpha}\left(\frac{2\left(y^{1+\alpha}+D\right)}{1+\alpha}\right)^{1 / 2}, D=\frac{1+\alpha}{2}\left(\frac{n_{m}}{y_{m}^{-\alpha}}\right)^{2}-y_{m}^{1+\alpha} \tag{10.4.5}
\end{equation*}
$$

Table 10.1: Signalling Model Errors

|  | Euler | RK1 |  |  |  |  | RK4 |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $h:$ | .01 | .001 | .0001 | .01 | .001 | .0001 | .01 | .001 |
| $y-y_{m}$ |  |  |  |  |  |  |  |  |
| 0.1 | $3(-2)$ | $1(-3)$ | $1(-4)$ | $1(-3)$ | $1(-4)$ | $1(-6)$ | $3(-3)$ | $2(-6)$ |
| 0.2 | $2(-2)$ | $1(-3)$ | $1(-4)$ | $1(-3)$ | $5(-4)$ | $1(-6)$ | $2(-3)$ | $1(-6)$ |
| 0.4 | $1(-2)$ | $7(-4)$ | $7(-5)$ | $4(-4)$ | $3(-4)$ | $4(-7)$ | $1(-3)$ | $6(-7)$ |
| 1.0 | $6(-3)$ | $4(-4)$ | $4(-5)$ | $2(-4)$ | $1(-4)$ | $2(-7)$ | $4(-4)$ | $3(-7)$ |
| 2.0 | $4(-3)$ | $3(-4)$ | $3(-5)$ | $1(-4)$ | $7(-5)$ | $1(-7)$ | $2(-4)$ | $1(-7)$ |
| 10.0 | $1(-3)$ | $1(-4)$ | $1(-5)$ | $2(-5)$ | $2(-6)$ | $0(-7)$ | $6(-5)$ | $0(-7)$ |
| time: | .11 | 1.15 | 9.17 | .16 | 1.49 | 14.4 | .27 | 2.91 |

## Boundary Value Problems for ODEs: Shooting

- Consider the BVP

$$
\begin{align*}
& \dot{x}=f(x, y, t), \\
& \dot{y}=g(x, y, t), \\
& \quad x(0)=x^{0}, \quad y(T)=y^{T}  \tag{1}\\
& x \in R^{n}, y \in R^{m}
\end{align*}
$$

- For any guess $y(0)=y^{0}$, solve IVP in (10.5.2)

$$
\begin{align*}
\dot{x} & =f(x, y, t) \\
\dot{y} & =g(x, y, t)  \tag{2}\\
x(0) & =x^{0}, \quad y(0)=y^{0}
\end{align*}
$$

- Let $Y\left(T, y^{0}\right)$ denote the resulting value of $y(T)$
- $Y\left(T, y^{0}\right)$ depends on $y^{0}$
- Find correct value of $y^{0}$ by solving the nonlinear equation $Y\left(T, y^{0}\right)=y^{T}$
- Programming strategy
- write procedure which computes $Y\left(T, y^{0}\right)-y^{T}$ given input $y^{0}$.
- send that routine to a nonlinear equation solver to solve $Y\left(T, y^{0}\right)-y^{T}=0$.


## Life-Cycle Model of Consumption and Labor Supply

- Simple life-cycle model:

$$
\begin{align*}
& \max _{c} \int_{0}^{T} e^{-\rho t} u(c) d t \\
& \dot{A} \quad=f(A)+w(t)-c(t)  \tag{10.6.10}\\
& A(0)=A(T)=0
\end{align*}
$$

- $u(c)$ is concave utility function over consumption $c$
$-w(t)$ is wage rate at $t$
- $A(t)$ is assets at time $t$
- $f(A)$ is return on invested assets.
- Hamiltonian is $H=u(c)+\lambda(f(A)+w(t)-c)$.
- Costate equation: $\dot{\lambda}=\rho \lambda-\lambda f^{\prime}(A)$.
- First-order condition: $0=u^{\prime}(c)-\lambda$, implying consumption function $c=C(\lambda)$.
- The final system:

$$
\begin{align*}
& \dot{A}=f(A)+w-C(\lambda)  \tag{10.6.11}\\
& \dot{\lambda}=\lambda\left(\rho-f^{\prime}(A)\right)
\end{align*}
$$

with the boundary conditions

$$
\begin{equation*}
A(0)=A(T)=0 \tag{10.6.12}
\end{equation*}
$$

- Convert to a system for observable variables.
$-u^{\prime}(c)=\lambda$ implies that (10.6.11) can be replaced by

$$
\begin{align*}
& \dot{c}=-\frac{u^{\prime}(c)}{u^{\prime \prime}(c)}\left(f^{\prime}(A)-\rho\right)  \tag{10.6.13}\\
& \dot{A}=f(A)+w-c
\end{align*}
$$

- Phase diagram:

- Shooting: Consider implications of different $c(0)$.
- If $A(T)<0$ if $c(0)=c_{H}$, but $A(T)>0$ if $c(0)=c_{L}$, then correct $c(0)$ lies between $c_{L}$ and $c_{H}$.
- Find true $c(0)$ by using the bisection method presented in algorithm 5.1.
- In general, if $A\left(T ; c_{0}\right)$ is terminal wealth for initial consumption $c_{0}$, then find $c_{0}$ by solving nonlinear equation $A\left(T ; c_{0}\right)=0$.
- Phase diagram:



## Optimal Growth

- Optimal control problem

$$
\begin{align*}
& \max _{c} \int_{0}^{\infty} e^{-\rho t} u(c) d t \\
& \text { s.t. } \dot{k}=f(k)-c  \tag{10.7.2}\\
& \quad k(0)=k_{0}
\end{align*}
$$

- $k$ is the capital stock
- $c$ consumption
- $f(k)$ the aggregate net production function
- $c(t)$ and $k(t)$ satisfy

$$
\begin{align*}
& \dot{c}=\frac{u^{\prime}(c)}{u^{\prime \prime}(c)}\left(\rho-f^{\prime}(k)\right)  \tag{10.7.3}\\
& \dot{k}=f(k)-c
\end{align*}
$$

and boundary conditions are

$$
k(0)=k_{0}, 0<\lim _{t \rightarrow \infty}|k(t)|<\infty
$$

- Forward system:
- We want to compute $M_{S}$, but shooting is numerically unstable.
- Computing $M_{U}$ would be easy since it attracts deviations
- If we computed

$$
\begin{align*}
& \dot{c}=\frac{u^{\prime}(c)}{u^{\prime \prime}(c)}\left(\rho-f^{\prime}(k)\right)  \tag{10.7.3}\\
& \dot{k}=f(k)-c
\end{align*}
$$

with initial condition near steady state, we would move along one of the branches of $M_{U}$


- Reversed system:
- $M_{U}$ in this system is numerically stable and is our consumption function
- Find $M_{U}$ by solving

$$
\begin{aligned}
& \dot{c}=-\frac{u^{\prime}(c)}{u^{\prime \prime}(c)} \\
& \dot{k}=-\left(\rho-f^{\prime}(k)\right) \\
&(k)-c)
\end{aligned}
$$

with initial conditions close to steady state.


Table 10.2: Optimal Growth with Reverse Shooting

| $k$ | $c$ |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
|  |  | $h=0.1$ | $h=0.01$ | $h=0.001$ |
| 0.2 | 0.10272 | 0.00034 | $3.1(-8)$ | $3.1(-12)$ |
| 0.5 | 0.1478 | 0.000025 | $3.5(-9)$ | $4.1(-13)$ |
| 0.9 | 0.19069 | -0.001 | $-3.5(-8)$ | $1.8(-13)$ |
| 1. | 0.2 | 0. | 0. |  |
| 1.1 | 0.20893 | -0.00086 | $-5.3(-8)$ | $-1.2(-12)$ |
| 1.5 | 0.24179 | -0.000034 | $-1.8(-9)$ | $-2.1(-14)$ |
| 2. | 0.2784 | $-9.8(-6)$ | $-5 .(-10)$ | $3.6(-15)$ |
| 2.5 | 0.31178 | $-5 .(-6)$ | $-2.6(-10)$ | $-1.3(-14)$ |
| 2.8 | 0.33068 | $-3.8(-6)$ | $-1.9(-10)$ | $-1.2(-14)$ |

