Solving Equations

Suppose $f: R^{n} \rightarrow R^{n}$. Consider the equation
$f(x)=0$

Typical algorithms

Newtons' method:
fast, but
can diverge
may try to evaluate $f(x)$ where it does not exist
Homotopy method:
reliable, but
slow

Alternative: Reformulate as an optimization problem

$\operatorname{Min}_{x} \quad 1$
s.t. $\quad f(x)=0$

Advantages

Variety of solvers

Can use KNITRO, CONOPT, Filter, SNOPT, NPSOL, etc

Can impose constraints

Impose domain conditions
Suppose $f(x)$ is not defined for $x<=0$. Then solve

Min $_{x} \quad 1$
s.t. $\quad f(x)=0$
$x \geq \epsilon$
for some small $\epsilon>0$. Can't use $\mathrm{x}=>0$ because then solver may consider some $x_{i}=0$.

Use auxiliary information about solution

Suppose you know that the solution to $\mathrm{f}(\mathrm{x})=0$ satisfies $\mathrm{a}<\mathrm{x}<\mathrm{b}$ (a and b are vectors). We can use that information in
$\operatorname{Min}_{x} \quad 1$
s.t. $\quad f(x)=0$
$a \leq x \leq b$

More generally, if we know that $a \leq g(x) \leq b$, for some a , b , and g , then solve
$\operatorname{Min}_{x} \quad 1$
s.t. $f(x)=0$
$a \leq g(x) \leq b$

Stabilize algorithm with L_{2} penalty

Suppose that the Jacobian of f is nearly singular near the solution. Then, the following quadratic penalty formulation stabilizes the algorithm:
$\operatorname{Min}_{x} \quad\|x\|_{2}{ }^{2}$
where P is some penalty parameter, preferably small.

Stabilize algorithm with L_{1} penalty

An L_{1} penalty might also help
$\operatorname{Min}_{x} \quad\|x\|_{1}$
s.t. $\quad f(x)=0$
where P is some penalty parameter, preferably small. (More later about how to do this.)

Stabilize via relaxation

We can instead try to find something that nearly solves the equations:
$\operatorname{Min}_{x, \lambda} \quad\|\lambda\|_{1}$
s.t. $\quad-\lambda_{i} \leq f(x) \leq \lambda_{i}$
$\lambda_{i} \geq 0$

This will give you something instead of just saying "Can't find a solution"
You could use the max norm
$\operatorname{Min}_{x, \lambda} \quad\|\lambda\|_{\infty}$
s.t. $\quad-\lambda_{i} \leq f(x) \leq \lambda_{i}$
$\lambda_{i} \geq 0$

Find multiple solutions

If there are many solutions, one could resolve the following problem several times for different π parameters:
$\operatorname{Min}_{x} \pi \cdot x$
s.t. $\quad f(x)=0$

This will go after solutions on the boundary of the set of solutions.
The following will go after the solution closest to some chosen x_{0} :
$\operatorname{Min}_{x} \quad\left\|x_{0}-x\right\|_{2}{ }^{2}$
s.t. $\quad f(x)=0$

