Numerical Methods in Economics
MIT Press, 1998
Notes for Lecture 4: Unconstrained Optimization
February 26, 2020

Optimization Problems

- Canonical problem:

$$
\begin{aligned}
\min _{x} f(x) & \\
\text { s.t. } & g(x) \\
& =0, \\
h(x) & \leq 0,
\end{aligned}
$$

$-f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the objective function
$-g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the vector of m equality constraints

- $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\ell}$ is the vector of ℓ inequality constraints.
- Examples:
- Maximization of consumer utility subject to a budget constraint
- Optimal incentive contracts
- Portfolio optimization
- Life-cycle consumption
- Assumptions
- Always assume f, g, and h are continuous
- Usually assume f, g, and h are C^{1}
- Often assume f, g, and h are C^{3}
- Topics
- Unconstrained optimization
* Unconstrained optimization problems occur naturally - maximum likelihood, minimize moment criteria
* They are also the foundation of constrained optimization methods
- Nonlinear equations
* Similar to unconstrained optimization
* Not as easy as unconstrained optimization
- Constrained optimization
* Optimal life-cycle problems with budget constraint
* Maximize profit given production constraints
* Optimal taxation given incentive compatibility constraints
* Econometric estimation of structural models

One-D Unconstrained Minimization: Newton's Method

$$
\min _{x \in \mathbb{R}} f(x),
$$

- Assume $f(x)$ is C^{2} functions $f(x)$
- At a point a, the quadratic polynomial, $p(x)$

$$
p(x) \equiv f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2} .
$$

is the second-order approximation of $f(x)$ at a

- Approximately minimize f by minimizing $p(x)$
- If $f^{\prime \prime}(a)>0$, then p is convex, and $x_{m}=a-f^{\prime}(a) / f^{\prime \prime}(a)$.
- Hope: x_{m} is closer than a to the minimum.
- Newton's method:

Algorithm 4.2 Newton's Method in \mathbb{R}^{1}

Initialize. Choose initial guess x_{0} and stopping parameters $\delta, \epsilon>0$.
Step 1. $x_{k+1}=x_{k}-f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right)$.
Step 2. If $\left|x_{k}-x_{k+1}\right|<\epsilon\left(1+\left|x_{k}\right|\right)$ and $\left|f^{\prime}\left(x_{k}\right)\right|<\delta$, STOP and report success; else go to step 1.

- Properties:
- Newton's method finds critical points, that is, solutions to $f^{\prime}(x)=0$, not min or max.
- If x_{n} converges to x^{*}, must check $f^{\prime \prime}\left(x^{*}\right)$ to check if min or max
- Only find local extrema.
- Good news: convergence is locally quadratic.

Theorem 1 Suppose that $f(x)$ is minimized at x^{*}, C^{3} in a neighborhood of x^{*}, and that $f^{\prime \prime}\left(x^{*}\right) \neq 0$. Then there is some $\epsilon>0$ such that if $\left|x_{0}-x^{*}\right|<\epsilon$, then the x_{n} sequence defined in (4.1.2) converges quadratically to x^{*}; in particular,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-x^{*}\right|}{\left|x_{n}-x^{*}\right|^{2}}=\frac{1}{2}\left|\frac{f^{\prime \prime \prime}\left(x^{*}\right)}{f^{\prime \prime}\left(x^{*}\right)}\right| \tag{4.1.3}
\end{equation*}
$$

is the quadratic rate of convergence.

- Consumer problem example:
- Consumer has $\$ 1$; price of x is $\$ 2$, price of y is $\$ 3$, utility function is $x^{1 / 2}+2 y^{1 / 2}$.
- If θ is amount spent on x then we have

$$
\begin{equation*}
\max _{\theta}\left(\frac{\theta}{2}\right)^{1 / 2}+2\left(\frac{1-\theta}{3}\right)^{1 / 2} \tag{4.1.6}
\end{equation*}
$$

- Solution $\theta^{*}=3 / 11=.272727$
- If $\theta_{0}=1 / 2$, Newton iteration is

$$
0.5,0.2595917942,0.2724249335,0.2727271048,0.2727272727
$$

and magnitude of the errors are

$$
2.3(-1), 1.3(-2), 3.1(-4), 1.7(-7), 4.8(-14)
$$

- Problems with Newton's method
- May not converge if initial guess is too far away from solution.
- $f^{\prime \prime}(x)$ may be difficult to calculate.

Multidimensional Unconstrained Optimization: Comparison Methods

- Grid Search
- Pick a finite set of points, X; for example, a Cartesian grid:

$$
\begin{aligned}
V & =\left\{v_{i} \mid i=1, \ldots, n\right\} \\
X & =\left\{x \in \mathbb{R}^{n} \mid \forall i, x_{i} \in V\right\}
\end{aligned}
$$

- Compute $f(x), x \in X$, and locate max
- Grid search is often the first method to use.
* Only involves function evaluations
* It is embarassingly parallelizable
* It should get you a good initial guess
- A good initial guess is not critical for grid search, but is for all good algorithms
- Grid search is sloooooooow, so you should always switch to something better
- General lesson: start with a reliable but slow method to find good initial guess for a faster method
- Polytope Methods (a.k.a. Nelder-Mead, simplex, "amoeba")

Algorithm 4.3 Polytope Algorithm

Initialize. Choose the stopping rule parameter ϵ. Choose an initial simplex $\left\{x^{1}, x^{2}, \cdots, x^{n+1}\right\}$.
Step 1. Reorder vertices so $f\left(x^{i}\right) \geq f\left(x^{i+1}\right), i=1, \cdots, n$.
Step 2. Look for least i s.t. $f\left(x^{i}\right)>f\left(y^{i}\right)$ where y^{i} is reflection of x^{i}.
If such an i exists, set $x^{i}=y^{i}$, and go to step 1 .
Otherwise, go to step 3.
Step 3. Stopping rule: If the width of the current simplex is less than ϵ, STOP. Otherwise, go to step 4 .
Step 4. Shrink simplex: For $i=1,2, \cdots, n$ set $x^{i}=\frac{1}{2}\left(x^{i}+x^{n+1}\right)$, and go to step 1 .

Multidimensional Optimization: Newton's Method

- Idea: Given x^{k}, compute local quadratic approximation, $p(x)$, of $f(x)$ around x^{k}, and let x^{k+1} be max of $p(x)$

Algorithm 4.4 Newton's Method in \mathbb{R}^{n}

$$
\begin{array}{ll}
\text { Initialize. Choose } x^{0} \text { and stopping parameters } \delta \text { and } \epsilon>0 \text {. } \\
\text { Step 1. } & \text { Compute Hessian, } H\left(x^{k}\right) \text {, and gradient, } \nabla f\left(x^{k}\right) \text {, and solve } \\
& H\left(x^{k}\right) s^{k}=-\left(\nabla f\left(x^{k}\right)\right)^{\top} \text { for the step } s^{k} . \\
\text { Step 2. } & x^{k+1}=x^{k}+s^{k} . \\
\text { Step 3. } & \text { If }\left\|x^{k}-x^{k+1}\right\|<\epsilon\left(1+\left\|x^{k}\right\|\right), \\
& \text { go to step 4; else go to step 1. } \\
\text { Step 4. } & \begin{array}{l}
\text { If }\left\|\nabla f\left(x^{k+1}\right)\right\|<\delta\left(1+\left|f\left(x^{k+1}\right)\right|\right) \text {, STOP and report success; } \\
\text { else STOP and report convergence to nonoptimal point. }
\end{array}
\end{array}
$$

- Stopping rule: Don't be too fussy!
- Good values for ε and δ are close to the square root of machine epsilon.
- First use sloppy ε and δ, such as $10^{\wedge}(-3)$.
- Then reduce ε and δ until failure.
- You can try to push them below square root of machine epsilon but you will probably not get too far.

Theorem 2 Suppose that $f(x)$ is C^{3}, minimized at x^{*}, and that $H\left(x^{*}\right)$ is nonsingular. Then there is some $\epsilon>0$ such that if $\left\|x^{0}-x^{*}\right\|<\epsilon$, then the sequence defined in (4.3.1) converges quadratically to x^{*}.

- Problems with Newton's method:
- May not converge
- Computational demands may be excessive
* need at least $\mathcal{O}\left(n^{2}\right)$ time to compute $H\left(x^{k}\right)$, perhaps more if one does not have efficient code for $H(x)$
* need $\mathcal{O}\left(n^{2}\right)$ space for $H\left(x^{k}\right)$
* need $\mathcal{O}\left(n^{3}\right)$ time to solve $H\left(x^{k}\right) s^{k}=-\left(\nabla f\left(x^{k}\right)\right)^{\top}$ for s^{k}
- May converge to local solution, not global solution
- We now consider methods which address these problems.

Direction Set Methods

- Problem: may not converge, or go to wrong kind of extremum
- Solution: if we always move uphill, we will eventually get to a local maximum

Algorithm 4.5 Generic Direction Method

$$
\begin{array}{ll}
\text { Initialize. } & \text { Choose initial } x^{0} \text { and stopping parameters } \delta \text { and } \epsilon>0 . \\
\text { Step 1. } & \text { Compute a search direction } s^{k} . \\
\text { Step 2. } & \text { Solve } \lambda_{k}=\arg \min _{\lambda} f\left(x^{k}+\lambda s^{k}\right) . \\
\text { Step 3. } & x^{k+1}=x^{k}+\lambda_{k} s^{k} . \\
\text { Step 4. } & \text { If }\left\|x^{k}-x^{k+1}\right\|<\epsilon\left(1+\left\|x^{k}\right\|\right) \text {, go to step 5; } \\
& \begin{array}{l}
\text { else go to step } 1 .
\end{array} \\
\text { Step 5. } & \text { If }\left\|\nabla f\left(x^{k+1}\right)\right\|<\delta\left(1+f\left(x^{k+1}\right)\right) \text {, STOP and report success; } \\
& \text { else STOP and report convergence to nonoptimal point. }
\end{array}
$$

- Possible direction set methods
- Coordinate Directions
* Let search directions be coordinate, x_{1}, x_{2}, etc.
* Search direction $s_{2 n+k}=x_{k}$
- Steepest Descent: $s_{k}=\nabla f\left(x^{k}\right)$
- Newton's Method with Line Search: $H_{k} s^{k}=-\left(\nabla f\left(x^{k}\right)\right)^{\top}$
- Will converge to a local optimum IF we apply something like the Armijo rule (see website).

Quasi-Newton Methods

- Problem: Hessians are expensive to compute
- Solution: Don't need true Hessians (see Carter, 1993), so approximate them

Generic Quasi-Newton Method

Initialize. Choose initial x^{0}, Hessian $H^{0}(I)$ and stopping parameters δ and $\epsilon>0$.
Step 1. Solve $H_{k} s^{k}=-\left(\nabla f\left(x^{k}\right)\right)^{\top}$ for the search direction s^{k}.
Step 2. Solve $\lambda_{k}=\arg \min _{\lambda} f\left(x^{k}+\lambda s^{k}\right)$
Step 3. $x^{k+1}=x^{k}+\lambda_{k} s^{k}$.
Step 4. Compute H_{k+1} using $H_{k}, \nabla f\left(x^{k+1}\right), x^{k+1}, \nabla f\left(x^{k}\right)$, etc.
Step 5. If $\left\|x^{k}-x^{k+1}\right\|<\epsilon\left(1+\left\|x^{k}\right\|\right)$, go to step 6 ;
else go to step 1
Step 6. If $\left\|\nabla f\left(x^{k+1}\right)\right\|<\delta\left|1+f\left(x^{k+1}\right)\right|$, STOP and report success; else STOP and report convergence to nonoptimal point.

- Example: BFGS:

$$
\begin{aligned}
z_{k} & =x^{k+1}-x^{k} \\
y_{k} & =\left(\nabla f\left(x^{k+1}\right)\right)^{\top}-\left(\nabla f\left(x^{k}\right)\right)^{\top} \\
H_{k+1} & =H_{k}-\frac{H_{k} z_{k} z_{k}^{\top} H_{k}}{z_{k}^{\top} H_{k} z_{k}}+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} z_{k}}
\end{aligned}
$$

- Preserves positive definiteness
- Uses only gradients that are already needed
- Warning: denominators may get too small; should keep them away from zero since small z_{k} does not necessarily stop iteration.
- Note: The Hessian iterates H_{k} may not converge to true Hessian at solution, even if x_{k} converges to solution. NEVER USE APPROXIMATE HESSIANS TO COMPUTE STANDARD ERRORS!!!!

Monopoly Example

- We look at a simple monopoly pricing example:
- Utility function: if M is spending on other goods,

$$
U(Y, Z)=\left(Y^{\alpha}+Z^{\alpha}\right)^{\eta / \alpha}+M=u(Y, Z)+M,
$$

- Output Y and Z implies prices of u_{Y} and u_{Z}.
- Monopoly problem is

$$
\begin{equation*}
\max _{Y, Z} \Pi(Y, Z) \equiv Y u_{Y}(Y, Z)+Z u_{Z}(Y, Z)-C_{Y}(Y)-C_{Z}(Z), \tag{1}
\end{equation*}
$$

- Restate in terms of $y \equiv \ln Y$ and $z \equiv \ln Z, \pi(y, z) \equiv \Pi\left(e^{y}, e^{z}\right)$

$$
\begin{equation*}
\max _{y, z} \pi(y, z), \tag{2}
\end{equation*}
$$

Example: A Dynamic Optimization Problem

- Life-cycle savings problem.
- an individual lives for T periods
- earns wages w_{t} in period $t, t=1, \cdots, T$
- consumes c_{t} in period t
- earns interest on savings per period at rate r
- define S_{t} to be end-of-period savings:

$$
S_{t+1}=(1+r) S_{t}+w_{t+1}-c_{t+1} .
$$

- Set initial wealth: $S_{0}=0$
- utility function $\sum_{t=1}^{T} \beta^{t} u\left(c_{t}\right)+W\left(S_{T}\right)$
- Substitute $c_{t}=S_{t-1}(1+r)+w_{t}-S_{t}$
- Problem now has T choices:

$$
\max _{S_{t}} \sum_{t=1}^{T} \beta^{t} u\left(S_{t-1}(1+r)+w_{t}-S_{t}\right)+W\left(S_{T}\right)
$$

- Newton's method looks impractical if T large. BUT
- Hessian is tridiagonal (a sparse matrix)
* The choice of S_{t} interacts only with the choices for S_{t-1} and S_{t+1}
* Newton step is easy to compute.
* The normal Hessian has size T^{2}
* The tridiagonal matrix has size $3 T$
- Sparse Hessians are common in dynamic problems because time t variables interact only with time $t-1$ and time $t+1$ variables.
- You must recognize this and implement Newton or quasi-Newton method with sparse Hessians, Or use software that automatically recognizes this structure - AMPL, GAMS, AIMMS, CASADI (future lecture), and others.

Domain Problems

- Suppose $S_{0}=0$ and you want to solve

$$
\max _{S_{t}} \sum_{t=1}^{T} \beta^{t} \log \left(S_{t-1}(1+r)+w_{t}-S_{t}\right)+W\left(S_{T}\right)
$$

- Newton's method will take the guess S^{k} and compute a new guess S^{k+1}.
- Problem: S^{k+1} could imply consumption, $c_{t}=S_{t-1}(1+r)+w_{t}-S_{t}$, will be negative at some t, causing computer to crash.
- A possible solution: Alter objective function
- E.G.; replace $u(c)=\log c$ with, for some small $\varepsilon>0$

$$
\widetilde{u}(c)= \begin{cases}u(c), & c>\varepsilon \\ u(\varepsilon)+u^{\prime}(\varepsilon)(c-\varepsilon)+u^{\prime \prime}(\varepsilon)(c-\varepsilon)^{2} / 2, & c \leq \varepsilon\end{cases}
$$

- Maintains curvature
- Equals real $u(c)$ on most of domain, which hopefully includes solution
- Not as easy to apply to multivariate functions
- General solution: add constraints (next week's topic) to keep this from happening.

Nonlinear Least Squares

- Objective function has form, $f^{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, m$.:

$$
\min _{x} \frac{1}{2} \sum_{i=1}^{m} f^{i}(x)^{2} \equiv S(x)
$$

- Idea: use simple approximation of Hessian
- In econometric applications
- $f^{i}(x)$ are $g\left(\beta, y^{i}\right)$,
* $x=\beta$ is parameter vector
* y^{i} are the data.
* $g\left(\beta, y^{i}\right)$ is residual for observation i
- $S(\beta)$ is the sum of squared residuals at β.
- Let $f(x)$ denote the column vector $\left(f^{i}(x)\right)_{i=1}^{m}$.
- Let $J(x)$ be the Jacobian of $f(x) \equiv\left(f^{1}(x), \ldots, f^{m}(x)\right)^{\top}$.
- Let $f_{\ell}^{i} \equiv \frac{\partial f^{i}}{\partial x_{\ell}}$ and $f_{j \ell}^{i} \equiv \frac{\partial^{2} f^{i}}{\partial x_{j} \partial x_{\ell}}$.
- The gradient of $S(x)$ is $J(x)^{\top} f: S_{\ell}(x)=\sum_{i=1}^{m} f_{\ell}^{i}(x) f^{i}(x)$.
- The Hessian of $S(x)$ is $J(x)^{\top} J(x)+G(x)$, where

$$
G_{j \ell}(x)=\sum_{i=1}^{m} f_{j \ell}^{i}(x) f^{i}(x)
$$

- Special structure of the gradient and Hessian.
- $f_{j}^{i}(x)$ terms are needed to compute gradient of $S(x)$.
- If $f(x)=0$, then Hessian is just $J(x)^{\top} J(x)$: easy to compute.
- A problem where $f(x)$ is small at the solution is called a small residual problem; otherwise, it is a large residual problem.
- Gauss-Newton algorithm
- Do Newton except use $J(x)^{\top} J(x)$ for Hessian approx.

$$
\begin{equation*}
s^{k}=-\left(J\left(x^{k}\right)^{\top} J\left(x^{k}\right)\right)^{-1}\left(\nabla f\left(x^{k}\right)\right)^{\top} \tag{4.5.1}
\end{equation*}
$$

and avoid computing second derivatives of f.

- Natural to use for small residual problems.
- Works very well when it works.
- Problems.
- $J(x)^{\top} J(x)$ is likely to be poorly conditioned, since it is the "square" of a matrix.
- $J(x)$ may be poorly conditioned itself, particularly in statistical contexts.
- Gauss-Newton step may not be a descent direction.
- Solution: Levenberg-Marquardt algorithm.
- Use $J(x)^{\top} J(x)+\lambda I$ for some scalar λ (I is identity matrix):

$$
s^{k}=-\left(J\left(x^{k}\right)^{\top} J\left(x^{k}\right)+\lambda I\right)^{-1}\left(\nabla f\left(x^{k}\right)\right)^{\top}
$$

- The λI term reduces conditioning problems by "adding a little piece of the identity matrix"
$-s^{k}$ will be descent direction for large λ since s^{k} gets closer to steepest descent direction λ.

