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Nonlinear Equations

e T'wo forms of equations: zeros and fixed points of f : R" — R"

— A zero of f is any x such that f(x) =0
— A fized point of f is any x such that f(x) = z.
— Note: x is a fixed point of f(z) iff it is a zero of f(z) — .

e [xistence of solutions is examined in Brouwer’s theorem and its extensions.

e Examples

— Arrow-Debreu general equilibrium: find a price at which excess demand is zero
— Nash equilibrium of games with continuous strategies
— Transition paths of deterministic dynamic systems

— Approximate policy functions in nonlinear dynamic problems



One-Dimensional Problems: Bisection
e Suppose that f(a) <0 < f (D)
e Step 1: Pick a point ¢ € (a, b)

—1If f(c) =0, stop
—1If f(¢) <0, reduce interval to (c, )
—If f (¢) > 0, reduce interval to (a, c)

e Repeat

f(x)




One-Dimensional Problems: Newton’s Method

e Given guess x;, compute linear approximation

f @)= f (@) + [ (z) (x — xn)

and let x;,1 be zero of linear approximation:

(5.2.1)

e Graph of Newton’s method:

f(x)

e Convergence: Suppose f is C? and f(z*) = 0. If zg is close to z*, f'(x*) # 0, and | f"(z*)/ f'(z*))] <
00, then (5.2.1) converges to z* quadratically; that is,

i —a| 1 |f" ()

<00 . (5.2.2)



Pathological Examples

e Newton’s method works well when it works, but it can fail.

1/3,—22

e Example: f(x)=x"""¢

— Unique zero of f is at x = 0.

— Newton’s method is

Toi1 = Tn (1 ’ ) (5.2.4)

1 —6a2
which has two pathologies.
* For x,, small, (5.2.4) reduces to x,.1 = —2x,; hence, (5.2.4) converges to 0 only if zo = 0 is
the initial guess.

+ For x,, large, (5.2.4) becomes x,41 = ,,(1 + =), which diverges, but will eventually satisfy

n

stopping rule at some large z,,.
— Divergence due to f”(0)/f(0) = oo

. _ 2 . .
— “Convergence” arises because e”* factor squashes f at large z; in some sense, since f(+o00) = 0.



Pathological example of Newton’s method

no- Plot[Sign[x] Abs[x]'/® Exp[-x x], {X, -3, 3}, ImageSize » Large]

out[79]= IS
3




2 | Pathological Newton Example.nb

Define the Newton iteration function.

noj= fiter[x_] = x (1— (3/ (1—6X2)))

3
1-

out[so]= X

1-6x2
Plot one iteration

nsi= Plot[fiter[x], {x, -3, 3}, ImageSize -» Large]

10+
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Pathological Newton Example.nb | 3

Plot two iterations

ne2= Plot[fiter[fiter[x]], {x, -3, 3}, ImageSize -» Large]
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out[82]= | PR [ P T P . P P L L
-3 -2 -1 1 2 3

L5+




4 | Pathological Newton Example.nb

Plot three iterations

nes= Plot[fiter[fiter[fiter[x]]], {x, -3, 3}, ImageSize -» Large]

Out[83]= L PR L L P B R— - L L L - L
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e Example:

convergence to a cycle:




A General Equilibrium Example

e Demand function is

Z mp 1—n;)

e Three equilibria:. (0.5, 0.5), (0.1129, 0.8871), (0.8871, 0.1129).

e Reduce to a one-variable problem by p, = 1 — p;, producing

(5.2.6)

e Notice: Newton’s method may send p negative.



Secant Method

e Problem: f’(x) may be costly.

e Solution: secant method approximates f’(xj) with secant of f between ) and zj_1:

f(g) (2 — 2p-1)
fxr) — fzp1)

e Convergence: If f(z*) =0, f'(z*) # 0, and f”(x) is continuous near x*, then (5.3.1) converges at
rate (1 + +/5)/2, that is

(5.3.1)

L+l = Tk —

Ty — 27|
|z — x*’(1+\/5)/2

lim sup < 00 (5.3.3)

k—o0



Multivariate Equations: Gauss-Jacobi Algorithm

e Suppose f: R" — R", and we want to solve f(x) = 0:

fl(ajla Lo, + -, xn): 07
: (5.4.1)
fn(ajla X2y =, ajn): 0.
e Gauss-Jacobi method.
— Given kth iterate, 2¥, use equation 7 to compute xf“:
f1<xlf+17 55]57 xl§7 T .flf'f;) - 07
o0k ktl ik k
Xy, T y Lgy =, T :Oa
f < 1 2 3 n) (542)
fn<xlf7 xlga R x];z—la x§+1): 0.

— Gauss-Jacobi repeatedly solves n equations in one unknown.
— Gauss-Jacobi is affected by the indexing scheme.

« Otherwise, there are n(n — 1)/2 different Gauss-Jacobi schemes.
* Sometimes there is a natural scheme implying diagonal dominance (or, gross substitutes)

x Strategy: choose indexing which makes Jacobian nearly diagonal



Multivariate Equations: Gauss-Seidel Algorithm

e Gauss-Jacobi: use new guess of z;, z¥'!
values, zF 1.

k+1

e Gauss-Seidel: use new guess, ;" ",as soon as it is available.

e Formal definition: construct z**! componentwise by solving
1 (. k+1 k k _
f ( ZL’Z,.CCS,"',ZL’n) _07
k;+1 Rk k _
f(l y Lo 73337"'7'7%) — Y
n—1 k;+1 b+l okl kY
f ( Ty Ty Ty X )_07
n k;+1 k41 k+1  k+1y _
f ( y 7y oy Tp—1y Ty )_ 0.

e Both indexing and ordering matter in GS.

— Back-substitution on triangular system is GS

— Strategy: choose indexing and ordering which makes Jacobian nearly triangular

, only after we have computed the entire vector of new

(5.4.4)



e Features of Gaussian methods:

— Each step in GJ or GS is a nonlinear equation

x Usually solved by some iterative method.

+ Economize on effort at each iteration with loose stopping rule.
— Can apply extrapolation and acceleration methods
— Can apply ideas at block level - “block GJ, block GS”
* Find groups of variables and orderings such that Jacobian is nearly block diagonal or block

triangular.

+ Fxample: in {apples, oranges, cheddar cheese, swiss cheese} problem, put cheeses in one
block, fruit in the other, and use Newton to solve blocks

— Convergence is at best linear

+ Discussion of convergence in chapter 3 applies here.

+ Key fact: for any 2" = G(2*) the spectral radius of G,(z*) is asymptotic linear rate of
convergence.



Fixed-Point Iteration

e The simplest iterative method for solving = = f(x) is

xk—i—l _ f(.fk)

(5.4.8)

called fixed-point iteration; also known as successive approrimation, successive substitution, or

function iteration.
e Method is sensitive to transformations: Consider
P —x—1=0
— Rewrite as x = (x + 1)'/3; then the iteration
Tri1 = (z + 1)V3.

converges to a solution of (5.3.3) if zy = 1.

— Rewrite (5.3.3) as z = 23 — 1; then the iteration
LTr+1 = l’z —1
diverges to —oo if xg = 1.
e Naive implementations of the fixed-point iteration approach often fail.

e However, most algorithms have the form x;,., = f(xy).

e Aim: construct fixed-point iteration which works.

(5.3.3)

(5.3.4)

(5.3.5)



Contraction Mapping Case of Function Iteration

e For a special class of functions, fixed-point iteration will work well.

o A differentiable contraction map on D is any C! f : D — R" defined on a closed, bounded, convex
set D C R" such that

— f(D) C D, and
— maxzep || J(2) ||o< 1, J(x) is Jacobian of f.

o (Contraction mapping theorem) If f is a differentiable contraction map on D, then

— x = f(x) has a unique solution, z* € D;
— g = f(2%) converges to z*; and

— there is a sequence €, — 0 such that

| 2" = 2™ oo < (I J(@) lloo +er) | 27 — 2" [l

o If f(z*) = x*, f is Lipschitz at z*, and p(J(z*)) < 1, then for 2° close to z*, "™ = f(z") is

convergent.



Stopping Rule Problems for Multivariate Systems

e Use ideas from chapter 1

e First, use a rule for stopping.

— If we want || ¥ — 2* ||< €, we continue until || 5T — z* ||< (1 — B)e where 8 = p(G,(z*)).

— Sometimes we know (3, as with some contraction mappings
1/L
A e
| zh—L — zh+1 |

e Second, check that f(x*) is close to zero.

— Otherwise, estimate 3 with

for some L.

— Require that || f(z*) ||< ¢ for some small 6.
— You should have each component of f small

— Be careful about units; check should be unit-free

e ¢ and € should not be less than square root of error in computing f.



Newton’s Method for Multivariate Equations

e Sequential linear approximations:

— Replace f with a linear approximation at z*

— Solve linear approximation for z**!

e Formally:

— Newton approx around z¥ is f(x) = f(z*) + J(2%) (z — 2*).

— Zero of approx is
" = — g2 f(2Y) (5.5.1)

e Convergence: If f(z*) = 0, det(J(z*)) # 0 and J(z) is Lipschitz near x*, then for 2" near z*, the
sequence defined by (5.5.1) satisfies

k4+1 .
T Kttt | (5.5.2)

% Tt =




e Problems with Newton method

— Jacobian, J (x), may be expensive to compute (but not if you use automatic differentiation)
— May not converge

— Should really be called the Newton-Raphson-Fourier-Simpson method
e Solutions

— Broyden approximates J ()
— Powell hybrid improves likelihood of convergence.

— Homotopy methods will converge



Secant Method (Broyden)

e Jacobian, J(z), is costly to compute

— Analytic expressions are difficult to compute

— Finite-difference approximations require n? evaluations of f.

e In R, we used the secant; can we do this for R"?

e Broyden method

— Start with initial Jacobian guess, Aj

— Use Ay, to compute the Newton step, s*: Aps* = —f(z")
— Set ¢! = 2k 4 Sk

— Choose Aj1 to be

* close to Ay
* consistent with secant equation f(z**1) — f(z%) = A 18"

« for any direction ¢ orthogonal to s*, want Aj.;q = Aq, i.e., no change in directions
orthogonal to Newton step



— Broyden update is

(yr — Ags®) (sF)7
(Sk>—|—8k

ye=f(@") — f(2")

— Stop iteration when f(z*) is close to zero, or when s* is small.

Ap1=Ap +

— Convergence: There exists € > 0 such that if || 2° — z* ||< € and || Ay — J(z*) ||< €, then the
Broyden method converges superlinearly.

— Key properties of Broyden versus Newton

+ Convergence asserted only z*, not A

* Need good initial guess for A

+ Each iteration of the Broyden method is cheap to compute

* Broyden method will need more iterations than Newton’s method.

x For large systems, Broyden dominates



Use Least Squares To Improve Chances of Convergence
e Nonlinear Equations as an optimization problem

— Any solution to f(x) = 0 is a global solution of

0= mgn Z fiz)* = SSR(x) (5.6.1)

— Benefits of (5.6.1)

x Can use optimization procedures
* Will always converge to something

x May give a good initial guess for any solver
— Problems with (5.6.1):

+ Hessian is generally ill-conditioned; roughly equals the square of the condition number of
J (x)

* (5.6.1) may have many local minima

e Powell’s Hybrid Method

— Do Newton, except check if Newton step reduces the value of SSR (x)
— If not, then switch to least squares

— Powell (1970) implemented procedure which avoids some conditioning problems of naive scheme.





