Numerical Methods in Economics MIT Press, 1998

Notes for Lecture 6: Constrained Optimization

March 4, 2020

Optimization Problems

- Canonical problem:

$$
\begin{aligned}
\min _{x} f(x) & \\
\text { s.t. } & g(x) \\
& =0, \\
h(x) & \leq 0,
\end{aligned}
$$

$-f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the objective function
$-g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the vector of m equality constraints
$-h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\ell}$ is the vector of ℓ inequality constraints.

- Examples:
- Maximization of consumer utility subject to a budget constraint
- Optimal incentive contracts
- Portfolio optimization
- Life-cycle consumption
- Assumptions
- Always assume f, g, and h are continuous
- Usually assume f, g, and h are C^{1}
- Often assume f, g, and h are C^{3}

Linear Programming

- Canonical linear programming problem is

$$
\begin{gather*}
\min _{x} a^{\top} x \\
\text { s.t. } C x=b \tag{1}\\
x \geq 0
\end{gather*}
$$

- $D x \leq f$: use slack variables, s, and constraints $D x+s=f, s \geq 0$.
$-D x \geq f:$ use $D x-s=f, s \geq 0, s$ is vector of surplus variables.
$-x \geq d:$ define $y=x-d$ and min over y
$-x_{i}$ free: define $x_{i}=y_{i}-z_{i}$, add constraints $y_{i}, z_{i} \geq 0$, and min over $\left(y_{i}, z_{i}\right)$.
- Basic method is the simplex method. Figure 4.4 shows example:

$$
\begin{aligned}
\min _{x, y} & -2 x-y \\
\text { s.t. } & x+y \leq 4, \quad x, y \geq 0 \\
& x \leq 3, \quad y \leq 2
\end{aligned}
$$

- Find some point on boundary of constraints, such as A.
- Step 1: Note which constraints are active at A and points nearby.
- Find feasible directions and choose steepest descent direction.
- Figure 4.4 has two directions: from A : to B and to O, with B better.
- Follow that direction to next vertex on boundary, and go back to step 1.
- Continue until no direction reduces the objective: point H.
- Stops in finite time since there are only a finite set of vertices.

- General History
- Goes back to Dantzig (1951). (The real Good Will Hunting.)
- Worst case time is exponential in number of variables and constraints
- Fast on average - time is degree four polynomial in problem size
- Software implementations vary in numerical stability
- Best software: CPLEX and GUROBI

Constrained Nonlinear Optimization

General problem:

$$
\begin{align*}
\min _{x} f(x) & \\
\text { s.t. } & g(x) \tag{4.7.1}\\
& =0 \\
h(x) & \leq 0
\end{align*}
$$

- $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$: objective function with n choices
$-g: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}: m$ equality constraints
- $h: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{\ell}: \ell$ inequality constraints
- f, g, and h are C^{2} on X
- Linear Independence Constraint Qualification (LICQ):
- The set of constraints that hold with equality at a feasible point $x \in X$ is called the active set $A(x)$. Formally,

$$
A(x)=\left\{i \in I \mid g_{i}(x)=0\right\} \cup E .
$$

- The linear independence constraint qualification (LICQ) holds at a point $x \in X$ if the gradients of all active constraints are linearly independent.
- Karush-Kuhn-Tucker (KKT) theorem: if there is a local minimum at x^{*} then there are multipliers $\lambda^{*} \in \mathbb{R}^{m}$ and $\mu^{*} \in \mathbb{R}^{\ell}$ such that x^{*} is a stationary, or critical, point of \mathcal{L}, the Lagrangian,

$$
\begin{equation*}
\mathcal{L}(x, \lambda, \mu)=f(x)+\lambda^{\top} g(x)+\mu^{\top} h(x) \tag{4.7.2}
\end{equation*}
$$

- First-order conditions, $\mathcal{L}_{x}\left(x^{*}, \lambda^{*}, \mu^{*}\right)=0$, imply that $\left(\lambda^{*}, \mu^{*}, x^{*}\right)$ solves

$$
\begin{align*}
& f_{x}+\lambda^{\top} g_{x}+\mu^{\top} h_{x}=0 \\
& \mu_{i} h^{i}(x)=0, \quad i=1, \cdots, \ell \\
& g(x)=0 \tag{4.7.3}\\
& h(x) \leq 0 \\
& \mu \geq 0
\end{align*}
$$

- If LICQ holds then the multipliers are unique; otherwise, they are called "unbounded".
- The KKT conditions are

$$
\begin{aligned}
\nabla_{x} L\left(x^{*}, \lambda^{*}\right) & =0 \text { i.e. } \nabla f\left(x^{*}\right)=\sum_{i \in E \cup I} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right) \\
g_{i}\left(x^{*}\right) & =0, \forall i \in E \\
g_{i}\left(x^{*}\right) & \geq 0, \forall i \in I \\
\lambda_{i}^{*} & \geq 0, \forall i \in I \\
\lambda_{i}^{*} g_{i}\left(x^{*}\right) & =0, \forall i \in E \cup I
\end{aligned}
$$

- At a solution, x, all equality constraints must hold.
- Some inequality constraints will be active, that is, equal zero. For each solution x, define the active set of constraints

$$
A(x)=E \cup\left\{i \in I \mid g_{i}(x)=0\right\}
$$

- Given x^{*} and $A\left(x^{*}\right)$, we say that the linear independence constraint qualification (LICQ) holds if the set of active constraint gradients $\left\{\nabla g_{i}\left(x^{*}\right) \mid i \in A\left(x^{*}\right)\right\}$ is linearly independent.

A Kuhn-Tucker Approach

- Idea: try all possible Kuhn-Tucker systems and pick best
- Let \mathcal{J} be the set $\{1,2, \cdots, \ell\}$.
- For a subset $\mathcal{P} \subset \mathcal{J}$, define the \mathcal{P} problem, corresponding to a combination of binding and nonbinding inequality constraints

$$
\begin{align*}
g(x) & =0 \\
h^{i}(x) & =0, \quad i \in \mathcal{P}, \\
\mu^{i} & =0, \quad i \in \mathcal{J}-\mathcal{P}, \tag{4.7.4}\\
f_{x}+\lambda^{\top} g_{x}+\mu^{\top} h_{x} & =0 .
\end{align*}
$$

- Solve (or attempt to do so) each \mathcal{P}-problem
- Choose the best solution among those \mathcal{P}-problems with solutions consistent with all constraints.
- We can do better in general.

Penalty Function Approach

- Many constrained optimization methods use a penalty function approach:
- Replace constrained problem with related unconstrained problem.
- Permit anything, but make it "painful" to violate constraints.
- Penalty function: for canonical problem

$$
\begin{array}{rl}
\min _{x} & f(x) \\
\text { s.t. } & g(x)=a \tag{4.7.5}\\
& h(x) \leq b
\end{array}
$$

construct the penalty function problem

$$
\begin{equation*}
\min _{x} f(x)+\frac{1}{2} P\left(\sum_{i}\left(g^{i}(x)-a_{i}\right)^{2}+\sum_{j}\left(\max \left[0, h^{j}(x)-b_{j}\right]\right)^{2}\right) \tag{4.7.6}
\end{equation*}
$$

where $P>0$ is the penalty parameter.

- Denote the penalized objective in (4.7.6) $F(x ; P, a, b)$.
- Include a and b as parameters of $F(x ; P, a, b)$.
- If P is "infinite," then (4.7.5) and (4.7.6) are identical.
- Hopefully, for large P, their solutions will be close.
- Problem: for large P, the Hessian of $F, F_{x x}$, is ill-conditioned at x away from the solution.
- Solution: solve a sequence of problems.
- Solve $\min _{x} F\left(x ; P_{1}, a, b\right)$ with a small choice of P_{1} to get x^{1}.
- Then execute the iteration

$$
\begin{equation*}
x^{k+1} \in \arg \min _{x} F\left(x ; P_{k+1}, a, b\right) \tag{4.7.7}
\end{equation*}
$$

where we use x^{k} as initial guess in iteration $k+1$, and $F_{x x}\left(x^{k} ; P_{k+1}, a, b\right)$ as the initial Hessian guess (which is hopefully not too ill-conditioned)

- Shadow prices in (4.7.5) and (4.7.7):
- Shadow price of a_{i} in (4.7.6) is $F_{a_{i}}=P\left(g^{i}(x)-a_{i}\right)$.
- Shadow price of b_{j} in (4.7.6) is $F_{b_{j}} ; P\left(h^{j}(x)-b_{j}\right)$ if binding, 0 otherwise.
- Theorem: Penalty method works with convergence of x and shadow prices as P_{k} diverges (under mild conditions)
- Simple example
- Consumer buys good y (price is 1) and good z (price is 2) with income 5 .
- Utility is $u(y, z)=\sqrt{y z}$.
- Optimal consumption problem is

$$
\begin{align*}
& \max _{y, z} \sqrt{y z} \tag{4.7.8}\\
& \text { s.t. } y+2 z \leq 5 .
\end{align*}
$$

with solution $\left(y^{*}, z^{*}\right)=(5 / 2,5 / 4), \lambda^{*}=8^{-1 / 2}$.

- Penalty function is

$$
u(y, z)-\frac{1}{2} P(\max [0, y+2 z-5])^{2}
$$

- Iterates are in Table 4.7 (stagnation due to finite precision)

Table 4.7

Penalty function method applied to (4.7.8)

k	P_{k}	$(y, z)-\left(y^{*}, z^{*}\right)$	Constraint violation	λ error
0	10	$(8.8(-3), .015)$	$1.0(-1)$	$-5.9(-3)$
1	10^{2}	$(8.8(-4), 1.5(-3))$	$1.0(-2)$	$-5.5(-4)$
2	10^{3}	$(5.5(-5), 1.7(-4))$	$1.0(-3)$	$2.1(-2)$
3	10^{4}	$(-2.5(-4), 1.7(-4))$	$1.0(-4)$	$1.7(-4)$
4	10^{5}	$(-2.8(-4), 1.7(-4))$	$1.0(-5)$	$2.3(-4)$

Sequential Quadratic Programming Method

- Special methods are available when we have a quadratic objective and linear constraints

$$
\begin{aligned}
& \min _{x}(x-a)^{\top} A(x-a) \\
& \text { s.t. } \quad b(x-s)=0 \\
& \quad c(x-q) \leq 0
\end{aligned}
$$

- Extensions of linear programming
- Excellent software includes CPLEX and GUROBI
- Sequential Quadratic Programming Method
- Solution is stationary point of Lagrangian

$$
\mathcal{L}(x, \lambda, \mu)=f(x)+\lambda^{\top} g(x)+\mu^{\top} h(x)
$$

- Suppose that the current guesses are $\left(x^{k}, \lambda^{k}, \mu^{k}\right)$.
- Let step size s^{k+1} solve approximating quadratic problem

$$
\begin{array}{ll}
\min _{s} & \mathcal{L}_{x}\left(x^{k}, \lambda^{k}, \mu^{k}\right)\left(x^{k}-s\right)+\left(x^{k}-s\right)^{\top} \mathcal{L}_{x x}\left(x^{k}, \lambda^{k}, \mu^{k}\right)\left(x^{k}-s\right) \\
\text { s.t. } & g\left(x^{k}\right)+g_{x}\left(x^{k}\right)\left(x^{k}-s\right)=0 \\
\quad h\left(x^{k}\right)+h_{x}\left(x^{k}\right)\left(x^{k}-s\right) \leq 0
\end{array}
$$

- The next iterate is $x^{k+1}=x^{k}+\phi s^{k+1}$ for some ϕ
* Could use linesearch to choose ϕ
* λ^{k} and μ^{k} are also updated but we do not describe the detail here.
- Proceed through a sequence of quadratic problems.
- SQP method inherits many properties of Newton's method
* rapid local convergence
* can use quasi-Newton to approximate Hessian.

Domain Problems

- Suppose $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}, g: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, h: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{\ell}$, and we want to solve

$$
\begin{align*}
& \min _{x} f(x) \\
& \text { s.t. } g(x) \tag{4.7.1}\\
&=0 \\
& h(x) \leq 0
\end{align*}
$$

- The penalty function approach produces an unconstrained problem

$$
\max _{x \in \mathbb{R}^{n}} F(x ; P, a, b)
$$

- Problem: $F(x ; P, a, b)$ may not be defined for all x.
- Example: Consumer demand problem

$$
\begin{aligned}
& \max _{y, z} u(y, z) \\
& \text { s.t. } p y+q z \leq I
\end{aligned}
$$

- Penalty method

$$
\max _{y, z} u(y, z)-\frac{1}{2} P(\max [0, p y+q z-I])^{2}
$$

- Problem: $u(y, z)$ will not be defined for all y and z, such as

$$
\begin{aligned}
& u(y, z)=\log y+\log z \\
& u(y, z)=y^{1 / 3} z^{1 / 4} \\
& u(y, z)=\left(y^{1 / 6}+z^{1 / 6}\right)^{7 / 2}
\end{aligned}
$$

- Penalty method may crash when computer tries to evaluate $u(y, z)$!
- Strategy 1: Transform variables
* If functions are defined only for $x_{i}>0$, then reformulate in terms of $z_{i}=\log x_{i}$
* For example, let $\widetilde{y}=\log y, \widetilde{z}=\log z$, and solve

$$
\max _{\widetilde{y}, \widetilde{z}} u\left(e^{\widetilde{y}}, e^{\widetilde{z}}\right)-\frac{1}{2} P\left(\max \left[0, p e^{\widetilde{y}}+q e^{\widetilde{z}}-I\right]\right)^{2}
$$

* Problem: log transformation may not preserve shape; e.g., concave function of x may not be concave in $\log x$
- Strategy 2: Alter objective and constraint functions so that they are defined everywhere (see discussion above)
- Strategy 3: Express the domain where functions are defined in terms of inequality constraints that are enforced by the algorithm at every step.
* E.g., if utility function is $\log (x)+\log (y)$, then add constraints $x \geq \delta, y \geq \delta$ for some very small $\delta>0$ (use, for example, $\delta \approx 10^{-6}$; don't use $\delta=0$ since roundoff error may still allow negative x or y)
* In general, you can avoid domain problems if you express the domain in terms of linear constraints.
* If the domain is defined by nonlinear functions, then create new variables that can describe the domain in linear terms.

Active Set Approach

- Problems:
- Kuhn-Tucker approach has too many combinations to check
* some choices of \mathcal{P} may have no solution
* there may be multiple local solutions to others.
- Sequential quadratic method can be slow if there are too many constraints.
- Penalty function methods are costly since all constraints are in (4.7.5), even if only a few bind at solution.
- Solution: refine K-T with a good sequence of subproblems, ignoring constraints that you think won't be active at the solution.
- Let \mathcal{J} be the set $\{1,2, \cdots, \ell\}$
- for $\mathcal{P} \subset \mathcal{J}$, define the \mathcal{P} problem

$$
\begin{gather*}
\min _{x} f(x) \\
\text { s.t. } g(x)=0, \quad(\mathcal{P}) \tag{4.7.10}\\
h^{i}(x) \leq 0, \quad i \in \mathcal{P} \text {. }
\end{gather*}
$$

- Choose an initial set of constraints, \mathcal{P}, and solve (4.7.10- \mathcal{P})If that solution satisfies all constraints, then you are done.
- Otherwise
* Add constraints which are violated by most recent guess
* Periodically drop constraints in \mathcal{P} which fail to bind
* Increase penalty parameters
* Repeat
- The simplex method for linear programing is really an active set method.

Interior-Point methods

- Consider

$$
\begin{array}{ll}
\min _{x \in \mathbb{R}^{n}} & c^{\top} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

where $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$, and A is an $m \times n$ matrix.

- Karush-Kuhn-Tucker conditions for this optimization problem are as follows.

$$
\begin{align*}
A^{\top} \lambda+s & =c \tag{2}\\
A x & =b \tag{3}\\
x_{i} s_{i} & =0, \quad i=1,2, \ldots, n \tag{4}\\
x & \geq 0 \tag{5}\\
s & \geq 0 \tag{6}
\end{align*}
$$

- Interior-point methods solve a sequence of perturbed problems.
- Consider the following perturbation of the KKT conditions.

$$
\begin{align*}
A^{\top} \lambda+s & =c \tag{7}\\
A x & =b \tag{8}\\
x_{i} s_{i} & =\mu, \quad i=1,2, \ldots, n \tag{9}\\
x & >0 \tag{10}\\
s & >0 \tag{11}
\end{align*}
$$

- The complementarity condition (4) is replaced by (9) for some positive scalar $\mu>0$.
- Assuming that a solution $\left(x^{(0)}, \lambda^{(0)}, s^{(0)}\right)$ to this system is given for some initial value of $\mu^{(0)}>0$, interior-point methods decrease the parameter μ and thereby generate a sequence of points $\left(x^{(k)}, \lambda^{(k)}, s^{(k)}\right)$ that satisfy the non-negativity constraints on the variables strictly, $x^{(k)}>0$ and $s^{(k)}>0$.
- As μ is decreased to zero, a point satisfying the original first-order conditions is reached.
- The set of solutions to the perturbed system,

$$
C=\{x(\mu), \lambda(\mu), s(\mu) \mid \mu>0\}
$$

is called the central path.

- Implementations must handle many details
- It is often difficult to find a feasible starting point $\left(x^{(0)}, \lambda^{(0)}, s^{(0)}\right)$ of the perturbed system.
- Good initial guesses generally do not work! IPOPT will use good initial guesses.
- We need to solve (7) - (9) in each iteration and maintain 10 and 11.
- Newton's method can be used but better is to use path-following to maintain the inequalities.

The Logarithmic Barrier Method

- Consider

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x) \\
& \text { s.t. } g_{i}(x) \geq 0 \quad i \in I
\end{aligned}
$$

- Combine the objective function and constraints to define a penalty function

$$
P(x ; \mu)=f(x)-\mu \sum_{i \in I} \ln g_{i}(x)
$$

$-\mu>0$ is called the barrier parameter
$-\sum_{i \in I} \ln g_{i}(x)$ is called a logarithmic barrier function.

- Each $-\ln g_{i}(x)$ term tends to infinity as x approaches the boundary of $g_{i}(x) \geq 0$ from the interior of the feasible region.
- As μ converges to zero, the optimal solution $x^{*}(\mu)$ path of $\min _{x \in \mathbb{R}^{n}} P(x ; \mu)$ converges to the optimal solution of the original problem.
- First-order conditions are

$$
\nabla_{x} P(x ; \mu)=\nabla f(x)-\sum_{i \in I} \frac{\mu}{g_{i}(x)} \nabla g_{i}(x)=0
$$

- Now define for all $i \in I$

$$
\nu_{i}(\mu):=\frac{\mu}{g_{i}(x)} .
$$

- Note that since $\mu>0$ by definition we have that $\nu_{i}(\mu)>0$.
- Thus, at a stationary point of the penalty function the following conditions hold.

$$
\begin{aligned}
\nabla f(x)-\sum_{i \in I} \nu_{i} \nabla g_{i}(x)=0 & \\
g_{i}(x)-s_{i}=0 & \text { for all } i \in I \\
\nu_{i} s_{i}=\mu & \text { for all } i \in I \\
\nu_{i}>0 & \text { for all } i \in I \\
s_{i}>0 & \text { for all } i \in I
\end{aligned}
$$

