Solving ill-conditioned problems via Proximal Point method

Suppose you have an objective which has a singular Hessian at the minimum (or maximum).
Economic examples: Flat top of likelihood hill, flat bottom to a moments criterion minimum Newton's method may not properly converge for such problems

Round-off errors could cause convergence far from true solution
Any convergence will be slow.

Simple example
$\ln [647]=a=5 ; w g t=. ;$ xold $=. ;$ yold $=$.
Suppose your objective is
$\ln [648]=0 b j=(x+y-a)^{4}$
our[64] $=(-5+x+y)^{4}$
There are multiple minima: any (x, y) such that $x+y=5$.
You can identify $\mathrm{x}+\mathrm{y}$ but not (x, y)
In[649]: $=$ FindMinimum[obj, $\{x, 2\},\{y, 2\}]$
Ouff69 $=\left\{1 . \times 10^{-16},\{x \rightarrow 2.49995, y \rightarrow 2.49995\}\right\}$
This problem is so trivial and FindMinimum good enough that we get a solution. We stay with simple case to show basic idea.

So, suppose things did not go well.

Proximal Point method

Construct a penalty function (xold, yold) is most recent guess the penalty function is a quadratic penalty for choosing (x, y) different from (xold, yold)

In[650] $=$ pen $=(x-x o l d)^{2}+(y-y o l d)^{2}$
Outf60) $=(x-x o l d)^{2}+(y-y o l d)^{2}$
Create a new objective function
$\ln [651]=$ objProx $=$ obj + wgt pen
out[651] $=(-5+x+y)^{4}+$ wgt $\left((x-x o l d)^{2}+(y-y o l d)^{2}\right)$
objProx wants to minimize obj but imposes a cost for straying from (xold, yold)
We need to set the weight, and initial values for (xold, yold)
wgt = 0.1;
xold $=$ yold $=10$;
min657]:= objProx
Out[67] $=0.1\left((-10+x)^{2}+(-10+y)^{2}\right)+(-5+x+y)^{4}$

Solve

In[658]:= FindMinimum[objProx, \{x, 2\}, \{y, 2\}][[2]]
Out[658] $=\{x \rightarrow 2.85478, y \rightarrow 2.85478\}$
We get a solution. Let's reset (xold, yold) and try again.
$\ln [659]:=\{$ xold, yold $\}=\{x, y\} / . \%$
Out[659] $=\{2.85478,2.85478\}$
$\ln [660]:=$ FindMinimum [objProx, $\{x, 2\},\{y, 2\}][[2]]$
Out[660] $=\{x \rightarrow 2.61451, y \rightarrow 2.61451\}$
Repeat
$\ln [661]:=\{x o l d$, yold $\}=\{x, y\} / . \%$
$O u t[661]=\{2.61451,2.61451\}$

In[662]:= FindMinimum [objProx, \{x, 2\}, \{y, 2\}][[2]]
Out[662] $=\{x \rightarrow 2.56681, y \rightarrow 2.56681\}$
$\ln [663]:=\{$ xold, yold $\}=\{x, y\} / . \%$
Out[663] $=\{2.56681,2.56681\}$

In[664]:= FindMinimum [objProx, \{x, 2\}, \{y, 2\}][[2]]
Out[664] $=\{x \rightarrow 2.54853, \mathrm{y} \rightarrow 2.54853\}$
$\ln [665]:=\{x o l d$, yold $\}=\{x, y\} / . \%$
Out[665] $=\{2.54853,2.54853\}$

We now seemed to have become stuck. Remember that the weight is 0.1. Let's reduce the weight on the penalty
$\ln [666]:=$ wgt $=0.001$;
In[667]:= FindMinimum[objProx, $\{x, 2\}$, \{y, 2\}][[2]]
Out[667]= $\{x \rightarrow 2.51304, y \rightarrow 2.51304\}$
Progress! Let's repeat this a few times
$\ln [668]:=\{x o l d$, yold $\}=\{x, y\} / . \%$
Out[668]= $\{2.51304,2.51304\}$

In[669]:= FindMinimum[objProx, \{x, 2\}, \{y, 2\}][[2]]
Out[669]= $\{x \rightarrow 2.50716, y \rightarrow 2.50716\}$
$\ln [670]:=\{$ xold, yold $\}=\{x, y\} / . \%$
Out[670]= $\{2.50716,2.50716\}$
$\ln [671]:=$ FindMinimum[objProx, $\{x, 2\},\{y, 2\}][[2]]$
Out[671] $=\{x \rightarrow 2.50507, y \rightarrow 2.50507\}$
$\ln [672]:=\{x o l d, y o l d\}=\{x, y\} / . \%$
O Ot[i672]= $\{2.50507,2.50507\}$

We could reduce the penalty weight further and get closer to some (x, y) such that $x+y=5$, but let's stop here.

What was the benefit of doing this?
Each step in the optimization problem was well-conditioned
Each step will converge quadratically to the solution of the penalized objective
You get arbitrarily close to some solution
You still cannot identify (x, y) but you can find a point that solves the problem
Identification
Economists are obsessed with identification
Why? No good reason.
My opinion: write down the model you think is valid and then let the computer tell you if you have identification.

