Numerical Methods in Economics MIT Press, 1998

Notes for Chapter 3: Linear Equations and Iterative Methods
February 24, 2020

Linear Equations

- Linear equation

$$
A x=b
$$

where $b \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times n}$

- Importance of linear solution methods
- Some important problems are linear problems
- Nonlinear solution methods are generally sequences of linear problems
- Solution methods for linear equations illustrate general ideas and concepts for solving equations in general

Triangular Systems

- A is lower triangular if all nonzero elements lie on or below the diagonal:

$$
A=\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

- Upper triangular: all nonzero entries on or above the diagonal.
- A is a triangular matrix if it is either upper or lower triangular.
- A diagonal matrix has nonzero elements only on the diagonal.
- A triangular matrix is nonsingular iff all diagonal elements are nonzero
- Lower (upper, diagonal) triangular matrices are closed under multiplication and inversion.
- Solve triangular systems by back-substitution.
- Assume: A is lower triangular, nonsingular.
- Back-substitution is

$$
\begin{align*}
& x_{1}=\frac{b_{1}}{a_{11}} \tag{3.1.1}\\
& x_{k}=\frac{b_{k}-\Sigma_{j=1}^{k-1} a_{k j} x_{j}}{a_{k k}}, k=2,3, \ldots, n \tag{3.1.2}
\end{align*}
$$

is well-defined for nonsingular, lower triangular matrices.

- Similar for upper triangular except we begin with $x_{n}=b_{n} / a_{n n}$ and proceed to $x_{k}, k=n-1, n-$ $2, \ldots 2,1$.

Gaussian Elimination, $L U$ Decomposition

- Suppose A is nonsingular
- Factor $A=L U$ where L is lower triangular, U is upper triangular
- Computed by Gaussian elmination; see details in any numerical analysis book.
- There are many operations like (3.1.1, 3.1.2) executed to find L and U.
- Rows and columns often must be reordered to avoid division by zero
* These details are called pivoting
* Linear algebra software may vary greatly in quality because of the pivoting strategy
* I (and I suspect you) do not want to know the details. We just need to be aware of the possibility.
* Below I will discuss how to reduce the chance of problems
- Given $L U$ decomposition:
- Rewrite equation as $L U x=b$
* Define $z=U x$
* Solve $L z=b$ by back substitution and get z
* We now know $z=U x$
* Solve $U x=z$ by back substitution to get x

QR factorization

- Definition: A is orthogonal iff $A^{\top} A$ is a diagonal matrix
- Factor $A=Q R$ where Q is orthogonal and R is upper triangular
- See details in books on linear numerical analysis.
- Given $Q R$ decomposition, find x by
* Solve $Q z=b$ by $z=\left(Q^{\top} Q\right)^{-1} Q^{\top} b$ which requires only inversion of a diagonal matrix and matrix multiplication
* Solve $R x=z$ by back substitution

Cholesky Factorization

- Suppose A is symmetric positive definite
- Factor $A=L L^{\top}$ where L is lower triangular
- L is a Cholesky factor, or "squareroot" of A
- Commonly used to factor variance-covariance matrices
- My book discusses details.
- A special case of $L U$ decomposition: L^{\top} is upper triangular and is U in $L U$ decomposition procedure.

Cramer's Rule

- Cramer's rule solves for x in $A x=b$ by applying a direct formula to the elements of A and b.
- Is only method for symbolic expressions
- Very slow, with operation count of $\mathcal{O}(n!)$
- It is a mess; see Wikipedia page
- I will post a Mathematica notebook illustrating its use

Error Bounds

We want to approximate errors in solving $A x=b$.

- True system: $A x=b$
- Errors in b (due to roundoff, etc.) cause computer to solve $A \tilde{x}=b+r$
- Error in solution is $e \equiv \tilde{x}-x$
- Hence, $e=A^{-1} r$.
- Sensitivity of e to r is

$$
\frac{\|e\|}{\|x\|} \div \frac{\|r\|}{\|b\|}
$$

- Equals percentage error in x relative to the percentage error in b - an elasticity
- Minimum sensitivity is 1 , achieved when $A=a I, x=b / a$.
- Sensitivity can be computed for any numerical problem
- Sensitivity \equiv Elasticity! It's just applied economics!
- Matrix analysis
- If $\|\cdot\|$ is a norm on \mathbb{R}^{n}, define norm of A

$$
\|A\| \equiv \max _{x \neq 0} \frac{\|A x\|}{\|x\|}=\max _{\|x\|=1}\|A x\|
$$

- Spectral radius: $\rho(A)=\max \{\|\lambda\| \mid \lambda$ an eigenvalue of $A\}$
- For any norm $\|\cdot\|, \rho(A) \leq\|A\|$.
- The condition number of A relative to $\|\cdot\|$ is

$$
\operatorname{cond}(A) \equiv\|A\|\left\|A^{-1}\right\|,
$$

- Depends on norm $\|\cdot\|$
- Numerical analysis typically wants to use $\|\cdot\|_{\infty}$ because that corresponds to the worst case
- For any norm, $\operatorname{cond}(A)$ is difficult to compute
- Spectral condition number
- Define:

$$
\operatorname{cond}_{*}(A) \equiv \frac{\max _{\lambda \in \sigma(A)}|\lambda|}{\min _{\lambda \in \sigma(A)}|\lambda|}=\frac{\rho(A)}{\rho\left(A^{-1}\right)}
$$

- Theorem: For any norm,

$$
\operatorname{cond}(A) \geq \operatorname{cond}_{*}(A)
$$

- Practical fact one: For standard norms, such as max or Euclidean norm,

$$
\operatorname{cond}(A) \approx \operatorname{cond}_{*}(A)
$$

where by \approx we mean close in terms of orders of magnitude

- Practical fact two: $\operatorname{cond}_{*}(A)$ is relatively easy to estimate up to an order of magnitude
- We arrive at an approximate and practical error bound

$$
\frac{\|e\|}{\|x\|} \lesssim \frac{\|r\|}{\|b\|} \operatorname{cond}_{*}(A)
$$

- Hilbert matrix example:
- Definition
- Condition numbers (table in book has some errors)

$$
\begin{array}{rrrrrr}
n: & 4 & 5 & 6 & 8 & 11 \\
\operatorname{cond}_{*}\left(H_{n}\right): & 1.6(4) & 4.8(5) & 1.5(7) & 1.5(10) & 5.2(14) \\
\operatorname{cond}_{\infty}\left(H_{n}\right): & 2.8(4) & 9.4(5) & 2.9(7) & 3.4(10) & 1.2(15)
\end{array}
$$

- Notes on condition numbers
- The error bound is an approximate upper bound; errors could possibly be greater, but are more likely to be substantially less.
- Condition numbers are sensitive to scaling
* Consider the problem $x=a, M y=b$; trivial to solve
* This matrix has spectral condition number M :

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & M
\end{array}\right)
$$

* Define $z=M y$; problem becomes one with condition number 1 .

$$
x=a, z=b
$$

* Lesson: change in units (a.k.a., rescaling), or a linear transformation ("pre-conditioning") may improve conditioning
* Recommendation: formulate problem so answer is $O(1)$.
* See McCullough and Vinod, AER (2003), and followup comments.

Iterative Methods

- Direct methods (LU, QR, Cholesky)
- High accuracy
- Time cost is order n^{3}; too large for large matrices.
- Iterative methods
- Can handle large problems
- Less accuracy
- Less time
- User has time-accuracy tradeoffs under his control
- Ideas are used in nonlinear as well as linear problems.
- Fixed-Point Iteration.
$-G(x) \equiv A x-b+x$
- Notation: x^{k} is the k^{\prime} th point in a sequence of points in $\mathbb{R}^{n} ; x_{i}^{k}$ is the component in dimension i of the point $x^{k} \in \mathbb{R}^{n}$.
- Compute sequence

$$
\begin{equation*}
x^{k+1}=G\left(x^{k}\right)=(A+I) x^{k}-b \tag{3.6.1}
\end{equation*}
$$

- Clearly x is a fixed point of $G(x)$ if and only if x solves $A x=b$.
- (3.6.1) will converge iff $|\lambda|<1$ for all $\lambda \in \sigma(A+I)$; i.e., G is a contraction
- Gauss-Jacobi
- Idea: Replace system of multivariate linear equations with sequence of single variable linear problems
- The equation from the first row of $A x=b$:

$$
\begin{aligned}
b_{1} & =a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
& \Longrightarrow x_{1}=a_{11}^{-1}\left(b_{1}-a_{12} x_{2}-\cdots-a_{1 n} x_{n}\right) .
\end{aligned}
$$

- In general, if $a_{i i} \neq 0$, the i th row of A implies

$$
x_{i}=\frac{1}{a_{i i}}\left\{b_{i}-\sum_{j \neq i} a_{i j} x_{j}\right\} .
$$

- Turn this into an iterative process as in

$$
\begin{equation*}
x_{i}^{k+1}=\frac{1}{a_{i i}}\left\{b_{i}-\sum_{j \neq i} a_{i j} x_{j}^{k}\right\}, \quad i=1, \ldots, n \tag{3.6.2}
\end{equation*}
$$

- Note: no x_{i}^{k+1} is used until each x_{i}^{k+1} has been computed.
- We hope that (3.6.2) converges to the true solution
- Results are sensitive to which equation goes with which equation
- Gauss-Seidel
- Idea: Replace multivariate system with sequence of univariate problems and use new information immediately
- Given x^{k}, compute guess for x_{1} from row 1

$$
x_{1}^{k+1}=a_{11}^{-1}\left(b_{1}-a_{12} x_{2}^{k}-\cdots-a_{1 n} x_{n}^{k}\right)
$$

- Use x_{1}^{k+1} immediately to compute x_{2}^{k+1} :

$$
x_{2}^{k+1}=a_{22}^{-1}\left(b_{2}-a_{21} x_{1}^{k+1}-a_{23} x_{3}^{k}-\cdots-a_{2 n} x_{n}^{k}\right)
$$

- In general, define the sequence $\left\{x^{k}\right\}_{k=1}^{\infty}$

$$
\begin{equation*}
x_{i}^{k+1}=\frac{1}{a_{i i}}\left\{b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k}\right\}, i=1, \cdots, n \tag{3.6.3}
\end{equation*}
$$

- Each component of x^{k+1} is used immediately after computed
- Gauss-Seidel sensitive to (i) matching between variables and equations, and (ii) ordering of equations.

Figure 1: Gauss-Jacobi (ADGH) versus Gauss-Seidel (ABELN)

Tatonnement and Iterative Schemes.

- Equilibrium problem
- Inverse demand equation $p=10-q$
- Supply curve $q=p / 2+1$
- Equilibrium

$$
\begin{align*}
p+q & =10 \tag{3.6.6a}\\
p-2 q & =-2 \tag{3.6.6b}
\end{align*}
$$

- Gauss-Jacobi
- Initial guess: $p=4$ and $q=1$, point A in figure 3.2.
- New guess:
* Solve demand eqn for p, holding q fixed; move to C on the demand eqn.
* Move from A to the B on supply curve to solve for q holding p fixed.
* Similar to a pair of auctioneers
* General iteration is

$$
\begin{align*}
& q_{n+1}=1+\frac{1}{2} p_{n} \tag{3.6.7}\\
& p_{n+1}=10-q_{n}
\end{align*}
$$

* Slow convergence, spiraling to $p=6$ and $q=4$.
- Gauss-Seidel
- Start from A.
- Use the supply curve to get a new q at B
- Move from B up to E, get new p from the demand equation.
- Similar to an auctioneer alternating between markets.
- Also called hog cycle - firms expect p_{0}, produce q_{1}, which causes prices to rise to p_{1}, causing production to be q_{2}, and so on.
- General iteration is

$$
\begin{align*}
& q_{n+1}=1+\frac{1}{2} p_{n} \tag{3.6.8}\\
& p_{n+1}=10-q_{n+1}
\end{align*}
$$

- Gauss-Seidel converges more rapidly.

Operator Splitting Approach.

- General strategy: Transform problem into another problem with same solution where fixed-point iteration is cheap and works.
- Problem: $A x=b$.
- Split A into two operators

$$
\begin{equation*}
A=N-P \tag{3.7.1}
\end{equation*}
$$

- Note: $A x=b$ if and only if $N x=b+P x$.
- Define the iteration

$$
\begin{equation*}
N x^{m+1}=b+P x^{m} \tag{3.7.2}
\end{equation*}
$$

- Goal: find N so that
* each step of (3.7.2) is easy to solve, and
* (3.7.2) converges
- Gauss-Jacobi is a splitting with diagonal N

$$
N=\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right), \quad P=-\left(\begin{array}{cccc}
0 & a_{12} & \cdots & a_{1 n} \\
a_{21} & 0 & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & 0
\end{array}\right) .
$$

- Gauss-Seidel is a splitting with lower triangular N

$$
N=\left(\begin{array}{ccccc}
a_{11} & 0 & 0 & \cdots & 0 \\
a_{21} & a_{22} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right), \quad P=-\left(\begin{array}{ccccc}
0 & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & 0 & a_{23} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

- Many possible splittings; just keep N simple
- Note: A can be any operator, not just linear operator

Convergence of Iterative Schemes.

- Rate of convergence.
- Suppose $A=N-P$, and $A x^{*}=b$.
- Consider $N x^{m+1}=b+P x^{m}$
* Error $e^{m} \equiv x^{*}-x^{m}$ obeys iteration $e^{m}=\left(N^{-1} P\right)^{m} e^{0}$.
$* e^{m} \rightarrow 0$ iff $\left(N^{-1} P\right)^{m} e^{0} \rightarrow 0$ iff $\rho\left(N^{-1} P\right)<1$.
- At best linearly convergent
- Diagonal dominance. A is diagonally dominant iff

$$
\sum_{j \neq i}\left|a_{i j}\right|<\left|a_{i i}\right|, \quad i=1, \cdots, n .
$$

Theorem 1 If A is diagonally dominant, both Gauss-Jacobi and Gauss-Seidel iteration schemes are convergent for all initial guesses.

- Economic intuition:
- If $(A p)_{i}$ is excess demand for good i at price $p \in \mathbb{R}^{n}$, then diagonal dominance says excess demand for each good is more sensitive to its own price than to a similar change in all other prices.
- Also known as gross substitutability.
- This tells us how to match variables with equations:
- Match x_{i} with some equation where x_{i} has a large coefficient
- In tatonnement, use the apple excess demand equation to compute the apple price, use cheese excess demand equation to compute cheese price, etc.

Acceleration and Stabilization Methods

- Convergence of Gaussian is linear; no way to change that.
- Sometimes we can increase the linear rate of convergence.
- Extrapolation and Dampening.
- To solve $A x=b$, define $G=I-A$.
- Consider the iteration

$$
\begin{equation*}
x^{k+1}=G x^{k}+b \tag{3.9.1}
\end{equation*}
$$

* (3.9.1) will converge iff $\rho(G)<1$
* If $\rho(G)<1$ then G is a contraction mapping with contraction rate $\rho(G)$
* If $\rho(G)$ is close to 1 , convergence will be slow.
- For scalar ω, consider

$$
\begin{align*}
x^{k+1} & =\omega G x^{h}+\omega b+(1-\omega) x^{k} \tag{3.9.2}\\
& \equiv G_{[\omega]} x^{k}+\omega b
\end{align*}
$$

* When $\omega>1,(3.9 .2)$ is called extrapolation; see Figure 3.3.b.
- Convergence implies that $G x^{k}+b$ is a good direction to move
- Convergence may be accelerated by going further each iteration.
* When $\omega<1,(3.9 .2)$ is called dampening; see Figure 3.3.b.
- $G x^{k}+b$ may be a good direction, but overshoots solution
- If $\omega<1$, (3.9.2) may avoid overshooting and converge

(a)

(b)

Dampening to Stabilize an Unstable "Hog Cycle".

- Suppose inverse demand is $p=21-3 q$ and supply is $q=p / 2-3$
- Linear system is not diagonally dominant:

$$
\left(\begin{array}{cc}
1 & 3 \tag{3.9.8}\\
1 & -2
\end{array}\right)\binom{p}{q}=\binom{21}{6}
$$

- Gauss-Seidel is unstable:

$$
\begin{align*}
p_{n+1} & =21-3 q_{n} \tag{3.9.9a}\\
q_{n+1} & =\frac{1}{2} p_{n+1}-3 \tag{3.9.9b}
\end{align*}
$$

- Stabilize through damping: if $\omega=0.75$, then we have stable system

$$
\begin{align*}
p_{n+1} & =0.75\left(21-3 q_{n}\right)+0.25 p_{n} \tag{3.9.10a}\\
q_{n+1} & =0.75\left(\frac{1}{2} p_{n+1}-3\right)+0.25 q_{n} \tag{3.9.10b}
\end{align*}
$$

Figure 3: Stabilizing a hog cycle

Exatrapolation to Accelerate Convergence in a Game

- Assume firm two's reaction curve is $p_{2}=2+0.80 p_{1} \equiv R_{2}\left(p_{1}\right)$, and firm one's reaction curve is $p_{1}=1+0.75 p_{2} \equiv R_{1}\left(p_{2}\right)$.
- Equilibrium system is diagonally dominant
- Gauss-Seidel is the iterative scheme

$$
\begin{align*}
& p_{1}^{n+1}=R_{1}\left(p_{2}^{n}\right) \tag{3.9.12a}\\
& p_{2}^{n+1}=R_{2}\left(p_{1}^{n+1}\right) \tag{3.9.12b}
\end{align*}
$$

- Accelerate (3.9.12). If $\omega=1.5$, we arrive at faster scheme:

$$
\begin{align*}
& p_{1}^{n+1}=1.5 R_{1}\left(p_{2}^{n}\right)-0.5 p_{1}^{n} \tag{3.9.13a}\\
& p_{2}^{n+1}=1.5 R_{2}\left(p_{1}^{n+1}\right)-0.5 p_{2}^{n} . \tag{3.9.13b}
\end{align*}
$$

- Accelerate (3.9.12). If $\omega=1.5$, we arrive at faster scheme:

$$
\begin{align*}
& p_{1}^{n+1}=1.5 R_{1}\left(p_{2}^{n}\right)-0.5 p_{1}^{n} \tag{3.9.13a}\\
& p_{2}^{n+1}=1.5 R_{2}\left(p_{1}^{n+1}\right)-0.5 p_{2}^{n} . \tag{3.9.13b}
\end{align*}
$$

Sparse Matrices

- Classification
- Dense: A is dense if $a_{i j} \neq 0$ for most i, j.
- Sparse: A is sparse if $a_{i j}=0$ for most i, j
* "most" is not a precise definition
* In practice, we are studying a class of problems of varying dimension and "most" means that the number of nonzero elements is $M n$ form some fixed M.
- Diagonal matrix:

$$
\begin{gathered}
D=\left(\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right) \\
D x=b \Longrightarrow x_{i}=\frac{b_{i}}{d_{i}}
\end{gathered}
$$

- Tridiagonal matrix has all nonzero elements on or next to the diagonal
and $A x=b$ is solved by

$$
\begin{align*}
a_{11} x_{1}+a_{12} x_{2} & =b_{1} \tag{Row1}\\
& \Longrightarrow x_{2}=\frac{b_{1}-a_{11} x_{1}}{a_{12}} \\
& =\alpha_{2}-\beta_{2} x_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=a_{21} x_{1}+a_{22}\left(\alpha_{2}-\beta_{2} x_{1}\right)+a_{23} x_{3} & =b_{2} \tag{Row2}\\
& \Longrightarrow x_{3}=\alpha_{3}-\beta_{3} x_{1} \\
& \vdots \\
x_{n} & =\alpha_{n-1}-\beta_{n-1} x_{1} \tag{Rown-1}\\
a_{n, n-1}\left(\alpha_{n-2}-\beta_{n-2} x_{1}\right)+a_{n n}\left(\alpha_{n-1}-\beta_{n-1} x_{1}\right) & =b_{n} \tag{Rown}\\
& \Longrightarrow x_{1} \text { solution }
\end{align*}
$$

- Taking advantage of sparseness
- Storage:
* Dense: n^{2} numbers
* Sparse: store only $m \sim O(n)$ nonzero elements along with their locations.
- Operations: Matrix multiplication $-A x$ or $y B$
* Dense uses $2 n^{2}$ flops
* Sparse approach uses $2 m \sim O(n)$ flops
- Application: Ergodic distribution of a finite Markov chain
- Markov transition matrices, П, are often sparse
- Ergodic distribution x solves $x \Pi=x$.
- Solve by iteration: $x^{k+1}=x^{k} \Pi$; works well since $x^{k} \Pi$ is fast if Π is sparse.
- Software: Standard packages (Matlab, Mathematica, etc.) offer sparse storage and operation options.

Summary

- Linear equations are essential in numerical methods
- Linear problems are common
- Nonlinear problems are reduced to a sequence of linear problems
- Linear equation methods often inspire methods for nonlinear problems
- The key concepts behind Gauss-Jacobi and Gauss-Seidel methods can also be applied to nonlinear problems
- The key concepts behind relaxation methods can also be applied to nonlinear problems

