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Nonlinear Equations

• Two forms of equations: zeros and fixed points of f : Rn → Rn

— A zero of f is any x such that f(x) = 0

— A fixed point of f is any x such that f(x) = x.

— Note: x is a fixed point of f(x) iff it is a zero of f(x)− x.
• Existence of solutions is examined in Brouwer’s theorem and its extensions.
• Examples
— Arrow-Debreu general equilibrium: find a price at which excess demand is zero

— Nash equilibrium of games with continuous strategies

— Transition paths of deterministic dynamic systems

— Approximate policy functions in nonlinear dynamic problems
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One-Dimensional Problems: Bisection

• Suppose that f (a) < 0 < f (b)
• Step 1: Pick a point c ∈ (a, b)
— If f (c) = 0, stop

— If f (c) < 0, reduce interval to (c, b)

— If f (c) > 0, reduce interval to (a, c)

• Repeat
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One-Dimensional Problems: Newton’s Method

• Given guess xk, compute linear approximation
f (x)

.
= f (xk) + f

0 (xk) (x− xk)
and let xk+1 be zero of linear approximation:

xk+1 = xk − f (xk)
f 0 (xk)

(5.2.1)

• Graph of Newton’s method:

• Convergence: Suppose f isC2 and f(x∗) = 0. If x0 is close to x∗, f 0(x∗) 6= 0, and |f 00(x∗)/f 0(x∗))| <
∞, then (5.2.1) converges to x∗ quadratically; that is,

lim sup
k→∞

|xk+1 − x∗|
|xk − x∗|2 =

1

2

|f 00(x∗)|
|f 0(x∗)| <∞ . (5.2.2)
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Pathological Examples

• Newton’s method works well when it works, but it can fail.
• Example: f(x) = x1/3e−x2.
— Unique zero of f is at x = 0.

— Newton’s method is
xn+1 = xn

µ
1− 3

1− 6x2n

¶
(5.2.4)

which has two pathologies.

∗ For xn small, (5.2.4) reduces to xn+1 = −2xn; hence, (5.2.4) converges to 0 only if x0 = 0 is
the initial guess.

∗ For xn large, (5.2.4) becomes xn+1 = xn(1 + 2
x2n
), which diverges, but will eventually satisfy

stopping rule at some large xn.

— Divergence due to f 00(0)/f 0(0) =∞
— “Convergence” arises because e−x

2
factor squashes f at large x; in some sense, since f(±∞) = 0.
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Pathological example of Newton’s method
In[79]:= PlotSign[x] Abs[x]1/3 Exp[-x x], {x, -3, 3}, ImageSize → Large

Out[79]=
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Define the Newton iteration function.

In[80]:= fiter[x_] = x 1 - 3  1 - 6 x2

Out[80]= x 1 -
3

1 - 6 x2

Plot one iteration

In[81]:= Plot[fiter[x], {x, -3, 3}, ImageSize → Large]

Out[81]=
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Plot two iterations

In[82]:= Plot[fiter[fiter[x]], {x, -3, 3}, ImageSize → Large]

Out[82]=
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Plot three iterations

In[83]:= Plot[fiter[fiter[fiter[x]]], {x, -3, 3}, ImageSize → Large]

Out[83]=
-3 -2 -1 1 2 3

-10

-5

5

10

4     Pathological Newton Example.nb



• Example: convergence to a cycle:
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A General Equilibrium Example

• Demand function is
dij(p)=θijI

ip
−ηi
j

θij≡ (aij)ηi
,

2X
`=1

(ai`)
ηip

(1−ηi)
`

• Three equilibria:. (0.5, 0.5), (0.1129, 0.8871), (0.8871, 0.1129).
• Reduce to a one-variable problem by p2 = 1− p1, producing

f(p1) ≡
2X
i=1

di1(p1, 1− p1)−
2X
i=1

ei1 = 0 (5.2.6)

• Notice: Newton’s method may send p negative.
7



Secant Method

• Problem: f 0(x) may be costly.
• Solution: secant method approximates f 0(xk) with secant of f between xk and xk−1:

xk+1 = xk − f(xk) (xk − xk−1)
f(xk)− f(xk−1) (5.3.1)

• Convergence: If f(x∗) = 0, f 0(x∗) 6= 0, and f 00(x) is continuous near x∗, then (5.3.1) converges at
rate (1 +

√
5)/2, that is

lim sup
k→∞

|xk+1 − x∗|
|xk − x∗|(1+

√
5)/2

<∞ (5.3.3)
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Multivariate Equations: Gauss-Jacobi Algorithm

• Suppose f : Rn → Rn, and we want to solve f(x) = 0:

f 1(x1, x2, · · · , xn)= 0,
...

fn(x1, x2, · · · , xn)= 0.
(5.4.1)

• Gauss-Jacobi method.
— Given kth iterate, xk, use equation i to compute xk+1i :

f1(xk+11 , xk2, x
k
3, · · · , xkn) = 0,

f2(xk1, x
k+1
2 , xk3, · · · , xkn) = 0,

...
fn(xk1, x

k
2, · · · , xkn−1, xk+1n )= 0.

(5.4.2)

— Gauss-Jacobi repeatedly solves n equations in one unknown.

— Gauss-Jacobi is affected by the indexing scheme.

∗ Otherwise, there are n(n− 1)/2 different Gauss-Jacobi schemes.
∗ Sometimes there is a natural scheme implying diagonal dominance (or, gross substitutes)
∗ Strategy: choose indexing which makes Jacobian nearly diagonal
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Multivariate Equations: Gauss-Seidel Algorithm

• Gauss-Jacobi: use new guess of xi, xk+1i , only after we have computed the entire vector of new
values, xk+1.

• Gauss-Seidel: use new guess, xk+1i ,as soon as it is available.

• Formal definition: construct xk+1 componentwise by solving
f 1 (xk+11 , xk2, x

k
3, · · · , xkn) = 0,

f 2 (xk+11 , xk+12 , xk3, · · · , xkn) = 0,
...

fn−1 (xk+11 , · · · , xk+1n−2, x
k+1
n−1, x

k
n)= 0,

fn (xk+11 , · · · , xk+1n−2, x
k+1
n−1, x

k+1
n )= 0.

(5.4.4)

• Both indexing and ordering matter in GS.
— Back-substitution on triangular system is GS

— Strategy: choose indexing and ordering which makes Jacobian nearly triangular
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• Features of Gaussian methods:
— Each step in GJ or GS is a nonlinear equation

∗ Usually solved by some iterative method.
∗ Economize on effort at each iteration with loose stopping rule.

— Can apply extrapolation and acceleration methods

— Can apply ideas at block level - “block GJ, block GS”

∗ Find groups of variables and orderings such that Jacobian is nearly block diagonal or block
triangular.

∗ Example: in {apples, oranges, cheddar cheese, swiss cheese} problem, put cheeses in one
block, fruit in the other, and use Newton to solve blocks

— Convergence is at best linear

∗ Discussion of convergence in chapter 3 applies here.
∗ Key fact: for any xk+1 = G(xk) the spectral radius of Gx(x∗) is asymptotic linear rate of
convergence.
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Fixed-Point Iteration

• The simplest iterative method for solving x = f(x) is
xk+1 = f(xk) (5.4.8)

called fixed-point iteration; also known as successive approximation, successive substitution, or
function iteration.

• Method is sensitive to transformations: Consider
x3 − x− 1 = 0 (5.3.3)

— Rewrite as x = (x + 1)1/3; then the iteration

xk+1 = (xk + 1)
1/3. (5.3.4)

converges to a solution of (5.3.3) if x0 = 1.

— Rewrite (5.3.3) as x = x3 − 1; then the iteration
xk+1 = x

3
k − 1 (5.3.5)

diverges to −∞ if x0 = 1.

• Naive implementations of the fixed-point iteration approach often fail.
• However, most algorithms have the form xk+1 = f(xk).
• Aim: construct fixed-point iteration which works.
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Contraction Mapping Case of Function Iteration

• For a special class of functions, fixed-point iteration will work well.
• A differentiable contraction map on D is any C1 f : D→ Rn defined on a closed, bounded, convex
set D ⊂ Rn such that
— f(D) ⊂ D, and
— maxx∈D k J(x) k∞< 1, J(x) is Jacobian of f .

• (Contraction mapping theorem) If f is a differentiable contraction map on D, then
— x = f(x) has a unique solution, x∗ ∈ D;
— xk+1 = f(xk) converges to x∗; and

— there is a sequence ²k → 0 such that

k x∗ − xk+1 k∞ ≤ (k J(x∗) k∞ +²k) k x∗ − xk k∞
• If f(x∗) = x∗, f is Lipschitz at x∗, and ρ(J(x∗)) < 1, then for x0 close to x∗, xk+1 = f(xk) is
convergent.
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Stopping Rule Problems for Multivariate Systems

• Use ideas from chapter 1
• First, use a rule for stopping.
— If we want k xk − x∗ k< ², we continue until k xk+1 − xk k≤ (1− β)² where β = ρ(Gx(x

∗)).

— Sometimes we know β, as with some contraction mappings

— Otherwise, estimate β with

β̂ =

µ k xk − xk+1 k
k xk−L − xk+1 k

¶1/L
for some L.

• Second, check that f(xk) is close to zero.
— Require that k f(xk) k≤ δ for some small δ.

— You should have each component of f small

— Be careful about units; check should be unit-free

• δ and ² should not be less than square root of error in computing f .
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Newton’s Method for Multivariate Equations

• Sequential linear approximations:
— Replace f with a linear approximation at xk

— Solve linear approximation for xk+1

• Formally:
— Newton approx around xk is f(x) .= f(xk) + J(xk) (x− xk).
— Zero of approx is

xk+1 = xk − J(xk)−1 f(xk) (5.5.1)

• Convergence: If f(x∗) = 0, det(J(x∗)) 6= 0 and J(x) is Lipschitz near x∗, then for x0 near x∗, the
sequence defined by (5.5.1) satisfies

lim
k→∞

k xk+1 − x∗ k
k xk − x∗ k2 <∞ (5.5.2)
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• Problems with Newton method
— Jacobian, J (x), may be expensive to compute (but not if you use automatic differentiation)

— May not converge

— Should really be called the Newton-Raphson-Fourier-Simpson method

• Solutions
— Broyden approximates J (x)

— Powell hybrid improves likelihood of convergence.

— Homotopy methods will converge
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Secant Method (Broyden)

• Jacobian, J(x), is costly to compute
— Analytic expressions are difficult to compute

— Finite-difference approximations require n2 evaluations of f .

• In R, we used the secant; can we do this for Rn?
• Broyden method
— Start with initial Jacobian guess, A0

— Use Ak to compute the Newton step, sk: Aksk = −f(xk)
— Set xk+1 = xk + sk.

— Choose Ak+1 to be

∗ close to Ak
∗ consistent with secant equation f(xk+1)− f(xk) = Ak+1sk
∗ for any direction q orthogonal to sk, want Ak+1q = Akq, i.e., no change in directions
orthogonal to Newton step
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— Broyden update is

Ak+1=Ak +
(yk −Aksk) (sk)>

(sk)>sk

yk≡f(xk+1)− f(xk)

— Stop iteration when f(xk) is close to zero, or when sk is small.

— Convergence: There exists ² > 0 such that if k x0 − x∗ k< ² and k A0 − J(x∗) k< ², then the
Broyden method converges superlinearly.

— Key properties of Broyden versus Newton

∗ Convergence asserted only xk, not Ak
∗ Need good initial guess for A0
∗ Each iteration of the Broyden method is cheap to compute
∗ Broyden method will need more iterations than Newton’s method.
∗ For large systems, Broyden dominates
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Use Least Squares To Improve Chances of Convergence

• Nonlinear Equations as an optimization problem
— Any solution to f(x) = 0 is a global solution of

0 = min
x

nX
i=1

fi(x)2 ≡ SSR (x) (5.6.1)

— Benefits of (5.6.1)

∗ Can use optimization procedures
∗ Will always converge to something
∗ May give a good initial guess for any solver

— Problems with (5.6.1):

∗ Hessian is generally ill-conditioned; roughly equals the square of the condition number of
J (x)

∗ (5.6.1) may have many local minima
• Powell’s Hybrid Method
— Do Newton, except check if Newton step reduces the value of SSR (x)

— If not, then switch to least squares

— Powell (1970) implemented procedurewhich avoids some conditioning problems of naive scheme.
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