Numerical Methods in Economics MIT Press, 1998

Notes for nonlinear equations

March 2, 2020

Nonlinear Equations

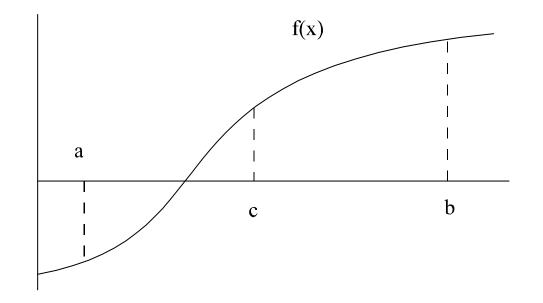
- Two forms of equations: zeros and fixed points of $f: \mathbb{R}^n \to \mathbb{R}^n$
 - A zero of f is any x such that f(x) = 0
 - A fixed point of f is any x such that f(x) = x.
 - Note: x is a fixed point of f(x) iff it is a zero of f(x) x.
- Existence of solutions is examined in Brouwer's theorem and its extensions.

• Examples

- Arrow-Debreu general equilibrium: find a price at which excess demand is zero
- Nash equilibrium of games with continuous strategies
- Transition paths of deterministic dynamic systems
- Approximate policy functions in nonlinear dynamic problems

One-Dimensional Problems: Bisection

- Suppose that f(a) < 0 < f(b)
- Step 1: Pick a point $c \in (a, b)$
 - If f(c) = 0, stop - If f(c) < 0, reduce interval to (c, b)- If f(c) > 0, reduce interval to (a, c)



One-Dimensional Problems: Newton's Method

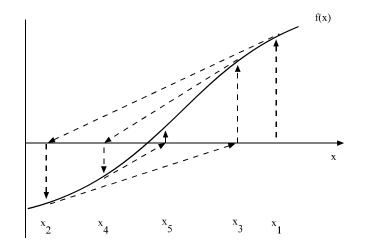
• Given guess x_k , compute linear approximation

$$f(x) \doteq f(x_k) + f'(x_k)(x - x_k)$$

and let x_{k+1} be zero of linear approximation:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
(5.2.1)

• Graph of Newton's method:



• Convergence: Suppose f is C^2 and $f(x^*) = 0$. If x_0 is close to x^* , $f'(x^*) \neq 0$, and $|f''(x^*)/f'(x^*)| < \infty$, then (5.2.1) converges to x^* quadratically; that is,

$$\limsup_{k \to \infty} \quad \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \frac{1}{2} \frac{|f''(x^*)|}{|f'(x^*)|} < \infty .$$
(5.2.2)

Pathological Examples

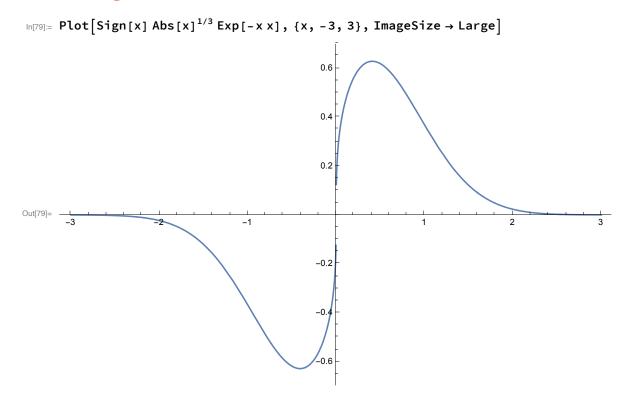
- Newton's method works well when it works, but it can fail.
- Example: $f(x) = x^{1/3}e^{-x^2}$.
 - Unique zero of f is at x = 0.
 - Newton's method is

$$x_{n+1} = x_n \left(1 - \frac{3}{1 - 6x_n^2} \right) \tag{5.2.4}$$

which has two pathologies.

- * For x_n small, (5.2.4) reduces to $x_{n+1} = -2x_n$; hence, (5.2.4) converges to 0 only if $x_0 = 0$ is the initial guess.
- * For x_n large, (5.2.4) becomes $x_{n+1} = x_n(1 + \frac{2}{x_n^2})$, which diverges, but will eventually satisfy stopping rule at some large x_n .
- Divergence due to $f''(0)/f'(0) = \infty$
- "Convergence" arises because e^{-x^2} factor squashes f at large x; in some sense, since $f(\pm \infty) = 0$.

Pathological example of Newton's method

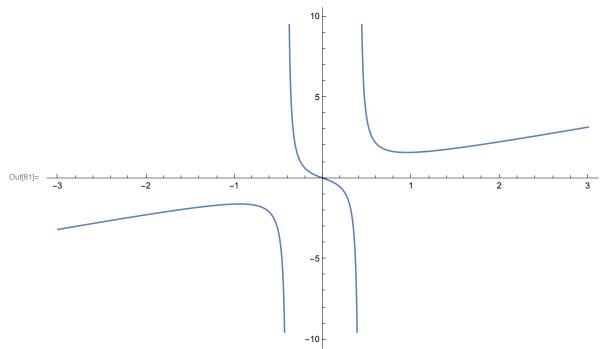


Define the Newton iteration function.

In[80]:= fiter [x_] = x $(1 - (3 / (1 - 6 x^{2})))$ Out[80]= x $\left(1 - \frac{3}{1 - 6 x^{2}}\right)$

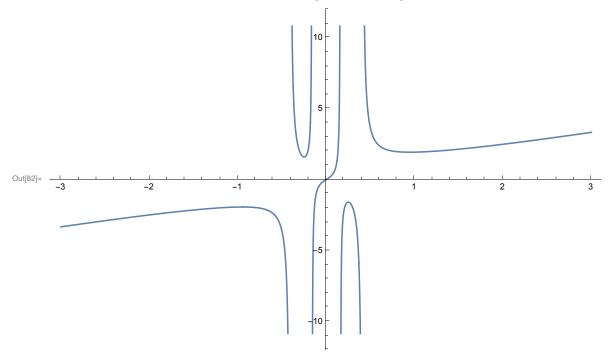
Plot one iteration

 $In[81]:= Plot[fiter[x], \{x, -3, 3\}, ImageSize \rightarrow Large]$



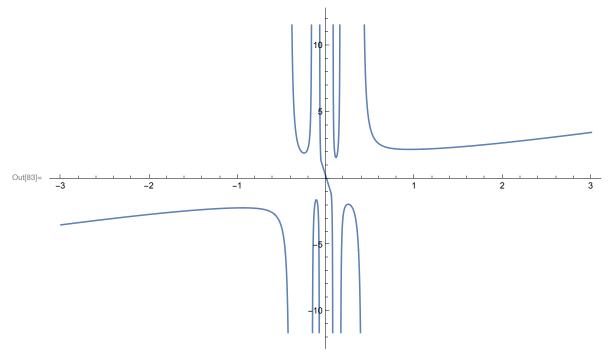
Plot two iterations

In[82]:= Plot[fiter[fiter[x]], {x, -3, 3}, ImageSize \rightarrow Large]

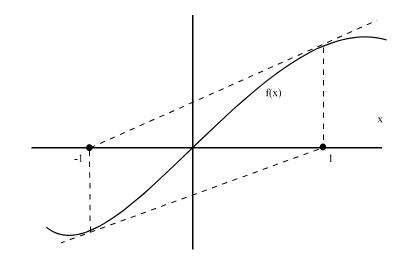


Plot three iterations

 $In[83]:= Plot[fiter[fiter[x]]], \{x, -3, 3\}, ImageSize \rightarrow Large]$



• Example: convergence to a cycle:



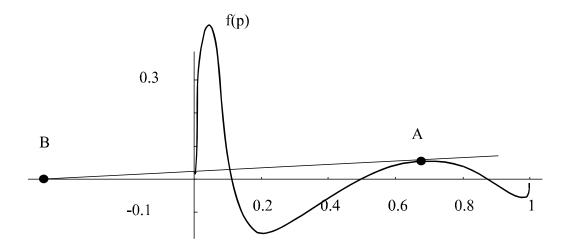
A General Equilibrium Example

• Demand function is

$$\frac{d_{j}^{i}(p) = \theta_{j}^{i} I^{i} p_{j}^{-\eta_{i}}}{\theta_{j}^{i} \equiv (a_{j}^{i})^{\eta_{i}}} / \sum_{\ell=1}^{2} (a_{\ell}^{i})^{\eta_{i}} p_{\ell}^{(1-\eta_{i})}$$

- Three equilibria: (0.5, 0.5), (0.1129, 0.8871), (0.8871, 0.1129).
- Reduce to a one-variable problem by $p_2 = 1 p_1$, producing

$$f(p_1) \equiv \sum_{i=1}^{2} d_1^i(p_1, 1 - p_1) - \sum_{i=1}^{2} e_1^i = 0$$
(5.2.6)



• Notice: Newton's method may send p negative.

Secant Method

- Problem: f'(x) may be costly.
- Solution: secant method approximates $f'(x_k)$ with secant of f between x_k and x_{k-1} :

$$x_{k+1} = x_k - \frac{f(x_k) \left(x_k - x_{k-1}\right)}{f(x_k) - f(x_{k-1})}$$
(5.3.1)

• Convergence: If $f(x^*) = 0$, $f'(x^*) \neq 0$, and f''(x) is continuous near x^* , then (5.3.1) converges at rate $(1 + \sqrt{5})/2$, that is

$$\limsup_{k \to \infty} \quad \frac{|x_{k+1} - x^*|}{|x_k - x^*|^{(1+\sqrt{5})/2}} < \infty$$
(5.3.3)

Multivariate Equations: Gauss-Jacobi Algorithm

• Suppose $f: \mathbb{R}^n \to \mathbb{R}^n$, and we want to solve f(x) = 0:

$$f^{1}(x_{1}, x_{2}, \cdots, x_{n}) = 0,$$

:

$$f^{n}(x_{1}, x_{2}, \cdots, x_{n}) = 0.$$
(5.4.1)

- Gauss-Jacobi method.
 - Given kth iterate, x^k , use equation i to compute x_i^{k+1} :

$$f^{1}(x_{1}^{k+1}, x_{2}^{k}, x_{3}^{k}, \cdots, x_{n}^{k}) = 0,$$

$$f^{2}(x_{1}^{k}, x_{2}^{k+1}, x_{3}^{k}, \cdots, x_{n}^{k}) = 0,$$

$$\vdots$$

$$f^{n}(x_{1}^{k}, x_{2}^{k}, \cdots, x_{n-1}^{k}, x_{n}^{k+1}) = 0.$$
(5.4.2)

- Gauss-Jacobi repeatedly solves n equations in one unknown.
- Gauss-Jacobi is affected by the indexing scheme.
 - \ast Otherwise, there are n(n-1)/2 different Gauss-Jacobi schemes.
 - * Sometimes there is a natural scheme implying diagonal dominance (or, gross substitutes)
 - * Strategy: choose indexing which makes Jacobian nearly diagonal

Multivariate Equations: Gauss-Seidel Algorithm

- Gauss-Jacobi: use new guess of x_i , x_i^{k+1} , only after we have computed the entire vector of new values, x^{k+1} .
- Gauss-Seidel: use new guess, x_i^{k+1} , as soon as it is available.
- Formal definition: construct x^{k+1} componentwise by solving

$$\begin{aligned}
f^{1}(x_{1}^{k+1}, x_{2}^{k}, x_{3}^{k}, \cdots, x_{n}^{k}) &= 0, \\
f^{2}(x_{1}^{k+1}, x_{2}^{k+1}, x_{3}^{k}, \cdots, x_{n}^{k}) &= 0, \\
&\vdots \\
f^{n-1}(x_{1}^{k+1}, \cdots, x_{n-2}^{k+1}, x_{n-1}^{k+1}, x_{n}^{k}) &= 0, \\
f^{n}(x_{1}^{k+1}, \cdots, x_{n-2}^{k+1}, x_{n-1}^{k+1}, x_{n}^{k}) &= 0.
\end{aligned}$$
(5.4.4)

- Both indexing and ordering matter in GS.
 - Back-substitution on triangular system is GS
 - Strategy: choose indexing and ordering which makes Jacobian nearly triangular

. .

- Features of Gaussian methods:
 - Each step in GJ or GS is a nonlinear equation
 - * Usually solved by some iterative method.
 - * Economize on effort at each iteration with loose stopping rule.
 - Can apply extrapolation and acceleration methods
 - Can apply ideas at block level "block GJ, block GS"
 - * Find groups of variables and orderings such that Jacobian is nearly block diagonal or block triangular.
 - * Example: in {apples, oranges, cheddar cheese, swiss cheese} problem, put cheeses in one block, fruit in the other, and use Newton to solve blocks
 - Convergence is at best linear
 - \ast Discussion of convergence in chapter 3 applies here.
 - * Key fact: for any $x^{k+1} = G(x^k)$ the spectral radius of $G_x(x^*)$ is asymptotic linear rate of convergence.

Fixed-Point Iteration

• The simplest iterative method for solving x = f(x) is

$$x^{k+1} = f(x^k) (5.4.8)$$

called fixed-point iteration; also known as *successive approximation*, *successive substitution*, or *function iteration*.

. .

• Method is sensitive to transformations: Consider

$$x^3 - x - 1 = 0 \tag{5.3.3}$$

– Rewrite as $x = (x+1)^{1/3}$; then the iteration

$$x_{k+1} = (x_k + 1)^{1/3}.$$
(5.3.4)

converges to a solution of (5.3.3) if $x_0 = 1$.

- Rewrite (5.3.3) as $x = x^3 - 1$; then the iteration

$$x_{k+1} = x_k^3 - 1 \tag{5.3.5}$$

diverges to $-\infty$ if $x_0 = 1$.

- Naive implementations of the fixed-point iteration approach often fail.
- However, most algorithms have the form $x_{k+1} = f(x_k)$.
- Aim: construct fixed-point iteration which works.

Contraction Mapping Case of Function Iteration

- For a special class of functions, fixed-point iteration will work well.
- A differentiable contraction map on D is any $C^1 f : D \to R^n$ defined on a closed, bounded, convex set $D \subset R^n$ such that
 - $-f(D) \subset D$, and
 - $-\max_{x\in D} \parallel J(x) \parallel_{\infty} < 1, J(x)$ is Jacobian of f.
- (Contraction mapping theorem) If f is a differentiable contraction map on D, then
 - -x = f(x) has a unique solution, $x^* \in D$; $-x^{k+1} = f(x^k)$ converges to x^* ; and
 - there is a sequence $\epsilon_k \to 0$ such that

$$\| x^* - x^{k+1} \|_{\infty} \le (\| J(x^*) \|_{\infty} + \epsilon_k) \| x^* - x^k \|_{\infty}$$

• If $f(x^*) = x^*$, f is Lipschitz at x^* , and $\rho(J(x^*)) < 1$, then for x^0 close to x^* , $x^{k+1} = f(x^k)$ is convergent.

. ~

Stopping Rule Problems for Multivariate Systems

- Use ideas from chapter 1
- First, use a rule for stopping.
 - If we want $||x^k x^*|| < \epsilon$, we continue until $||x^{k+1} x^k|| \le (1 \beta)\epsilon$ where $\beta = \rho(G_x(x^*))$.
 - Sometimes we know β , as with some contraction mappings
 - Otherwise, estimate β with

$$\hat{\beta} = \left(\frac{\|x^k - x^{k+1}\|}{\|x^{k-L} - x^{k+1}\|}\right)^{1/L}$$

for some L.

- Second, check that $f(x^k)$ is close to zero.
 - Require that $|| f(x^k) || \leq \delta$ for some small δ .
 - You should have each component of f small
 - Be careful about units; check should be unit-free
- δ and ϵ should not be less than square root of error in computing f.

Newton's Method for Multivariate Equations

- Sequential linear approximations:
 - Replace f with a linear approximation at x^k
 - Solve linear approximation for x^{k+1}
- Formally:
 - Newton approx around x^k is $f(x) \doteq f(x^k) + J(x^k)(x x^k)$.
 - Zero of approx is

$$x^{k+1} = x^k - J(x^k)^{-1} f(x^k)$$
(5.5.1)

• Convergence: If $f(x^*) = 0$, $det(J(x^*)) \neq 0$ and J(x) is Lipschitz near x^* , then for x^0 near x^* , the sequence defined by (5.5.1) satisfies

$$\lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|^2} < \infty$$
(5.5.2)

- Problems with Newton method
 - Jacobian, J(x), may be expensive to compute (but not if you use automatic differentiation)
 - May not converge
 - Should really be called the Newton-Raphson-Fourier-Simpson method
- Solutions
 - Broyden approximates J(x)
 - Powell hybrid improves likelihood of convergence.
 - Homotopy methods will converge

Secant Method (Broyden)

- Jacobian, J(x), is costly to compute
 - Analytic expressions are difficult to compute
 - Finite-difference approximations require n^2 evaluations of f.
- In R, we used the secant; can we do this for R^n ?
- Broyden method
 - Start with initial Jacobian guess, A_0
 - Use A_k to compute the Newton step, s^k : $A_k s^k = -f(x^k)$
 - $\text{Set } x^{k+1} = x^k + s^k.$
 - Choose A_{k+1} to be
 - * close to A_k
 - * consistent with secant equation $f(x^{k+1}) f(x^k) = A_{k+1}s^k$
 - * for any direction q orthogonal to s^k , want $A_{k+1}q = A_kq$, i.e., no change in directions orthogonal to Newton step

– Broyden update is

$$\begin{split} A_{k+1} \! = \! A_k + & \frac{(y_k - A_k s^k) (s^k)^\top}{(s^k)^\top s^k} \\ y_k \! \equiv \! f(x^{k+1}) - f(x^k) \end{split}$$

- Stop iteration when $f(x^k)$ is close to zero, or when s^k is small.
- Convergence: There exists $\epsilon > 0$ such that if $||x^0 x^*|| < \epsilon$ and $||A_0 J(x^*)|| < \epsilon$, then the Broyden method converges superlinearly.
- Key properties of Broyden versus Newton
 - * Convergence asserted only x^k , not A_k
 - * Need good initial guess for A_0
 - \ast Each iteration of the Broyden method is cheap to compute
 - * Broyden method will need more iterations than Newton's method.
 - * For large systems, Broyden dominates

Use Least Squares To Improve Chances of Convergence

- Nonlinear Equations as an optimization problem
 - Any solution to f(x) = 0 is a global solution of

$$0 = \min_{x} \sum_{i=1}^{n} f^{i}(x)^{2} \equiv SSR(x)$$
(5.6.1)

- Benefits of (5.6.1)
 - * Can use optimization procedures
 - * Will always converge to something
 - * May give a good initial guess for any solver
- Problems with (5.6.1):
 - * Hessian is generally ill-conditioned; roughly equals the square of the condition number of $J\left(x\right)$
 - * (5.6.1) may have many local minima
- Powell's Hybrid Method
 - Do Newton, except check if Newton step reduces the value of $SSR\left(x\right)$
 - If not, then switch to least squares
 - Powell (1970) implemented procedure which avoids some conditioning problems of naive scheme.