
Numerical Methods in Economics
MIT Press, 1998

Notes for Chapter 3: Linear Equations and Iterative Methods

February 24, 2020

1

Linear Equations

• Linear equation

Ax = b

where b ∈ Rn and A ∈ Rn×n

• Importance of linear solution methods

– Some important problems are linear problems

– Nonlinear solution methods are generally sequences of linear problems

– Solution methods for linear equations illustrate general ideas and concepts for solving equations

in general

2

Triangular Systems

• A is lower triangular if all nonzero elements lie on or below the diagonal:

A =


a11 0 · · · 0

a21 a22 · · · 0
...

an1an2 · · · ann

 .

– Upper triangular : all nonzero entries on or above the diagonal.

– A is a triangular matrix if it is either upper or lower triangular.

– A diagonal matrix has nonzero elements only on the diagonal.

– A triangular matrix is nonsingular iff all diagonal elements are nonzero

– Lower (upper, diagonal) triangular matrices are closed under multiplication and inversion.

3

• Solve triangular systems by back-substitution .

– Assume: A is lower triangular, nonsingular.

– Back-substitution is

x1 =
b1
a11

(3.1.1)

xk =
bk − Σk−1

j=1 akj xj

akk
, k = 2, 3, ..., n (3.1.2)

is well-defined for nonsingular, lower triangular matrices.

– Similar for upper triangular except we begin with xn = bn/ann and proceed to xk, k = n−1, n−
2, ...2, 1.

4

Gaussian Elimination, LU Decomposition

• Suppose A is nonsingular

• Factor A = LU where L is lower triangular, U is upper triangular

– Computed by Gaussian elmination; see details in any numerical analysis book.

– There are many operations like (3.1.1, 3.1.2) executed to find L and U .

– Rows and columns often must be reordered to avoid division by zero

∗ These details are called pivoting

∗ Linear algebra software may vary greatly in quality because of the pivoting strategy

∗ I (and I suspect you) do not want to know the details. We just need to be aware of the

possibility.

∗ Below I will discuss how to reduce the chance of problems

• Given LU decomposition:

– Rewrite equation as LUx = b

∗ Define z = Ux

∗ Solve Lz = b by back substitution and get z

∗ We now know z = Ux

∗ Solve Ux = z by back substitution to get x

5

QR factorization

• Definition: A is orthogonal iff A>A is a diagonal matrix

• Factor A = QR where Q is orthogonal and R is upper triangular

– See details in books on linear numerical analysis.

– Given QR decomposition, find x by

∗ Solve Qz = b by z =
(
Q>Q

)−1
Q>b which requires only inversion of a diagonal matrix and

matrix multiplication

∗ Solve Rx = z by back substitution

Cholesky Factorization

• Suppose A is symmetric positive definite

• Factor A = LL> where L is lower triangular

– L is a Cholesky factor, or “squareroot” of A

– Commonly used to factor variance-covariance matrices

– My book discusses details.

– A special case of LU decomposition: L> is upper triangular and is U in LU decomposition

procedure.

6

Cramer’s Rule

• Cramer’s rule solves for x in Ax = b by applying a direct formula to the elements of A and b.

• Is only method for symbolic expressions

• Very slow, with operation count of O(n!)

• It is a mess; see Wikipedia page

• I will post a Mathematica notebook illustrating its use

7

Error Bounds
We want to approximate errors in solving Ax = b.

• True system: Ax = b

– Errors in b (due to roundoff, etc.) cause computer to solve Ax̃ = b + r

– Error in solution is e ≡ x̃− x
– Hence, e = A−1 r.

• Sensitivity of e to r is
‖ e ‖
‖ x ‖

÷ ‖ r ‖
‖ b ‖

,

– Equals percentage error in x relative to the percentage error in b – an elasticity

– Minimum sensitivity is 1, achieved when A = aI, x = b/a.

– Sensitivity can be computed for any numerical problem

– Sensitivity≡Elasticity! It’s just applied economics!

8

• Matrix analysis

– If ‖ · ‖ is a norm on Rn, define norm of A

‖ A ‖≡ max
x 6=0

‖ Ax ‖
‖ x ‖

= max
‖x‖=1

‖ Ax ‖

– Spectral radius: ρ(A) = max {‖ λ ‖ | λ an eigenvalue of A}
– For any norm ‖ · ‖, ρ(A) ≤‖ A ‖ .

• The condition number of A relative to ‖ · ‖ is

cond(A) ≡ ‖ A ‖ ‖ A−1 ‖,

– Depends on norm ‖ · ‖
– Numerical analysis typically wants to use ‖ · ‖∞ because that corresponds to the worst case

– For any norm, cond(A) is difficult to compute

9

• Spectral condition number

– Define:

cond∗ (A) ≡
maxλ∈σ(A) |λ|
minλ∈σ(A) |λ|

=
ρ(A)

ρ(A−1)

– Theorem: For any norm,

cond(A) ≥ cond∗ (A)

– Practical fact one: For standard norms, such as max or Euclidean norm,

cond(A) ≈ cond∗ (A)

where by ≈ we mean close in terms of orders of magnitude

– Practical fact two: cond∗ (A) is relatively easy to estimate up to an order of magnitude

– We arrive at an approximate and practical error bound

‖ e ‖
‖ x ‖

/
‖ r ‖
‖ b ‖

cond∗ (A)

10

• Hilbert matrix example:

– Definition

Hn ≡


1 1

2
1
3 · · · 1n

1
2
1
3

1
4 · · · 1

n+1
...
1
n · · · · · · · · ·

1
2n−1


– Condition numbers (table in book has some errors)

n: 4 5 6 8 11

cond∗ (Hn): 1.6(4) 4.8(5) 1.5(7) 1.5(10) 5.2(14)

cond∞ (Hn): 2.8(4) 9.4(5) 2.9(7) 3.4(10) 1.2(15)

11

• Notes on condition numbers

– The error bound is an approximate upper bound; errors could possibly be greater, but are more

likely to be substantially less.
– Condition numbers are sensitive to scaling

∗ Consider the problem x = a, My = b; trivial to solve

∗ This matrix has spectral condition number M :(
1 0

0 M

)
∗ Define z = My; problem becomes one with condition number 1.

x = a, z = b

∗ Lesson: change in units (a.k.a., rescaling), or a linear transformation (“pre-conditioning”) may

improve conditioning

∗ Recommendation: formulate problem so answer is O (1).

∗ See McCullough and Vinod, AER (2003), and followup comments.

12

Iterative Methods

• Direct methods (LU, QR, Cholesky)

– High accuracy

– Time cost is order n3; too large for large matrices.

• Iterative methods

– Can handle large problems

– Less accuracy

– Less time

– User has time-accuracy tradeoffs under his control

– Ideas are used in nonlinear as well as linear problems.

13

• Fixed-Point Iteration.

– G(x) ≡ Ax− b + x

– Notation: xk is the k’th point in a sequence of points in Rn; xki is the component in dimension i

of the point xk ∈ Rn.

– Compute sequence

xk+1 = G(xk) = (A + I)xk − b (3.6.1)

– Clearly x is a fixed point of G(x) if and only if x solves Ax = b.

– (3.6.1) will converge iff |λ| < 1 for all λ ∈ σ (A + I); i.e., G is a contraction

14

• Gauss-Jacobi

– Idea: Replace system of multivariate linear equations with sequence of single variable linear

problems

– The equation from the first row of Ax = b:

b1 = a11x1 + a12x2 + · · · + a1nxn

=⇒ x1 = a−111 (b1 − a12x2 − · · · − a1nxn).

– In general, if aii 6= 0, the ith row of A implies

xi =
1

aii

bi −∑
j 6=i

aij xj

 .

– Turn this into an iterative process as in

xk+1
i =

1

aii

bi −∑
j 6=i

aij x
k
j

 , i = 1, . . ., n (3.6.2)

– Note: no xk+1
i is used until each xk+1

i has been computed.

– We hope that (3.6.2) converges to the true solution

– Results are sensitive to which equation goes with which equation

15

• Gauss-Seidel

– Idea: Replace multivariate system with sequence of univariate problems and use new information

immediately

– Given xk, compute guess for x1 from row 1

xk+1
1 = a−111 (b1 − a12xk2 − · · · − a1nxkn),

– Use xk+1
1 immediately to compute xk+1

2 :

xk+1
2 = a−122 (b2 − a21xk+1

1 − a23xk3 − · · · − a2nxkn).

– In general, define the sequence {xk}∞k=1

xk+1
i =

1

aii

bi −
i−1∑
j=1

aij x
k+1
j −

n∑
j=i+1

aij x
k
j

 , i = 1, · · · , n (3.6.3)

– Each component of xk+1 is used immediately after computed

– Gauss-Seidel sensitive to (i) matching between variables and equations, and (ii) ordering of equa-

tions.

16

10 c D

8

6

4
A B

2

1 2 3 4 5 6

Figure 1: Gauss-Jacobi (ADGH) versus Gauss-Seidel (ABELN)

17

Tatonnement and Iterative Schemes.

• Equilibrium problem

– Inverse demand equation p = 10− q
– Supply curve q = p/2 + 1

– Equilibrium

p + q = 10 (3.6.6a)

p− 2q = −2 (3.6.6b)

18

• Gauss-Jacobi

– Initial guess: p = 4 and q = 1, point A in figure 3.2.
– New guess:

∗ Solve demand eqn for p, holding q fixed; move to C on the demand eqn.

∗ Move from A to the B on supply curve to solve for q holding p fixed.

∗ Similar to a pair of auctioneers

∗ General iteration is
qn+1 = 1 + 1

2pn,

pn+1= 10− qn.
(3.6.7)

∗ Slow convergence, spiraling to p = 6 and q = 4.

19

• Gauss-Seidel

– Start from A.

– Use the supply curve to get a new q at B

– Move from B up to E, get new p from the demand equation.

– Similar to an auctioneer alternating between markets.

– Also called hog cycle – firms expect p0, produce q1, which causes prices to rise to p1, causing

production to be q2, and so on.

– General iteration is
qn+1 = 1 + 1

2pn,

pn+1= 10− qn+1.
(3.6.8)

– Gauss-Seidel converges more rapidly.

20

Operator Splitting Approach.

• General strategy: Transform problem into another problem with same solution where fixed-point
iteration is cheap and works.

– Problem: Ax = b.

– Split A into two operators

A = N − P, (3.7.1)

– Note: Ax = b if and only if Nx = b + Px.

– Define the iteration

Nxm+1 = b + Pxm (3.7.2)

– Goal: find N so that

∗ each step of (3.7.2) is easy to solve, and

∗ (3.7.2) converges

21

• Gauss-Jacobi is a splitting with diagonal N

N =


a11 0 · · · 0

0 a22 · · · 0
...

0 0 · · · ann

 , P = −


0 a12 · · · a1n
a21 0 · · · a2n
...

an1an2 · · · 0

 .

• Gauss-Seidel is a splitting with lower triangular N

N =


a11 0 0 · · · 0

a21 a22 0 · · · 0
...

an1an2an3 · · · ann

 , P = −


0a12 a13 · · · a1n
0 0 a23 · · · a2n
...

0 0 · · · 0 0


• Many possible splittings; just keep N simple

• Note: A can be any operator, not just linear operator

22

Convergence of Iterative Schemes.

• Rate of convergence.

– Suppose A = N − P , and Ax∗ = b.

– Consider Nxm+1 = b + Pxm

∗ Error em ≡ x∗ − xm obeys iteration em = (N−1P)m e0.

∗ em → 0 iff (N−1P)m e0 → 0 iff ρ(N−1P) < 1.

– At best linearly convergent

• Diagonal dominance . A is diagonally dominant iff∑
j 6=i

|aij| < |aii|, i = 1, · · · , n.

23

Theorem 1 If A is diagonally dominant, both Gauss-Jacobi and Gauss-Seidel iteration schemes

are convergent for all initial guesses.

• Economic intuition:

– If (Ap)i is excess demand for good i at price p ∈ Rn, then diagonal dominance says excess demand

for each good is more sensitive to its own price than to a similar change in all other prices.

– Also known as gross substitutability .

• This tells us how to match variables with equations:

– Match xi with some equation where xi has a large coefficient

– In tatonnement, use the apple excess demand equation to compute the apple price, use cheese

excess demand equation to compute cheese price, etc.

24

Acceleration and Stabilization Methods

• Convergence of Gaussian is linear; no way to change that.

• Sometimes we can increase the linear rate of convergence.

• Extrapolation and Dampening.

– To solve Ax = b, define G = I − A.

– Consider the iteration

xk+1 = Gxk + b (3.9.1)

∗ (3.9.1) will converge iff ρ(G) < 1

∗ If ρ(G) < 1 then G is a contraction mapping with contraction rate ρ (G)

∗ If ρ(G) is close to 1, convergence will be slow.

25

— For scalar ω, consider
xk+1= ωGxh + ωb + (1− ω)xk

≡ G[ω]xk + ωb
(3.9.2)

∗ When ω > 1, (3.9.2) is called extrapolation; see Figure 3.3.b.

· Convergence implies that Gxk + b is a good direction to move
· Convergence may be accelerated by going further each iteration.

∗ When ω < 1, (3.9.2) is called dampening; see Figure 3.3.b.

· Gxk + b may be a good direction, but overshoots solution
· If ω < 1, (3.9.2) may avoid overshooting and converge

27

Dampening to Stabilize an Unstable “Hog Cycle”.

• Suppose inverse demand is p = 21− 3q and supply is q = p/2− 3

• Linear system is not diagonally dominant:(
1 3

1−2

)(
p

q

)
=

(
21

6

)
(3.9.8)

• Gauss-Seidel is unstable:

pn+1 = 21− 3qn (3.9.9a)

qn+1 =
1

2
pn+1 − 3 (3.9.9b)

• Stabilize through damping: if ω = 0.75, then we have stable system

pn+1 = 0.75(21− 3qn) + 0.25pn (3.9.10a)

qn+1 = 0.75(
1

2
pn+1 − 3) + 0.25qn (3.9.10b)

27

Figure 3: Stabilizing a hog cycle

28

Exatrapolation to Accelerate Convergence in a Game

• Assume firm two’s reaction curve is p2 = 2 + 0.80p1 ≡ R2(p1), and firm one’s reaction curve is

p1 = 1 + 0.75p2 ≡ R1(p2).

• Equilibrium system is diagonally dominant

• Gauss-Seidel is the iterative scheme

pn+1
1 = R1 (pn2) (3.9.12a)

pn+1
2 = R2

(
pn+1
1

)
(3.9.12b)

• Accelerate (3.9.12). If ω = 1.5, we arrive at faster scheme:

pn+1
1 = 1.5R1 (pn2)− 0.5pn1 , (3.9.13a)

pn+1
2 = 1.5R2

(
pn+1
1

)
− 0.5pn2 . (3.9.13b)

29

— Accelerate (3.9.12). If ω = 1.5, we arrive at faster scheme:

pn+11 =1.5R1 (p
n
2)− 0.5pn1 , (3.9.13a)

pn+12 =1.5R2
�
pn+11

�− 0.5pn2 . (3.9.13b)

35

Sparse Matrices

• Classification

– Dense: A is dense if aij 6= 0 for most i, j.

– Sparse: A is sparse if aij = 0 for most i, j

∗ “most” is not a precise definition

∗ In practice, we are studying a class of problems of varying dimension and “most” means that

the number of nonzero elements is Mn form some fixed M .

• Diagonal matrix:

D =


d1 0 · · · 0

0 d2 · · · 0
...

0 0 · · · dn


Dx = b =⇒ xi =

bi
di

31

• Tridiagonal matrix has all nonzero elements on or next to the diagonal

A =



a11a12 0 · · · 0

a21a22a23 · · · 0

0 a32a33a34 · · · 0

0 0 a43a44 · · · 0
...

0 0 0 0 · · · ann


and Ax = b is solved by

a11x1 + a12x2 = b1 (Row 1)

=⇒ x2 =
b1 − a11x1

a12
= α2 − β2x1

a21x1 + a22x2 + a23x3 = a21x1 + a22 (α2 − β2x1) + a23x3 = b2 (Row 2)

=⇒ x3 = α3 − β3x1
...

xn = αn−1 − βn−1x1 (Row n-1)

an,n−1 (αn−2 − βn−2x1) + ann (αn−1 − βn−1x1) = bn (Row n)

=⇒ x1 solution

32

• Taking advantage of sparseness

– Storage:

∗ Dense: n2 numbers

∗ Sparse: store only m ∼ O (n) nonzero elements along with their locations.

– Operations: Matrix multiplication – Ax or yB

∗ Dense uses 2n2 flops

∗ Sparse approach uses 2m ∼ O (n) flops

• Application: Ergodic distribution of a finite Markov chain

– Markov transition matrices, Π, are often sparse

– Ergodic distribution x solves xΠ = x.

– Solve by iteration: xk+1 = xkΠ; works well since xkΠ is fast if Π is sparse.

• Software: Standard packages (Matlab, Mathematica, etc.) offer sparse storage and operation options.

33

Summary

• Linear equations are essential in numerical methods

– Linear problems are common

– Nonlinear problems are reduced to a sequence of linear problems

• Linear equation methods often inspire methods for nonlinear problems

– The key concepts behind Gauss-Jacobi and Gauss-Seidel methods can also be applied to nonlinear

problems

– The key concepts behind relaxation methods can also be applied to nonlinear problems

34

