Numerical Methods in Economics
MIT Press, 1998

Notes for Lecture 4: Unconstrained Optimization

February 26, 2020

Optimization Problems

o Canonical problem:

~- f:R" — R is the objective function
~ g R" — R™ is the vector of m equality constraints
~ h:R® = R’ is the vector of ¢ inequality constraints.

o Examples:

— Maximization of consumer utility subject to a budget constraint
— Optimal incentive contracts

— Portfolio optimization

— Life-cycle consumption

o Assumptions

— Always assume f, g, and h are continuous
— Usually assume f, g, and h are C'!
~ Often assume f, g, and h are C?

« Topics

— Unconstrained optimization

+ Unconstrained optimization problems occur naturally — maximum likelihood, minimize mo-

ment criteria

« They are also the foundation of constrained optimization methods
— Nonlinear equations

« Similar to unconstrained optimization

«+ Not as easy as unconstrained optimization
— Constrained optimization

« Optimal life-cycle problems with budget constraint
« Maximize profit given production constraints
« Optimal taxation given incentive compatibility constraints

« Econometric estimation of structural models

One-D Unconstrained Minimization: Newton’s Method

min f(x),

zeR

o Assume f (x) is C? functions f(x)

— At a point a, the quadratic polynomial, p(z)

p(x) = fla) + f'(a) (x — a) +
is the second-order approximation of f(x) at a
— Approximately minimize f by minimizing p(x)
~If f"(a) > 0, then p is convex, and x,, = a — f'(a)/f"(a).

- Hope: z,, is closer than a to the minimum.

e Newton’s method:

Algorithm 4.2 Newton’s Method in R!

Initialize. Choose initial guess xy and stopping parameters o, € > 0.

Step 1. w1 = xp — f'(2n) /) f" (24).
Step 2. If |z — x| < (14 |zi|) and | f'(xx)] < §, STOP and report success; else go to step 1.

o Properties:

~ Newton’s method finds critical points, that is, solutions to f’(x) = 0, not min or max.
— If x,, converges to x*, must check f”(z*) to check if min or max

— Only find local extrema.
o Good news: convergence is locally quadratic.

Theorem 1 Suppose that f(x) is minimized at z*, C* in a neighborhood of x*, and that f"(x*) # 0.
Then there is some € > 0 such that if |xg — x*| < €, then the x,, sequence defined in (4.1.2) converges
quadratically to x*; in particular,

|xn+1 B CL’*| _ 1

f///(x*)
f"(a)

lim =
n—00 ‘an — x*’z 2

(4.1.3)

is the quadratic rate of convergence.

o Consumer problem example:

~ Consumer has $1; price of z is $2, price of y is $3, utility function is z'/2 + 2y*/2.

— If 8 is amount spent on x then we have

o\ /2 | _ o\ /2
max (5) +2 <T> (4.1.6)
- Solution #* = 3/11 = .272727

~ If 6y = 1/2, Newton iteration is
0.5,0.2595917942, 0.2724249335, 0.2727271048, 0.2727272727
and magnitude of the errors are
2.3(—1), 1.3(=2), 3.1(=4), 1.7(=7), 4.8(—14)
e Problems with Newton’s method

~ May not converge if initial guess is too far away from solution.

— f"(x) may be difficult to calculate.

Multidimensional Unconstrained Optimization: Comparison Methods
o Grid Search

— Pick a finite set of points, X; for example, a Cartesian grid:

V:{Ui’i = 1,...,71}
X={z e R"|Vi,z; € V}

~ Compute f (z), z € X, and locate max
— Grid search is often the first method to use.

« Only involves function evaluations
« It 1s embarassingly parallelizable

« It should get you a good initial guess
— A good initial guess is not critical for grid search, but is for all good algorithms

— Grid search is sloooooooow, so you should always switch to something better

o General lesson: start with a reliable but slow method to find good initial guess for a faster method

e Polytope Methods (a.k.a. Nelder-Mead, simplex, “amoeba’)

Algorithm 4.3 Polytope Algorithm

Initialize. Choose the stopping rule parameter €. Choose an initial
simplex {z!, 22, -+ "1}

Step 1. Reorder vertices so f(z') > f(z'™), i=1,--- ,n.

Step 2. Look for least i s.t. f(x') > f(y') where g is reflection of z'.
If such an 7 exists, set 2’ = ', and go to step 1.
Otherwise, go to step 3.

Step 3. Stopping rule: If the width of the current simplex
is less than ¢, STOP. Otherwise, go to step 4.

Step 4. Shrink simplex: For:=1,2,--- ,n

set z' = 3(z' + 2™™), and go to step 1.

Multidimensional Optimization: Newton’s Method

k

o Idea: Given 2%, compute local quadratic approximation, p (z), of f (x) around 2", and let 2% be

max of p(x)

Algorithm 4.4 Newton’s Method in R”
Initialize. Choose 2 and stopping parameters § and € > 0.
Step 1. Compute Hessian, H(z%), and gradient, 7 f(z"), and solve
H(2%)s" = —(s7f(2®))7 for the step s”.
Step 2. Mt =k 4 sk,
Step 3. If || 2% — 2" ||< e(1+ || 2F),
go to step 4; else go to step 1.

Step 4. If || v f(a®Y) [|< 6(1 + |f(2%1)]), STOP and report success;
else STOP and report convergence to nonoptimal point.

o Stopping rule: Don’t be too fussy!

— Good values for € and ¢ are close to the square root of machine epsilon.
~ First use sloppy € and 9, such as 107(-3).
— Then reduce € and ¢ until failure.

~ You can try to push them below square root of machine epsilon but you will probably not get
too far.

Theorem 2 Suppose that f(z) is C*, minimized at x*, and that H(z*) is nonsingular. Then there is
some € > 0 such that if || 2% — x* ||< €, then the sequence defined in (4.3.1) converges quadratically to

.

o Problems with Newton’s method:
— May not converge
— Computational demands may be excessive

« need at least O(n?) time to compute H(x*), perhaps more if one does not have efficient
code for H (z)

« need O(n?) space for H(z¥)
« need O(n?) time to solve H(x%)s® = —(7f(z*))T for s*
— May converge to local solution, not global solution

— We now consider methods which address these problems.

10

Direction Set Methods

« Problem: may not converge, or go to wrong kind of extremum

« Solution: if we always move uphill, we will eventually get to a local maximum

Algorithm 4.5 Generic Direction Method

Initialize. Choose initial ¥ and stopping parameters ¢ and € > 0.

Step 1. Compute a search direction s*.

Step 2. Solve A, = argminy, f(a* + \s¥).

Step 3. oFTl = ok 4 \psP.

Step 4. Tf || 2% — 2 ||< e(1+ || 2% ||), go to step 5;
else go to step 1.

Step 5. If || 7 f (2" ||< (1 + f(2*1)), STOP and report success;
else STOP and report convergence to nonoptimal point.

e Possible direction set methods

— Coordinate Directions

« Let search directions be coordinate, x1, x9, etc.

« Search direction so,. 1 = 1
~ Steepest Descent: s = s/ f(2")
~ Newton’s Method with Line Search: Hjs® = —(s7f(2%))T

« Will converge to a local optimum IF we apply something like the Armijo rule (see website).

11

Quasi-Newton Methods

o Problem: Hessians are expensive to compute
« Solution: Don’t need true Hessians (see Carter, 1993), so approximate them

Generic Quasi-Newton Method
Initialize. Choose initial z°, Hessian HY (I)and stopping
parameters ¢ and € > 0.
Step 1. Solve Hys* = —(s7f(2*))" for the search direction s*.
Step 2. Solve A = argminy f(2* + \s¥)
Step 3. Mt =2k 4 N\ sE
Step 4. Compute Hyyy using Hy, s/ f ("), 281 7 f(2%), etc.
Step 5. It || a% — 2" ||< e(1+ || 2¥ |]), go to step 6:.
else go to step 1
Step 6. It || 7 f (a1 ||< 6|1 + f(2¥1)|, STOP and report success;
else STOP and report convergence to nonoptimal point.

12

o Example: BFGS:

=t gk

ye=(Vf(@")" = (v f(=")"
Hyz.2z) Hy N Yy

T T
2, Hyzp, Yy 2k

— Preserves positive definiteness
— Uses only gradients that are already needed

— Warning: denominators may get too small; should keep them away from zero since small z;

does not necessarily stop iteration.

o Note: The Hessian iterates H; may not converge to true Hessian at solution, even if x; converges to

solution. NEVER USE APPROXIMATE HESSIANS TO COMPUTE STANDARD ERRORS!!!!

13

Monopoly Example
e We look at a simple monopoly pricing example:
— Utility function: if M is spending on other goods,
UY,Z)= (Y + Z)% 4 M = u(Y, Z)

— Output Y and Z implies prices of uy and uy.

— Monopoly problem is

+ M,

maxI1(Y, Z) = Yuy (Y, Z) + Zuz(Y, Z) — Cy (Y) — Cz(Z),

Y,Z

— Restate in terms of y = InY and z =In Z, n(y, z) =11 (€Y, €?)

max (y, z),
Y,z

Newton
Coordinate Direction
Newton with linesearch

BFGS

Example: A Dynamic Optimization Problem

o Life-cycle savings problem.

— an individual lives for T periods

— earns wages w; in period t,t =1,--- ,T

— consumes ¢; in period ¢

— earns interest on savings per period at rate r

— define S; to be end-of-period savings:
St—l—l = (1 + T)St + Wir1 — Cey1.

— Set initial wealth: Sy =0
~ utility function 37, flu(c;) + W (Sr)
— Substitute ¢; = S;_1(14+7) +w; — Sy

e Problem now has 1" choices:

T
t J—
max ; Bu(Si_1(1+7) +w; — Sy) + W(Sr)

15

o Newton’s method looks impractical if T" large. BUT

~ Hessian is tridiagonal (a sparse matrix)

« The choice of S; interacts only with the choices for S;_; and Sy 4
«+ Newton step is easy to compute.

« The normal Hessian has size T2

+ The tridiagonal matrix has size 37T

— Sparse Hessians are common in dynamic problems because time ¢ variables interact only with

time t — 1 and time ¢ + 1 variables.

— You must recognize this and implement Newton or quasi-Newton method with sparse Hes-
sians, Or use software that automatically recognizes this structure — AMPL, GAMS, AIMMS,
CASADI (future lecture), and others.

16

Domain Problems

e Suppose Sy = 0 and you want to solve
T
max » B'log (Si_1(1+7) +wy — S) + W(Sr)
S

« Newton’s method will take the guess S* and compute a new guess S¥*1.

o Problem: S**! could imply consumption, ¢; = S;_1(1 +r) + w; — S;, will be negative at some ¢,
causing computer to crash.

o A possible solution: Alter objective function

- E.G.; replace u (¢) = log ¢ with, for some small € > 0

a@:{u(c), c>e

wEe)+u (e)(c—e)+u'(e)(c—e) /2, c<e

~ Maintains curvature
~ Equals real u (¢) on most of domain, which hopefully includes solution

— Not as easy to apply to multivariate functions

« General solution: add constraints (next week’s topic) to keep this from happening.

17

Nonlinear Least Squares

« Objective function has form, f':R* = R, i=1,....m
1=
ml@n§ z_;fz(ac)2 = S(x

o Idea: use simple approximation of Hessian

e In econometric applications

- ['(x) are g(8,y"),
« x = [is parameter vector
« y' are the data.

« g(B3,y") is residual for observation i

~ S(B) is the sum of squared residuals at (.
e Let f(x) denote the column vector (f'(x))™;.

~ Let J(z) be the Jacobian of f(z) = (fY(x),..., f™(x))".

L 82 1
- Let f} = aa: -~ and fzg = agjjg@

~ The gradient of S(z) is J(x)" f: Se(z) =D, fi(z)f(z).
~ The Hessian of S(z) is J(z)' J(x) + G(x), where

v) =) fil@)f ()

18

« Special structure of the gradient and Hessian.

- fi(x) terms are needed to compute gradient of S(z).
~If f(z) =0, then Hessian is just J(z)"J(z): easy to compute.

— A problem where f(x) is small at the solution is called a small residual problem; otherwise, it

is a large residual problem.

o Gauss-Newton algorithm
- Do Newton except use J(z)'J(z) for Hessian approx.
st = —(J (") T (2")THV ()T (4.5.1)

and avoid computing second derivatives of f.
— Natural to use for small residual problems.

— Works very well when it works.

19

e Problems.

— J(z)"J(x) is likely to be poorly conditioned, since it is the “square” of a matrix.
— J(x) may be poorly conditioned itself, particularly in statistical contexts.
— Gauss-Newton step may not be a descent direction.

« Solution: Levenberg-Marquardt algorithm.
~ Use J(z)"J(x) + X for some scalar X (I is identity matrix):
st = —(J(@") " I(@") + AD)THV f(2)

— The AI term reduces conditioning problems by “adding a little piece of the identity matrix”

~ s will be descent direction for large A since s* gets closer to steepest descent direction \.

20

