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Optimization Problems

• Canonical problem:
minxf (x)

s.t. g(x) = 0,

h(x) ≤ 0,

– f : Rn → R is the objective function

– g : Rn → Rm is the vector of m equality constraints

– h : Rn → R` is the vector of ` inequality constraints.

• Examples:

– Maximization of consumer utility subject to a budget constraint

– Optimal incentive contracts

– Portfolio optimization

– Life-cycle consumption

• Assumptions

– Always assume f, g, and h are continuous

– Usually assume f , g, and h are C1

– Often assume f , g, and h are C3
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Linear Programming

• Canonical linear programming problem is

minxa
>x

s.t.Cx = b,

x ≥ 0.

(1)

– Dx ≤ f : use slack variables, s, and constraints Dx + s = f, s ≥ 0.

– Dx ≥ f : use Dx− s = f, s ≥ 0, s is vector of surplus variables.

– x ≥ d : define y = x− d and min over y

– xi free: define xi = yi − zi, add constraints yi, zi ≥ 0, and min over (yi, zi).
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• Basic method is the simplex method. Figure 4.4 shows example:

minx,y −2x− y
s.t. x + y ≤ 4, x, y ≥ 0,

x ≤ 3, y ≤ 2.

– Find some point on boundary of constraints, such as A.

– Step 1: Note which constraints are active at A and points nearby.

– Find feasible directions and choose steepest descent direction.

– Figure 4.4 has two directions: from A: to B and to O, with B better.

– Follow that direction to next vertex on boundary, and go back to step 1.

– Continue until no direction reduces the objective: point H .

– Stops in finite time since there are only a finite set of vertices.
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• General History

– Goes back to Dantzig (1951). (The real Good Will Hunting.)

– Worst case time is exponential in number of variables and constraints

– Fast on average – time is degree four polynomial in problem size

– Software implementations vary in numerical stability

• Best software: CPLEX and GUROBI
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Constrained Nonlinear Optimization
General problem:

minxf (x)

s.t. g(x) = 0

h(x) ≤ 0

(4.7.1)

• f : X ⊆ Rn → R: objective function with n choices

– g : X ⊆ Rn → Rm: m equality constraints

– h : X ⊆ Rn → R`: ` inequality constraints

– f, g, and h are C2 on X

• Linear Independence Constraint Qualification (LICQ):

– The set of constraints that hold with equality at a feasible point x ∈ X is called the

active set A(x). Formally,

A(x) = {i ∈ I | gi(x) = 0} ∪ E.

– The linear independence constraint qualification (LICQ) holds at a point x ∈ X if

the gradients of all active constraints are linearly independent.
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• Karush-Kuhn-Tucker (KKT) theorem: if there is a local minimum at x∗ then there are

multipliers λ∗ ∈ Rm and µ∗ ∈ R` such that x∗ is a stationary, or critical, point of L,

the Lagrangian,

L(x, λ, µ) = f (x) + λ>g(x) + µ>h(x) (4.7.2)

• First-order conditions, Lx(x∗, λ∗, µ∗) = 0, imply that (λ∗, µ∗, x∗) solves

fx + λ>gx+µ>hx = 0

µih
i(x)= 0 , i = 1, · · · , `
g(x)= 0

h(x)≤ 0

µ≥ 0

(4.7.3)

• If LICQ holds then the multipliers are unique; otherwise, they are called “unbounded”.
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• The KKT conditions are

∇xL(x∗, λ∗) = 0 i.e.∇f (x∗) =
∑
i∈E∪I

λ∗i∇gi(x∗)

gi(x
∗) = 0,∀i ∈ E

gi(x
∗) ≥ 0,∀i ∈ I
λ∗i ≥ 0,∀i ∈ I

λ∗i gi(x
∗) = 0,∀i ∈ E ∪ I

• At a solution, x, all equality constraints must hold.

• Some inequality constraints will be active, that is, equal zero. For each solution x, define

the active set of constraints

A(x) = E ∪ {i ∈ I|gi(x) = 0}

• Given x∗ and A(x∗), we say that the linear independence constraint qualification (LICQ)

holds if the set of active constraint gradients {∇gi(x∗)|i ∈ A(x∗)} is linearly independent.
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A Kuhn-Tucker Approach

• Idea: try all possible Kuhn-Tucker systems and pick best

– Let J be the set {1, 2, · · · , `}.

– For a subset P ⊂ J , define the P problem, corresponding to a combination of

binding and nonbinding inequality constraints

g(x)= 0

hi(x)= 0 , i ∈ P ,

µi= 0 , i ∈ J − P ,

fx + λ>gx + µ>hx= 0.

(4.7.4)

– Solve (or attempt to do so) each P-problem

– Choose the best solution among those P-problems with solutions consistent with all

constraints.

• We can do better in general.
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Penalty Function Approach

• Many constrained optimization methods use a penalty function approach:

– Replace constrained problem with related unconstrained problem.

– Permit anything, but make it “painful” to violate constraints.

• Penalty function: for canonical problem

minx f (x)

s.t. g(x) = a,

h(x) ≤ b.

(4.7.5)

construct the penalty function problem

min
x

f (x) +
1

2
P

∑
i

(
gi(x)− ai

)2
+
∑
j

(
max

[
0, hj(x)− bj

])2 (4.7.6)

where P > 0 is the penalty parameter.

– Denote the penalized objective in (4.7.6) F (x;P, a, b).

– Include a and b as parameters of F (x;P, a, b).

– If P is “infinite,” then (4.7.5) and (4.7.6) are identical.

– Hopefully, for large P , their solutions will be close.
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• Problem: for large P , the Hessian of F , Fxx, is ill-conditioned at x away from the solution.

• Solution: solve a sequence of problems.

– Solve minx F (x;P1, a, b) with a small choice of P1 to get x1.

– Then execute the iteration

xk+1 ∈ arg min
x

F (x;Pk+1, a, b) (4.7.7)

where we use xk as initial guess in iteration k + 1, and Fxx(x
k;Pk+1, a, b) as the

initial Hessian guess (which is hopefully not too ill-conditioned)

• Shadow prices in (4.7.5) and (4.7.7):

– Shadow price of ai in (4.7.6) is Fai = P (gi(x)− ai).

– Shadow price of bj in (4.7.6) is Fbj ; P (hj(x)− bj) if binding, 0 otherwise.

• Theorem: Penalty method works with convergence of x and shadow prices as Pk diverges

(under mild conditions)
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• Simple example

– Consumer buys good y (price is 1) and good z (price is 2) with income 5.

– Utility is u(y, z) =
√
yz.

– Optimal consumption problem is

maxy,z
√
yz

s.t. y + 2z ≤ 5.
(4.7.8)

with solution (y∗, z∗) = (5/2, 5/4), λ∗ = 8−1/2.

– Penalty function is

u(y, z)− 1

2
P (max[0, y + 2z − 5])2

– Iterates are in Table 4.7 (stagnation due to finite precision)

Table 4.7

Penalty function method applied to (4.7.8)

k Pk (y, z)− (y∗, z∗) Constraint violation λ error

0 10 (8.8(-3), .015) 1.0(−1) −5.9(−3)

1 102 (8.8(−4), 1.5(−3)) 1.0(−2) −5.5(−4)

2 103 (5.5(−5), 1.7(−4)) 1.0(−3) 2.1(−2)

3 104 (−2.5(−4), 1.7(−4)) 1.0(−4) 1.7(−4)

4 105 (−2.8(−4), 1.7(−4)) 1.0(−5) 2.3(−4)



13

Sequential Quadratic Programming Method

• Special methods are available when we have a quadratic objective and linear constraints

minx (x− a)>A (x− a)

s.t. b (x− s) = 0

c (x− q) ≤ 0

• Extensions of linear programming

• Excellent software includes CPLEX and GUROBI
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• Sequential Quadratic Programming Method

– Solution is stationary point of Lagrangian

L(x, λ, µ) = f (x) + λ>g(x) + µ>h(x)

– Suppose that the current guesses are (xk, λk, µk).

– Let step size sk+1 solve approximating quadratic problem

minsLx(xk, λk, µk)(xk − s) + (xk − s)>Lxx(xk, λk, µk)(xk − s)
s.t. g(xk) + gx(x

k)(xk − s) = 0

h(xk) + hx(x
k)(xk − s) ≤ 0

– The next iterate is xk+1 = xk + φsk+1 for some φ

∗ Could use linesearch to choose φ

∗ λk and µk are also updated but we do not describe the detail here.

– Proceed through a sequence of quadratic problems.

– SQP method inherits many properties of Newton’s method

∗ rapid local convergence

∗ can use quasi-Newton to approximate Hessian.
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Domain Problems

• Suppose f : X ⊆ Rn → R, g : X ⊆ Rn → Rm, h : X ⊆ Rn → R`, and we want to

solve
minxf (x)

s.t. g(x) = 0

h(x) ≤ 0

(4.7.1)

• The penalty function approach produces an unconstrained problem

max
x∈Rn

F (x;P, a, b)

• Problem: F (x;P, a, b) may not be defined for all x.

• Example: Consumer demand problem

maxy,z u(y, z)

s.t. p y + q z ≤ I.

– Penalty method

max
y,z

u(y, z)− 1

2
P (max[0, p y + q z − I ])2
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– Problem: u (y, z) will not be defined for all y and z, such as

u(y, z) = log y + log z

u(y, z) = y1/3z1/4

u(y, z) =
(
y1/6 + z1/6

)7/2
– Penalty method may crash when computer tries to evaluate u (y, z)!
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• Solutions

– Strategy 1: Transform variables

∗ If functions are defined only for xi > 0, then reformulate in terms of zi = log xi

∗ For example, let ỹ = log y, z̃ = log z, and solve

max
ỹ,z̃

u(eỹ, ez̃)− 1

2
P (max[0, p eỹ + q ez̃ − I ])2

∗ Problem: log transformation may not preserve shape; e.g., concave function of

x may not be concave in log x

– Strategy 2: Alter objective and constraint functions so that they are defined every-

where (see discussion above)

– Strategy 3: Express the domain where functions are defined in terms of inequality

constraints that are enforced by the algorithm at every step.

∗ E.g., if utility function is log (x) + log (y), then add constraints x ≥ δ, y ≥ δ

for some very small δ > 0 (use, for example, δ ≈ 10−6; don’t use δ = 0 since

roundoff error may still allow negative x or y)

∗ In general, you can avoid domain problems if you express the domain in terms

of linear constraints.

∗ If the domain is defined by nonlinear functions, then create new variables that

can describe the domain in linear terms.
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Active Set Approach

• Problems:

– Kuhn-Tucker approach has too many combinations to check

∗ some choices of P may have no solution

∗ there may be multiple local solutions to others.

– Sequential quadratic method can be slow if there are too many constraints.

– Penalty function methods are costly since all constraints are in (4.7.5), even if only

a few bind at solution.
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• Solution: refine K-T with a good sequence of subproblems, ignoring constraints that you

think won’t be active at the solution.

– Let J be the set {1, 2, · · · , `}

– for P ⊂ J , define the P problem

minxf (x)

s.t. g(x) = 0,

hi(x) ≤ 0, i ∈ P .

(P) (4.7.10)

– Choose an initial set of constraints, P , and solve (4.7.10-P)If that solution satisfies

all constraints, then you are done.

– Otherwise

∗ Add constraints which are violated by most recent guess

∗ Periodically drop constraints in P which fail to bind

∗ Increase penalty parameters

∗ Repeat

• The simplex method for linear programing is really an active set method.
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Interior-Point methods

• Consider

min
x∈Rn

c>x

s.t. Ax = b

x ≥ 0

where c ∈ Rn, b ∈ Rm, and A is an m× n matrix.

• Karush-Kuhn-Tucker conditions for this optimization problem are as follows.

A>λ + s= c (2)

Ax= b (3)

xisi = 0, i = 1, 2, . . . , n (4)

x≥0 (5)

s≥0 (6)
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• Interior-point methods solve a sequence of perturbed problems.

– Consider the following perturbation of the KKT conditions.

A>λ + s= c (7)

Ax= b (8)

xisi=µ, i = 1, 2, . . . , n (9)

x>0 (10)

s>0 (11)

– The complementarity condition (4) is replaced by (9) for some positive scalar µ > 0.

– Assuming that a solution (x(0), λ(0), s(0)) to this system is given for some initial value

of µ(0) > 0, interior-point methods decrease the parameter µ and thereby generate

a sequence of points (x(k), λ(k), s(k)) that satisfy the non-negativity constraints on

the variables strictly, x(k) > 0 and s(k) > 0.

– As µ is decreased to zero, a point satisfying the original first-order conditions is

reached.

– The set of solutions to the perturbed system,

C = {x(µ), λ(µ), s(µ) | µ > 0}

is called the central path.

• Implementations must handle many details
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– It is often difficult to find a feasible starting point (x(0), λ(0), s(0)) of the perturbed

system.

– Good initial guesses generally do not work! IPOPT will use good initial guesses.

– We need to solve (7) – (9) in each iteration and maintain 10 and 11.

– Newton’s method can be used but better is to use path-following to maintain the

inequalities.
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The Logarithmic Barrier Method

• Consider

min
x∈Rn

f (x)

s.t. gi(x) ≥ 0 i ∈ I

• Combine the objective function and constraints to define a penalty function

P (x;µ) = f (x)− µ
∑
i∈I

ln gi(x),

– µ > 0 is called the barrier parameter

–
∑

i∈I ln gi(x) is called a logarithmic barrier function.

– Each − ln gi(x) term tends to infinity as x approaches the boundary of gi(x) ≥ 0

from the interior of the feasible region.

– As µ converges to zero, the optimal solution x∗(µ) path of minx∈Rn P (x;µ) converges

to the optimal solution of the original problem.
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• First-order conditions are

∇xP (x;µ) = ∇f (x)−
∑
i∈I

µ

gi(x)
∇gi(x) = 0.

• Now define for all i ∈ I
νi(µ) :=

µ

gi(x)
.

– Note that since µ > 0 by definition we have that νi(µ) > 0.

– Thus, at a stationary point of the penalty function the following conditions hold.

∇f (x)−
∑
i∈I

νi∇gi(x) = 0

gi(x)− si= 0 for all i ∈ I
νisi=µ for all i ∈ I
νi>0 for all i ∈ I
si>0 for all i ∈ I




