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Linear Equations

 Linear equation

Axr =0
where b € R" and A € R™*"

o Importance of linear solution methods

— Some important problems are linear problems
— Nonlinear solution methods are generally sequences of linear problems

— Solution methods for linear equations illustrate general ideas and concepts for solving equations

in general



Triangular Systems

o A is lower triangular if all nonzero elements lie on or below the diagonal:

ajp 0 -+ 0

a21 a9 -+ 0

A—

Ap1 Ap2 - " " Qpp
— Upper triangular: all nonzero entries on or above the diagonal.
— A is a triangular matriz if it is either upper or lower triangular.
— A diagonal matrix has nonzero elements only on the diagonal.
— A triangular matrix is nonsingular iff all diagonal elements are nonzero

— Lower (upper, diagonal) triangular matrices are closed under multiplication and inversion.



e Solve triangular systems by back-substitution.

— Assume: A is lower triangular, nonsingular.

— Back-substitution is

b1
T = — 3.1.1
: ail ( )
by — X g @,
o= W 93 n (3.1.2)

akk

is well-defined for nonsingular, lower triangular matrices.

— Similar for upper triangular except we begin with x,, = b, /a,, and proceed to xy, k =n—1,n—
2,..2, 1.



Gaussian Elimination, LU Decomposition

« Suppose A is nonsingular
e Factor A = LU where L is lower triangular, U is upper triangular

— Computed by Gaussian elmination; see details in any numerical analysis book.
— There are many operations like (3.1.1, 3.1.2) executed to find L and U.
~ Rows and columns often must be reordered to avoid division by zero
« These details are called pivoting
« Linear algebra software may vary greatly in quality because of the pivoting strategy
« [ (and I suspect you) do not want to know the details. We just need to be aware of the
possibility.

« Below I will discuss how to reduce the chance of problems
e Given LU decomposition:

— Rewrite equation as LUx = b
« Define z = Ux
« Solve Lz = b by back substitution and get z
+ We now know 2z = Uz

+ Solve Uz = z by back substitution to get x
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QR factorization

o Definition: A is orthogonal iff A" A is a diagonal matrix

e Factor A = QR where () is orthogonal and R is upper triangular

— See details in books on linear numerical analysis.
~ Given QR decomposition, find z by

« Solve Qz = b by z = (QTQ)_l @Q'b which requires only inversion of a diagonal matrix and
matrix multiplication

« Solve Rx = z by back substitution

Cholesky Factorization

o Suppose A is symmetric positive definite
o Factor A = LL" where L is lower triangular

— L is a Cholesky factor, or “squareroot” of A
— Commonly used to factor variance-covariance matrices
— My book discusses details.

— A special case of LU decomposition: L' is upper triangular and is U in LU decomposition

procedure.



Cramer’s Rule

o Cramer’s rule solves for x in Ax = b by applying a direct formula to the elements of A and b.
e Is only method for symbolic expressions

« Very slow, with operation count of O(n!)

o It is a mess; see Wikipedia page

o I will post a Mathematica notebook illustrating its use



Error Bounds

We want to approximate errors in solving Ax = .

o True system: Ax = b

— Errors in b (due to roundoff, etc.) cause computer to solve AT =b+r

— Error in solutionise =1 — x
~ Hence, e = A7 r.

« Sensitivity of e to r is
lell . [l

)

— Equals percentage error in x relative to the percentage error in b — an elasticity
— Minimum sensitivity is 1, achieved when A = al, x = b/a.
— Sensitivity can be computed for any numerical problem

- Sensitivity=Elasticity! It’s just applied economics!



o Matrix analysis

~If || - || is a norm on R”, define norm of A
A
| A |[|= max | Az | = max || Ax ||
0 |2 Jel=t

- Spectral radius: p(A) = max{|| A || | A an eigenvalue of A}
~ For any nomn || - ||, p(4) <|| 4]

« The condition number of A relative to || - || is

cond(A) = | Al || A7,

~ Depends on norm || - ||
— Numerical analysis typically wants to use || - ||« because that corresponds to the worst case

— For any norm, cond(A) is difficult to compute



« Spectral condition number

— Define:
_ MaXpeq(4) | Al _ pl4

d, (A) = —
condu (A) = S A p(A T

— Theorem: For any norm,

cond(A) > cond, (A)
— Practical fact one: For standard norms, such as max or Euclidean norm,
cond(A) = cond, (A)

where by &~ we mean close in terms of orders of magnitude
~ Practical fact two: cond, (A) is relatively easy to estimate up to an order of magnitude

— We arrive at an approxrimate and practical error bound

lell ~ 7|
N cond, (A)
Fz | = (o]
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o Hilbert matrix example:

~ Definition
(11 1
2 3 n
11 1 1
H = 23 4 n+1
n — . .
1 ......... 1
n 2n—1
— Condition numbers (table in book has some errors)
n: 1 5 6

cond, (H,): 1.6(4) 4.8(5) 1.5(7) 1.5(10) 5
condse (H,): 2.8(4) 9.4(5) 2.9(7) 3.4(10)
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e Notes on condition numbers

— The error bound is an approximate upper bound; errors could possibly be greater, but are more

likely to be substantially less.
— Condition numbers are sensitive to scaling

« Consider the problem = = a, My = b; trivial to solve

+ This matrix has spectral condition number M :
1 0
0 M
« Define z = My; problem becomes one with condition number 1.

r=a, z=20

« Lesson: change in units (a.k.a., rescaling), or a linear transformation (“pre-conditioning”) may
improve conditioning

+ Recommendation: formulate problem so answer is O (1).

« See McCullough and Vinod, AER (2003), and followup comments.
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[terative Methods
e Direct methods (LU, QR, Cholesky)

— High accuracy
~ Time cost is order n?; too large for large matrices.

e Iterative methods

— Can handle large problems

— Less accuracy

— Less time

— User has time-accuracy tradeoffs under his control

— Ideas are used in nonlinear as well as linear problems.
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e Fixed-Point Iteration.

~Gr)=Ax—b+x
- Notation: a* is the k’th point in a sequence of points in R™; z¥ is the component in dimension 4
of the point z¥ € R™.

— Compute sequence
" = Gla) = (A+ D" — b (3.6.1)

~ Clearly x is a fixed point of G(x) if and only if = solves Az = b.
- (3.6.1) will converge iff |A\| < 1 forall A € 0 (A+ I);ie., G is a contraction
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o Gauss-Jacobi

~ Idea: Replace system of multivariate linear equations with sequence of single variable linear

problems

— The equation from the first row of Az = b:

bl = Q111 + A19T9 + -+ + a1,Ty

-1
—> X1 = Qqq (b1 — a19Tyg — *+ — alnﬂfn).

— In general, if a;; # 0, the ¢th row of A implies

1
T, — — bl — E CLZ'j Zl?j
j

J#i
— Turn this into an iterative process as in
SRR : =1 3.6.2
T; = Z-—Zaijxj , 1=1,...,mn (3.6.2)
JF
~ Note: no :Cf“ is used until each :Uf“ has been computed.

~ We hope that (3.6.2) converges to the true solution
— Results are sensitive to which equation goes with which equation
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o Gauss-Seidel

— Idea: Replace multivariate system with sequence of univariate problems and use new information

immediately
~ Given z*, compute guess for z; from row 1
k+1 _ —1 k k
2y = ap (b —anay — - = anay,),
- Use x’f“ immediately to compute $§+12
E+1 _ -1 k+1 k k
Ty = Gy (bo — ag1x{™ — agzxs — -+ — a9, ).

— In general, define the sequence {x*}2°,

1—1 n

1
AR — bi—ZaZ-j:L’?H—Zaijx? =1, .,n (3.6.3)

al..
" j=1 j=i+1

E+1

— Each component of """ is used immediately after computed

— Gauss-Seidel sensitive to (i) matching between variables and equations, and (ii) ordering of equa-

tions.
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—

1 2 3 4 5 6

Figure 1: Gauss-Jacobi (ADGH) versus Gauss-Seidel (ABELN)
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Tatonnement and Iterative Schemes.
o Equilibrium problem

— Inverse demand equation p = 10 — ¢
~ Supply curve ¢ = p/2+ 1
— Equilibrium
p+q=10 (3.6.6a)
p—2q=—2 (3.6.6b)
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o Gauss-Jacobi

— Initial guess: p =4 and ¢ = 1, point A in figure 3.2.

— New guess:
+ Solve demand eqn for p, holding ¢ fixed; move to C' on the demand eqn.
« Move from A to the B on supply curve to solve for ¢ holding p fixed.
« Similar to a pair of auctioneers

+ General iteration is
Qnr1=1+ %pna
Ppi1= 10 — q,.

+ Slow convergence, spiraling to p = 6 and g = 4.

(3.6.7)
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o Gauss-Seidel

— Start from A.

— Use the supply curve to get a new g at B

~ Move from B up to E, get new p from the demand equation.
— Similar to an auctioneer alternating between markets.

— Also called hog cycle — firms expect pgy, produce ¢;, which causes prices to rise to pp, causing

production to be ¢y, and so on.

— General iteration is
4n+1 = 1+ %pna

(3.6.8)
Pn41= 10 — qn+1-

— Gauss-Seidel converges more rapidly.
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Operator Splitting Approach.

o General strategy: Transform problem into another problem with same solution where fixed-point
iteration is cheap and works.

— Problem: Ax = 0.
~ Split A into two operators

A=N — P, (3.7.1)
- Note: Az = b if and only if Nox = b+ Pux.
— Define the iteration
Na™ = b+ Pa™ (3.7.2)

— Goal: find N so that

« each step of (3.7.2) is easy to solve, and
+ (3.7.2) converges
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« Gauss-Jacobi is a splitting with diagonal N

ajp 0 --- 0
0 e 0

N = .a.22. . , P=—
0 0 ---ay

o Gauss-Seidel is a splitting with lower triangular N

all() 0--- 0

N — a21a220'°° 0

an1 Ap2 Ap3 - App
« Many possible splittings; just keep IV simple

« Note: A can be any operator, not just linear operator
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Convergence of Iterative Schemes.

« Rate of convergence.

— Suppose A =N — P, and Ax* = b.

~ Consider No™* = b+ Px™
« Error €™ = x* — 2™ obeys iteration ™ = (N"1P)" e’
s e — 0iff (N7IP)m e — 0 iff p(N71P) < 1.

— At best linearly convergent

e Diagonal dominance. A is diagonally dominant iff

Z |aZj‘ < |aii|7 1= 17 T, N

JF
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Theorem 1 If A is diagonally dominant, both Gauss-Jacobi and Gauss-Seidel iteration schemes

are convergent for all initial guesses.

e Ficonomic intuition:

— If (Ap); is excess demand for good 7 at price p € R", then diagonal dominance says excess demand

for each good is more sensitive to its own price than to a similar change in all other prices.
— Also known as gross substitutability.

 This tells us how to match variables with equations:

— Match z; with some equation where x; has a large coefficient

— In tatonnement, use the apple excess demand equation to compute the apple price, use cheese

excess demand equation to compute cheese price, etc.
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Acceleration and Stabilization Methods

« Convergence of Gaussian is linear; no way to change that.

« Sometimes we can increase the linear rate of convergence.

« Extrapolation and Dampening.

- To solve Ax = b, define G =1 — A.

— Consider the iteration
"l =G +b (3.9.1)

+ (3.9.1) will converge iff p(G) < 1
« If p(G) < 1 then G is a contraction mapping with contraction rate p (G)

« If p(G) is close to 1, convergence will be slow.
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— For scalar w, consider o ) )
2" = wGa" + wb+ (1 —w)x
e (392

* When w > 1, (3.9.2) is called extrapolation; see Figure 3.3.b.

. Convergence implies that Gz* + b is a good direction to move

- Convergence may be accelerated by going further each iteration.
* When w < 1, (3.9.2) is called dampening; see Figure 3.3.b.

- Gz + b may be a good direction, but overshoots solution

- If w < 1, (3.9.2) may avoid overshooting and converge

k+1 k+1  k
x0 O F(w-)xT O -x)) K+l
o X

L
k .@ /
?:/ X.V ka—H +(1-w) Xk

@ (b)



Dampening to Stabilize an Unstable “Hog Cycle”.
« Suppose inverse demand is p = 21 — 3¢ and supply is ¢ = p/2 — 3
o Linear system is not diagonally dominant:
() 6)- ()
1-2 q 6

o Gauss-Seidel is unstable:

Pn+1 = 21 — SQn
1
Qn+1 = épnﬂ -3

« Stabilize through damping: if w = 0.75, then we have stable system
Pnr1 = 0.75(21 — 3¢,) + 0.25p,

1
qn+1 = O75(§pn+1 - 3) + 025Qn
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(3.9.10b)



20 ¢

Figure 3: Stabilizing a hog cycle
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Exatrapolation to Accelerate Convergence in a Game

 Assume firm two’s reaction curve is po = 2 4+ 0.80p; = Ra(p1), and firm one’s reaction curve is

P1 = 1+ 0.75]92 = Rl(pg).
o Equilibrium system is diagonally dominant

e Gauss-Seidel is the iterative scheme

Pt = Ry (ph) (3.9.12a)
Pyt = Ry (pi™) (3.9.12b)

e Accelerate (3.9.12). If w = 1.5, we arrive at faster scheme:

piTt = 1.5R; (py) — 0.5p], (3.9.13a)
Py = 1L5R,y (pi™') — 0.5p5. (3.9.13b)
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— Accelerate (3.9.12). If w = 1.5, we arrive at faster scheme:

piT =15R; (py) — 0.5p], (3.9.13a)
Py =15R, (pi*") — 0.5p5. (3.9.13b)




Sparse Matrices
o Classification

— Dense: Ais dense it a;; # 0 for most ¢, j.
~ Sparse: A'is sparse it a;; = 0 for most 7, j

« “most” is not a precise definition

« In practice, we are studying a class of problems of varying dimension and “most” means that

the number of nonzero elements is Mn form some fixed M.

« Diagonal matrix:

dy0--- 0

0d- 0
00---d,

D b — by
€r = r, = —
d;
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« Tridiagonal matrix has all nonzero elements on or next to the diagonal

(analgo O\
(21 A2 A23 - 0
0 e 0
A — 32 A33 A34
0 0 A3 Qyq* * - 0
L0 00 0 ay)
and Ax = b is solved by
a11T1 + a19Ty = by (ROW 1)
by — a1x
s g = 1 1171
a2
= g — 52151
a1 + AT + 933 = A91T1 + Q29 (g — PoT1) + ag3T3 = by (Row 2)
— T3 = a3 — [
Tp = Qp_1 — Bp_1T1 (Row n-1)
Qp n—1 (Ofn—Q - Bn—le) + app (an—l - 571—1:51) — bn (ROW l"l)

— x; solution
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 Taking advantage of sparseness

— Storage:

2

« Dense: n“ numbers

« Sparse: store only m ~ O (n) nonzero elements along with their locations.
~ Operations: Matrix multiplication — Az or yB

« Dense uses 2n? flops

« Sparse approach uses 2m ~ O (n) flops
« Application: Ergodic distribution of a finite Markov chain

— Markov transition matrices, II, are often sparse
— Ergodic distribution x solves zll = z.

k+

~ Solve by iteration: z**! = 2*II; works well since 2*II is fast if II is sparse.

« Software: Standard packages (Matlab, Mathematica, etc.) offer sparse storage and operation options.
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Summary
 Linear equations are essential in numerical methods

— Linear problems are common

— Nonlinear problems are reduced to a sequence of linear problems
 Linear equation methods often inspire methods for nonlinear problems

— The key concepts behind Gauss-Jacobi and Gauss-Seidel methods can also be applied to nonlinear

problems

— The key concepts behind relaxation methods can also be applied to nonlinear problems
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