
Numerical Methods in Economics
MIT Press, 1998

Notes for Lecture 4: Unconstrained Optimization

February 26, 2020

1

Optimization Problems

• Canonical problem:
minxf (x)

s.t. g(x) = 0,

h(x) ≤ 0,

– f : Rn → R is the objective function

– g : Rn → Rm is the vector of m equality constraints

– h : Rn → R` is the vector of ` inequality constraints .

• Examples:

– Maximization of consumer utility subject to a budget constraint

– Optimal incentive contracts

– Portfolio optimization

– Life-cycle consumption

• Assumptions

– Always assume f, g, and h are continuous

– Usually assume f , g, and h are C1

– Often assume f , g, and h are C3

.

2

• Topics

– Unconstrained optimization

∗ Unconstrained optimization problems occur naturally – maximum likelihood, minimize mo-
ment criteria
∗ They are also the foundation of constrained optimization methods

– Nonlinear equations

∗ Similar to unconstrained optimization
∗ Not as easy as unconstrained optimization

– Constrained optimization

∗ Optimal life-cycle problems with budget constraint
∗ Maximize profit given production constraints
∗ Optimal taxation given incentive compatibility constraints
∗ Econometric estimation of structural models

3

One-D Unconstrained Minimization: Newton’s Method

min
x∈R

f (x),

• Assume f (x) is C2 functions f (x)

– At a point a, the quadratic polynomial, p(x)

p(x) ≡ f (a) + f ′(a) (x− a) +
f ′′(a)

2
(x− a)2.

is the second-order approximation of f (x) at a

– Approximately minimize f by minimizing p(x)

– If f ′′(a) > 0, then p is convex, and xm = a− f ′(a)/f ′′(a).

– Hope: xm is closer than a to the minimum.

• Newton’s method:

Algorithm 4.2 Newton’s Method in R1

Initialize. Choose initial guess x0 and stopping parameters δ, ε > 0.
Step 1. xk+1 = xk − f ′(xk)/f ′′(xk).
Step 2. If |xk − xk+1| < ε(1 + |xk|) and |f ′(xk)| < δ, STOP and report success; else go to step 1.

4

• Properties:

– Newton’s method finds critical points, that is, solutions to f ′(x) = 0, not min or max.

– If xn converges to x∗, must check f ′′(x∗) to check if min or max

– Only find local extrema.

• Good news: convergence is locally quadratic.

Theorem 1 Suppose that f (x) is minimized at x∗, C3 in a neighborhood of x∗, and that f ′′(x∗) 6= 0.
Then there is some ε > 0 such that if |x0 − x∗| < ε, then the xn sequence defined in (4.1.2) converges
quadratically to x∗; in particular,

lim
n→∞

|xn+1 − x∗|
|xn − x∗|2

=
1

2

∣∣∣∣f ′′′(x∗)f ′′(x∗)

∣∣∣∣ (4.1.3)

is the quadratic rate of convergence.

5

• Consumer problem example:

– Consumer has $1; price of x is $2, price of y is $3, utility function is x1/2 + 2y1/2.

– If θ is amount spent on x then we have

max
θ

(
θ

2

)1/2

+ 2

(
1− θ

3

)1/2

(4.1.6)

– Solution θ∗ = 3/11 = .272727

– If θ0 = 1/2, Newton iteration is

0.5, 0.2595917942, 0.2724249335, 0.2727271048, 0.2727272727

and magnitude of the errors are

2.3 (−1) , 1.3 (−2) , 3.1 (−4) , 1.7 (−7) , 4.8 (−14)

• Problems with Newton’s method

– May not converge if initial guess is too far away from solution.

– f ′′(x) may be difficult to calculate.

6

Multidimensional Unconstrained Optimization: Comparison Methods
• Grid Search

– Pick a finite set of points, X ; for example, a Cartesian grid:

V ={vi|i = 1, ..., n}
X={x ∈ Rn|∀i, xi ∈ V }

– Compute f (x), x ∈ X , and locate max

– Grid search is often the first method to use.

∗ Only involves function evaluations
∗ It is embarassingly parallelizable
∗ It should get you a good initial guess

– A good initial guess is not critical for grid search, but is for all good algorithms

– Grid search is sloooooooow, so you should always switch to something better

• General lesson: start with a reliable but slow method to find good initial guess for a faster method

7

• Polytope Methods (a.k.a. Nelder-Mead, simplex, “amoeba”)

Algorithm 4.3 Polytope Algorithm
Initialize. Choose the stopping rule parameter ". Choose an initial

simplex {x1, x2, · · · , xn+1}.
Step 1. Reorder vertices so f(xi) ≥ f(xi+1), i = 1, · · · , n.
Step 2. Look for least i s.t. f(xi) > f(yi) where yi is reflection of xi.

If such an i exists, set xi = yi, and go to step 1.
Otherwise, go to step 3.

Step 3. Stopping rule: If the width of the current simplex
is less than ", STOP. Otherwise, go to step 4.

Step 4. Shrink simplex: For i = 1, 2, · · · , n
set xi = 1

2(x
i + xn+1), and go to step 1.

7

Multidimensional Optimization: Newton’s Method

• Idea: Given xk, compute local quadratic approximation, p (x), of f (x) around xk, and let xk+1 be
max of p (x)

Algorithm 4.4 Newton’s Method in Rn

Initialize. Choose x0 and stopping parameters δ and ε > 0.
Step 1. Compute Hessian, H(xk), and gradient, 5f (xk), and solve

H(xk)sk = −(5f (xk))> for the step sk.
Step 2. xk+1 = xk + sk.
Step 3. If ‖ xk − xk+1 ‖< ε(1+ ‖ xk ‖),

go to step 4; else go to step 1.
Step 4. If ‖ 5f (xk+1) ‖< δ(1 + |f (xk+1)|), STOP and report success;

else STOP and report convergence to nonoptimal point.

• Stopping rule: Don’t be too fussy!

– Good values for ε and δ are close to the square root of machine epsilon.

– First use sloppy ε and δ, such as 10^(-3).

– Then reduce ε and δ until failure.

– You can try to push them below square root of machine epsilon but you will probably not get
too far.

9

Theorem 2 Suppose that f (x) is C3, minimized at x∗, and that H(x∗) is nonsingular. Then there is
some ε > 0 such that if ‖ x0 − x∗ ‖< ε, then the sequence defined in (4.3.1) converges quadratically to
x∗.

• Problems with Newton’s method:

– May not converge
– Computational demands may be excessive

∗ need at least O(n2) time to compute H(xk), perhaps more if one does not have efficient
code for H (x)

∗ need O(n2) space for H(xk)

∗ need O(n3) time to solve H(xk)sk = −(5f (xk))> for sk

– May converge to local solution, not global solution

– We now consider methods which address these problems.

10

Direction Set Methods

• Problem: may not converge, or go to wrong kind of extremum

• Solution: if we always move uphill, we will eventually get to a local maximum

Algorithm 4.5 Generic Direction Method
Initialize. Choose initial x0 and stopping parameters δ and ε > 0.
Step 1. Compute a search direction sk.
Step 2. Solve λk = arg minλ f (xk + λsk).
Step 3. xk+1 = xk + λks

k.
Step 4. If ‖ xk − xk+1 ‖< ε(1+ ‖ xk ‖), go to step 5;

else go to step 1.
Step 5. If ‖ 5f (xk+1) ‖< δ(1 + f (xk+1)), STOP and report success;

else STOP and report convergence to nonoptimal point.

• Possible direction set methods

– Coordinate Directions

∗ Let search directions be coordinate, x1, x2, etc.
∗ Search direction s2n+k = xk

– Steepest Descent: sk = 5f (xk)

– Newton’s Method with Line Search: Hks
k = −(5f (xk))>

• Will converge to a local optimum IF we apply something like the Armijo rule (see website).

11

Quasi-Newton Methods

• Problem: Hessians are expensive to compute

• Solution: Don’t need true Hessians (see Carter, 1993), so approximate them

Generic Quasi-Newton Method
Initialize. Choose initial x0, Hessian H0 (I)and stopping

parameters δ and ε > 0.
Step 1. Solve Hks

k = −(5f (xk))> for the search direction sk.
Step 2. Solve λk = arg minλ f (xk + λsk)

Step 3. xk+1 = xk + λks
k.

Step 4. Compute Hk+1 using Hk, 5f (xk+1), xk+1, 5f (xk), etc.
Step 5. If ‖ xk − xk+1 ‖< ε(1+ ‖ xk ‖), go to step 6;.

else go to step 1
Step 6. If ‖ 5f (xk+1) ‖< δ|1 + f (xk+1)|, STOP and report success;

else STOP and report convergence to nonoptimal point.

12

• Example: BFGS:

zk=xk+1 − xk

yk=(5f (xk+1))> − (5f (xk))>

Hk+1=Hk −
Hkzkz

>
k Hk

z>k Hkzk
+
yky

>
k

y>k zk

– Preserves positive definiteness

– Uses only gradients that are already needed

– Warning: denominators may get too small; should keep them away from zero since small zk
does not necessarily stop iteration.

• Note: The Hessian iterates Hk may not converge to true Hessian at solution, even if xk converges to
solution. NEVER USE APPROXIMATE HESSIANS TO COMPUTE STANDARD ERRORS!!!!

13

Monopoly Example

• We look at a simple monopoly pricing example:

— Utility function: if M is spending on other goods,

U(Y,Z) = (Y α + Zα)η/α +M = u(Y, Z) +M,

— Output Y and Z implies prices of uY and uZ.

— Monopoly problem is

max
Y,Z

Π(Y, Z) ≡ Y uY (Y,Z) + ZuZ(Y,Z)− CY (Y)− CZ(Z), (1)

— Restate in terms of y ≡ lnY and z ≡ lnZ, π(y, z) ≡ Π (ey, ez)

max
y,z

π(y, z), (2)

13

Example: A Dynamic Optimization Problem
• Life-cycle savings problem.

– an individual lives for T periods

– earns wages wt in period t, t = 1, · · · , T
– consumes ct in period t

– earns interest on savings per period at rate r

– define St to be end-of-period savings:

St+1 = (1 + r)St + wt+1 − ct+1.

– Set initial wealth: S0 = 0

– utility function
∑T

t=1 β
tu(ct) + W (ST)

– Substitute ct = St−1(1 + r) + wt − St

• Problem now has T choices:

max
St

T∑
t=1

βtu(St−1(1 + r) + wt − St) + W (ST)

15

• Newton’s method looks impractical if T large. BUT

– Hessian is tridiagonal (a sparse matrix)

∗ The choice of St interacts only with the choices for St−1 and St+1

∗ Newton step is easy to compute.
∗ The normal Hessian has size T 2

∗ The tridiagonal matrix has size 3T

– Sparse Hessians are common in dynamic problems because time t variables interact only with
time t− 1 and time t + 1 variables.

– You must recognize this and implement Newton or quasi-Newton method with sparse Hes-
sians, Or use software that automatically recognizes this structure – AMPL, GAMS, AIMMS,
CASADI (future lecture), and others.

16

Domain Problems

• Suppose S0 = 0 and you want to solve

max
St

T∑
t=1

βt log (St−1(1 + r) + wt − St) + W (ST)

• Newton’s method will take the guess Sk and compute a new guess Sk+1.

• Problem: Sk+1 could imply consumption, ct = St−1(1 + r) + wt − St, will be negative at some t,
causing computer to crash.
• A possible solution: Alter objective function

– E.G.; replace u (c) = log c with, for some small ε > 0

ũ (c) =

{
u (c) , c > ε

u (ε) + u′ (ε) (c− ε) + u′′ (ε) (c− ε)2 /2, c ≤ ε

– Maintains curvature

– Equals real u (c) on most of domain, which hopefully includes solution

– Not as easy to apply to multivariate functions

• General solution: add constraints (next week’s topic) to keep this from happening.

17

Nonlinear Least Squares

• Objective function has form, f i : Rn → R, i = 1, ...,m.:

min
x

1

2

m∑
i=1

f i(x)2 ≡ S(x),

• Idea: use simple approximation of Hessian
• In econometric applications

– f i(x) are g(β, yi),

∗ x = β is parameter vector
∗ yi are the data.
∗ g(β, yi) is residual for observation i

– S(β) is the sum of squared residuals at β.

• Let f (x) denote the column vector (f i(x))mi=1.

– Let J(x) be the Jacobian of f (x) ≡ (f 1(x), . . . , fm(x))>.

– Let f i` ≡
∂f i

∂x`
and f ij` ≡

∂2f i

∂xj∂x`
.

– The gradient of S(x) is J(x)>f : S`(x) =
∑m

i=1 f
i
`(x)f i(x).

– The Hessian of S(x) is J(x)>J(x) + G(x), where

Gj`(x) =

m∑
i=1

f ij`(x)f i(x).

18

• Special structure of the gradient and Hessian.

– f ij(x) terms are needed to compute gradient of S(x).

– If f (x) = 0, then Hessian is just J(x)>J(x): easy to compute.

– A problem where f (x) is small at the solution is called a small residual problem; otherwise, it
is a large residual problem.

• Gauss-Newton algorithm

– Do Newton except use J(x)>J(x) for Hessian approx.

sk = −(J(xk)>J(xk))−1(∇f (xk))> (4.5.1)

and avoid computing second derivatives of f .

– Natural to use for small residual problems.

– Works very well when it works.

19

• Problems.

– J(x)>J(x) is likely to be poorly conditioned, since it is the “square” of a matrix.

– J(x) may be poorly conditioned itself, particularly in statistical contexts.

– Gauss-Newton step may not be a descent direction.

• Solution: Levenberg-Marquardt algorithm.

– Use J(x)>J(x) + λI for some scalar λ (I is identity matrix):

sk = −(J(xk)>J(xk) + λI)−1(∇f (xk))>

– The λI term reduces conditioning problems by “adding a little piece of the identity matrix”

– sk will be descent direction for large λ since sk gets closer to steepest descent direction λ.

20

