Solving Equations

Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$. Consider the equation

f(x) = 0

Typical algorithms

Newtons' method:

fast, but

can diverge

may try to evaluate f(x) where it does not exist

Homotopy method: reliable, but

slow

Alternative: Reformulate as an optimization problem

 $\begin{array}{ll} \text{Min}_{x} & 1\\ \text{s.t.} & f(x) = 0 \end{array}$

Advantages

Variety of solvers

Can use KNITRO, CONOPT, Filter, SNOPT, NPSOL, etc

Can impose constraints

Impose domain conditions

Suppose f(x) is not defined for x<= 0. Then solve

Min _x	1
s.t.	f(x) = 0
	$x \ge \epsilon$

for some small $\epsilon > 0$. Can't use x=>0 because then solver may consider some $x_i = 0$.

Use auxiliary information about solution

Suppose you know that the solution to f(x)=0 satisfies a < x < b (a and b are vectors). We can use that information in

 $\begin{array}{ll} \operatorname{Min}_{x} & 1 \\ \mathrm{s.t.} & f(x) = 0 \\ a \leq x \leq b \end{array}$

More generally, if we know that $a \leq g(x) \leq b$, for some a, b, and g, then solve

$$\begin{array}{ll} \operatorname{Min}_{x} & 1 \\ \mathrm{s.t.} & f(x) = 0 \\ & a \leq g(x) \leq b \end{array}$$

Stabilize algorithm with L₂ penalty

Suppose that the Jacobian of f is nearly singular near the solution. Then, the following quadratic penalty formulation stabilizes the algorithm:

Min_x $||x||_2^2$ s.t. f(x) = 0

where P is some penalty parameter, preferably small.

Stabilize algorithm with L₁ penalty

An L₁ penalty might also help

 Min_x
 $||x||_1$

 s.t.
 f(x) = 0

where P is some penalty parameter, preferably small. (More later about how to do this.)

Stabilize via relaxation

We can instead try to find something that nearly solves the equations:

$$\begin{aligned} \min_{x,\lambda} & \|\lambda\|_1 \\ \text{s.t.} & -\lambda_i \le f(x) \le \lambda_i \\ & \lambda_i \ge 0 \end{aligned}$$

This will give you something instead of just saying "Can't find a solution" You could use the max norm

$$\begin{aligned} \min_{x,\lambda} & \|\lambda\|_{\infty} \\ \text{s.t.} & -\lambda_i \le f(x) \le \lambda_i \\ & \lambda_i \ge 0 \end{aligned}$$

Find multiple solutions

If there are many solutions, one could resolve the following problem several times for different π parameters:

 $\begin{array}{ll} \text{Min}_{x} & \pi \, . \, x \\ \text{s.t.} & f(x) = 0 \end{array}$

This will go after solutions on the boundary of the set of solutions. The following will go after the solution closest to some chosen x_0 :

Min_x $||x_0 - x||_2^2$ s.t. f(x) = 0