Numerical Methods in Economics
MIT Press, 1998

Notes for Lecture 6: Constrained Optimization

March 4, 2020



Optimization Problems

e Canonical problem:

min, f(x)
s.t. g(x) =0,
h(z) <0,

— f: R" — R is the objective function
— g : R" — R™ is the vector of m equality constraints

— h: R" = R’ is the vector of ¢ inequality constraints.
e Eixamples:

— Maximization of consumer utility subject to a budget constraint
— Optimal incentive contracts
— Portfolio optimization

— Life-cycle consumption
e Assumptions

— Always assume f, g, and h are continuous
— Usually assume f, g, and h are C'
— Often assume f, g, and h are C?



Linear Programming

e Canonical linear programming problem is

min, a' x

s.t.Cx =0,
x > 0.
— Dx < f : use slack variables, s, and constraints Dx +s = f,s > 0.
— Dx > f:use Dxr —s = f,s >0, sis vector of surplus variables.
— x > d : define y = x — d and min over y

— x; free: define x; = y; — z;, add constraints y;, z; > 0, and min over (y;, 2;).



e Basic method is the simplex method. Figure 4.4 shows example:

ming , —2x —y
st.x+y <4, z,y>0,
r <3 y<2
— Find some point on boundary of constraints, such as A.
— Step 1: Note which constraints are active at A and points nearby:.
— Find feasible directions and choose steepest descent direction.
— Figure 4.4 has two directions: from A: to B and to O, with B better.
— Follow that direction to next vertex on boundary, and go back to step 1.
— Continue until no direction reduces the objective: point H.

— Stops in finite time since there are only a finite set of vertices.
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e General History

— Goes back to Dantzig (1951). (The real Good Will Hunting.)
— Worst case time is exponential in number of variables and constraints
— Fast on average — time is degree four polynomial in problem size

— Software implementations vary in numerical stability

e Best software: CPLEX and GUROBI



Constrained Nonlinear Optimization
General problem:

min, f(x)

s.t. g(x)

h(z) <

0 (4.7.1)
0

e f: X CR"— R: objective function with n choices

— g: X CR" — R"™ m equality constraints
— h: X CR" = R% / inequality constraints
— f,g, and h are C? on X

e Linear Independence Constraint Qualification (LICQ):

— The set of constraints that hold with equality at a feasible point x € X is called the
active set A(x). Formally,

Alx)={iel | gi(x) =0} UE.

— The linear independence constraint qualification (LICQ) holds at a point x € X if

the gradients of all active constraints are linearly independent.
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e Karush-Kuhn-Tucker (KKT) theorem: if there is a local minimum at x* then there are
multipliers \* € R™ and p* € RY such that z* is a stationary, or critical, point of L,

the Lagrangian,
L, A p) = fx) + X gla) + phiz) (4.7.2)

e First-order conditions, L,(x*, \*, *) = 0, imply that (\*, u*, *) solves

fo+ A got+u"hy =0
pih'(x)=0, i=1,---,¢
g(x)=0 (4.7.3)
h(z)<0
w=>0

AVARVAN

o If LICQ holds then the multipliers are unique; otherwise, they are called “unbounded”.



e The KKT conditions are
V.L(z", \) =01ieVf(z") = Z AN Vgi(z")
gi(z*)=0,Vi e E
AT >0Viel
Ngi(x®)=0,Vie EUI
e At a solution, x, all equality constraints must hold.

e Some inequality constraints will be active, that is, equal zero. For each solution x, define

the active set of constraints

Alx) = FU{i € I|gi(x) =0}

e Given x* and A(x"), we say that the linear independence constraint qualification (LICQ)
holds if the set of active constraint gradients {Vg;(z*)|i € A(z*)} is linearly independent.



A Kuhn-Tucker Approach

e [dea: try all possible Kuhn-Tucker systems and pick best

— Let J be the set {1,2,--- ¢}

— For a subset P C J, define the P problem, corresponding to a combination of

binding and nonbinding inequality constraints

g(x)=10
h'(z)=0, i€P, (4.7.4)
uW=0, ieJ-"P, -

— Solve (or attempt to do so) each P-problem

— Choose the best solution among those P-problems with solutions consistent with all

constraints.

e We can do better in general.
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Penalty Function Approach
e Many constrained optimization methods use a penalty function approach:

— Replace constrained problem with related unconstrained problem.

— Permit anything, but make it “painful” to violate constraints.

e Penalty function: for canonical problem

min, f(x)
st. g(x)=a, (4.7.5)
h(z) <b

construct the penalty function problem

_ 1 ; .
min flz)+ §P Z (9'(z) — ai)Q + Z (max [0, A (z) — bj])Q (4.7.6)
i j
where P > 0 is the penalty parameter.

— Denote the penalized objective in (4.7.6) F(x; P, a,b).
— Include a and b as parameters of F'(x; P, a,b).
— If P is “infinite,” then (4.7.5) and (4.7.6) are identical.

— Hopetully, for large P, their solutions will be close.
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e Problem: for large P, the Hessian of F', I}, is ill-conditioned at x away from the solution.
e Solution: solve a sequence of problems.

— Solve min, F (x; P, a,b) with a small choice of P; to get x!,

— Then execute the iteration
" € argmin F (2; Ppyy, a,b) (4.7.7)

k

where we use ¥ as initial guess in iteration k + 1, and Fj,(2"; Ppy1,a,b) as the

initial Hessian guess (which is hopefully not too ill-conditioned)
e Shadow prices in (4.7.5) and (4.7.7):

— Shadow price of a; in (4.7.6) is F,, = P(g'(z) — a;).
— Shadow price of b; in (4.7.6) is F,;; P(h/(2) — b;) if binding, 0 otherwise.

e Theorem: Penalty method works with convergence of x and shadow prices as Py, diverges

(under mild conditions)
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e Simple example

— Consumer buys good y (price is 1) and good z (price is 2) with income 5.

— Utility is u(y, z) = \/yz.

— Optimal consumption problem is

g2 VU= (4.7.8)
st. y+2z <5,

with solution (y*, 2*) = (5/2,5/4), \* = 871/2
— Penalty function is

|
u(y, z) — 5 P(max[0,y + 2z — 5])°

— Iterates are in Table 4.7 (stagnation due to finite precision)

Table 4.7
Penalty function method applied to (4.7.8)
k P, (y,z)— (y",2")  Constraint violation A error
0 10  (88(-3),.015) 1.0(—1) —5.9(—3)
1 10* (8.8(—4), 1.5(=3)) 1.0(—2) —5.5(—4)
2 10 (5.5(=H), 1.7(—4)) 1.0(=3) 2.1(—2)
3 10% (=2.5(—4), 1.7(—4)) 1.0(—4) 1.7(—4)
4 10° (—2.8(—4), 1.7(—4)) 1.0(=5) 2.3(—4)
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Sequential Quadratic Programming Method

e Special methods are available when we have a quadratic objective and linear constraints

min, (z — a)' A(z — a)
st. b(x—s5)=0
clx—q) <0

e [xtensions of linear programming

e Fxcellent software includes CPLEX and GUROBI



e Sequential Quadratic Programming Method

— Solution is stationary point of Lagrangian
Lz, A\ p) = fla) + A g(x) + ' h(z)

— Suppose that the current guesses are (zk, Ak, pk).

k

— Let step size s*! solve approximating quadratic problem

ming L, (2%, \F, u?) (2% — s) + (aF — 8) T Lo (aF, NF, pF) (2% — s
sit. g(zF) + g.(z¥) (2% — 5) =0
h(z®) + hy(zF) (2% — s) <0
— The next iterate is 2! = 2% + ¢s**1 for some ¢

x Could use linesearch to choose ¢

x A¥ and p* are also updated but we do not describe the detail here.
— Proceed through a sequence of quadratic problems.
— SQP method inherits many properties of Newton’s method

x rapid local convergence

x can use quasi-Newton to approximate Hessian.

)
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Domain Problems

e Suppose f : X CR" >R, g: X CR" - R™ h: X CR"— R’ and we want to
solve

min, f(x)

s.t. glx) =0

h(z) <0

(4.7.1)

e The penalty function approach produces an unconstrained problem

max F'(x; P, a,b)

reR™
e Problem: F'(x; P,a,b) may not be defined for all x.

e Example: Consumer demand problem

max, , u(y, 2)

st.py+qz<1.

— Penalty method

1
max u(y, z) — éP(max[O, py+qz—1I])
e



— Problem: u (y, z) will not be defined for all y and z, such as

u(y, z) = logy + log 2
uly, z) = y'*21*

7/2
u(y, 2) = (y1/6 + zl/6>

— Penalty method may crash when computer tries to evaluate u (y, z)!
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e Solutions

— Strategy 1: Transform variables

x If functions are defined only for a; > 0, then reformulate in terms of z; = log x;

x For example, let y = logy, z = log z, and solve

1 _ _
max u(e’,e*) — §P(max[0, pel +qe —1))7?
Y,z

x Problem: log transformation may not preserve shape; e.g.. concave function of

x may not be concave in log x

— Strategy 2: Alter objective and constraint functions so that they are defined every-

where (see discussion above)

— Strategy 3: Express the domain where functions are defined in terms of inequality

constraints that are enforced by the algorithm at every step.

« F.g., if utility function is log (z) + log (y), then add constraints x > d,y > 9
for some very small 6 > 0 (use, for example, § ~ 107% don’t use § = 0 since

roundoff error may still allow negative x or y)

x In general, you can avoid domain problems if you express the domain in terms

of linear constraints.

x If the domain is defined by nonlinear functions, then create new variables that

can describe the domain in linear terms.
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Active Set Approach
e Problems:

— Kuhn-Tucker approach has too many combinations to check

x some choices of P may have no solution

* there may be multiple local solutions to others.
— Sequential quadratic method can be slow if there are too many constraints.

— Penalty function methods are costly since all constraints are in (4.7.5), even if only

a few bind at solution.
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e Solution: refine K-T with a good sequence of subproblems, ignoring constraints that you

think won’t be active at the solution.

— Let J be the set {1,2,--- /}
— for P C J , define the P problem

s.t. g(x) =0, (P) (4.7.10)

— Choose an initial set of constraints, P, and solve (4.7.10-P)If that solution satisfies

all constraints, then you are done.
— Otherwise

x Add constraints which are violated by most recent guess
* Periodically drop constraints in P which fail to bind
x Increase penalty parameters

x Repeat

e The simplex method for linear programing is really an active set method.



Interior-Point methods

e Consider

min c¢'zx

reR?

st. Ax =0
x>0

where ¢ € R", b € R™, and A is an m X n matrix.

e Karush-Kuhn-Tucker conditions for this optimization problem are as follows.

AN +s=c

Axr =0
r;5,=0, 1=12,...,n

x>0

s>0

20



21

e [nterior-point methods solve a sequence of perturbed problems.

— Consider the following perturbation of the KKT conditions.

AN +s=c (7)
Axr=b (8)
risi=p, 1=12....n (9)

x>0 (10)
5>0 (11)

— The complementarity condition (4) is replaced by (9) for some positive scalar y > 0.

— Assuming that a solution (CL’(O), O, 3(0)) to this system is given for some initial value
of % > 0, interior-point methods decrease the parameter y and thereby generate
a sequence of points (:c(k), )\(k>, s(k)) that satisfy the non-negativity constraints on
the variables strictly, ") > 0 and s*) > 0.

— As p is decreased to zero, a point satisfying the original first-order conditions is

reached.

— The set of solutions to the perturbed system,

C = {z(p), Mp),s(p) | p> 0}

is called the central path.

e Implementations must handle many details
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— It is often difficult to find a feasible starting point (2%, A%, 3(0)) of the perturbed

system.
— Good initial guesses generally do not work! IPOPT will use good initial guesses.
— We need to solve (7) — (9) in each iteration and maintain 10 and 11.

— Newton’s method can be used but better is to use path-following to maintain the

inequalities.
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The Logarithmic Barrier Method
e Consider

min  f(x)

reR"

st. gi(z) >0 el

e Combine the objective function and constraints to define a penalty function

Pla;p) = f(x) - NZ In g;(),

— i > 0 is called the barrier parameter
— > ierIngi(z) is called a logarithmic barrier function.

— Each —1In g;(x) term tends to infinity as x approaches the boundary of g;(x) > 0

from the interior of the feasible region.

— As p converges to zero, the optimal solution x*(u) path of mingern P(x; pt) converges

to the optimal solution of the original problem.



e ['irst-order conditions are

VoP(w;p) =V f(z) =) L Vgi(x)=0.

e Now define for all 2 € 1

— Note that since g > 0 by definition we have that v;(u) > 0.

— Thus, at a stationary point of the penalty function the following conditions hold.

Vfx)— Z viVgi(x)=0

gi(x) —s;,=0 foralliel
visi=pu foralli el

v;>0 foralli el

s; >0 foralliel
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