
Numerical Methods in Economics
MIT Press, 1998

Notes for Chapter 2: Elementary Concepts

Kenneth L. Judd
Hoover Institution

February 20, 2020

1

The Economics of Computation

• Economics: the study of allocation of scarce resources

• Computation as an economic problem:

– Scarce resources:

∗ Hardware

· CPU - central processing unit to manipulate data, do arithmetic

· Memory - cache (very fast), RAM (fast), hard drive (slow)
∗ Software

· algorithms to do mathematics

· interfaces that make it easy to describe problems to the computer, and easy for you to

process output

∗ Human time: opportunity cost varies greatly across economists

∗ Human ability: I quote Chari: “Abstracting from irrelevant detail [in macro models] is essential

given scarce computational resources not to mention the limits of the human mind in absorbing

detail!”

– Preferences

∗ Reduce resource use

∗ Increase accuracy of results

∗ Increase reliability; i.e., the likelihood of the algorithm working

2

Computer Arithmetic

• Finite representation of real numbers: ±m2±n

– m: mantissa (an integer)

– n: exponent (an integer)

– Typical double precision:

∗ Uses 64 bits (“single precision” used 32; common until mid-80’s)

∗ m = 52, n = 10, plus sign bits, one for each.

• Machine epsilon

– Smallest relative quantity

– Definition: εM = sup {x|1 + x “ = ” 1} (“=” means computer equality, that is, up to computer

error)

– Double precision: εM is 2−52
.
= 10−16 if m = 52; typical choice for desktops

3

• Machine zero

– Smallest absolute quantity

– Definition: 0M = sup {x|x “ = ” 0}
– Double precision: 0M is about 10−308 if n = 10

• Extended precision:

– Desirable to use in many cases; occasionally necessary.

– Specialized hardware can reduce εM and/or 0M
– Software packages can produce arbitrary precision arithmetic.

∗ Implemented in Mathematica, Maple, and some other programs.

∗ Can be added to C and Fortran programs via operator overloading.

4

• Arithmetic operations take time

– Integer addition is fastest

– Real addition and multiplication are a bit slower

– Division is slower than multiplication and addition

– Power, trigonometric and logarithmic operations are slower

– The computer does only addition and multiplication; everything else is a sequence of those oper-

ations

5

Errors: The Central Problem of Numerical Mathematics

• Rounding

– 1/3 = .33333... needs to be truncated.

– 1/10 has a finite decimal expression but an infinite binary expression which must be cut

6

• Truncation

– Exponential function is defined an infinite sum

ex =

∞∑
n=0

xn

n!
(2.7.1)

but must be approximated with a finite expression, such as

N∑
n=0

xn

n!

– Infinite series: If a quantity is defined by

x∗ = lim
n→∞

xn

we must take xn for some finite n.

7

• Error Propagation

– Initial errors are magnified by many mathematical operations

– Example: x2 − 26x + 1 = 0

∗ True solution x∗ = 13−
√

168 = .0385186 · · ·
∗ Five-digit machine says

x∗ = 13−
√

168
.
= 13.000− 12.961 = 0.039 ≡ x̂1

∗ A better approach (even in five-digit machine)

13−
√

168 =
1

13 +
√

168

.
=

1

25.961
.
= 0.038519 ≡ x̂2,

• Numerical methods must formulate algorithms which minimize the creation and propagation of errors.

8

Efficient Evaluations of Expressions

• Consider cost of evaluating
n∑
k=0

ak x
k (2.4.1)

– Obvious method involves n additions, n multiplications, and m− 1 exponentiations

– Alternative: replace xi with x · x · ... · x, i− 1 multiplications

– Better method: compute x1 = x, xi+1 = x ∗ xi, i = 1, n, to replace n − 1 exponentiations with

n− 1 multiplications.

– Best method is Horner’s method :

a0 + a1x + a2x
2 + a3x

3 + ... + anx
n (2.4.2)

=a0 + x(a1 + ... + x(an−1 + x · an))

9

Table 2.1: Polynomial Evaluation Costs

additions multiplications exponentiations

Direct Method 1: n n n− 1

Alternative: n n + (n− 1)n/2 0

Better Method n 2n− 1 0

Horner’s Method: n n 0

• Lesson: Mathematically irrelevant changes to a mathematical expression can have large impact on

computational time

10

Direct versus Iterative Methods

• Direct methods:

– Aim to compute high accuracy answer

– Uses fixed number of steps (depending on size of input)

– Example: quadratic formula

0=ax2 + bx + c

x=
−b±

√
b2 − 4ac

2a

• Iterative methods:

– Compute sequence

xk+1 = g(xk , xk−1, · · ·)

and stop when stopping criterion is satisfied

– Uses unknown number of steps

– Accuracy is adjusted by adjusting stopping criterion

– User faces a tradeoff between time and accuracy.

– Example: By varying N , we can determine quality of approximation to ex

ex =

∞∑
i=0

xi

i!
.
=

N∑
i=0

xi

i!

11

Rates of Convergence

• Suppose sequence xk ∈ Rn satisfies limk→∞ xk = x∗.

• xk converges at rate q to x∗ if

lim
k→∞

‖ xk+1 − x∗ ‖
‖ xk − x∗ ‖q

<∞, (2.8.1)

– If (2.8.1) is true for q = 2, we say that xk converges quadratically . Example: xk = 10−2
k

– If q = 1 and

lim
k→∞

‖ xk+1 − x∗ ‖
‖ xk − x∗ ‖

≤ β < 1 (2.8.2)

we say xk converges linearly at rate β.

– If β = 0, xk is said to converge superlinearly .

– Convergence at rate q > 1 implies superlinear (and linear) convergence.

12

Stopping Rules

• Iterative algorithms need to know when to stop

• Problem: Suppose you know that

xk+1 = g(xk , xk−1, · · ·)

converges to some unknown solution x∗.

• We want to

– Stop the sequence only when we are close to x∗

– Stop sequence for small k

13

• Consider the sequence

xk =

k∑
j=1

1

j
(2.8.3)

– The limit of xk is infinite

– But xk goes to infinity slowly; e.g., x1000 = 7.485

– Hard to tell xk diverges from examining numerical sequence.

14

• We rely on heuristic methods, stopping rules , to end a sequence.

– Stop when the sequence is not “changing much.”

∗ “Stop when |xk+1 − xk| is small”

|xk+1 − xk| ≤ ε

for some small ε.
∗ This rule is never good.

· Depends on units.

· Can fail spectacularly: for example, if ε = 0.001 it would end (2.8.3) at k = 1000, xk =??.

∗ This simple rule is not reliable

15

– Stop when the sequence is not “changing much” relative to zero

∗ “Stop when |xk+1 − xk| is small relative to |xk|”

|xk+1 − xk|
|xk|

≤ ε

for some small ε.

∗ This may never stop if xk converges to zero.

∗ Solution is hybrid rule for any δ > 0: “stop if changes are small relative to δ + |xk|”

Stop and accept xk+1 if
|xk+1 − xk|
δ + |xk|

≤ ε (2.8.4)

∗ (2.8.4) can fail spectacularly: for example, if ε = 0.001 and δ = 1, it would end (2.8.3) at

k = 9330, xk = 7.48547.

∗ This simple rule is not reliable

∗ Economists love this rule; they know that “convergence” is helped by increasing ε.

16

– Use additional information

∗ If xk converges quadratically, (2.8.4) works well enough if ε << 1 since, for some M > 0

‖ xk+1 − x∗ ‖< M ‖ xk+1 − x∗ ‖2 (2.8.1)

∗ If xk satisfies

‖ xk+1 − xk ‖≤ β ‖ xk − xk−1 ‖ (2.8.5)

for some β < 1, then we know that

‖ xk − x∗ ‖≤
‖ xk − xk−1 ‖

1− β
.

Hence, the rule

Stop and accept xk+1 if ‖ xk+1 − xk ‖≤ ε(1− β) (2.8.6)

will stop only when ‖ xk − x∗ ‖≤ ε.

17

∗ If xk converges linearly at unknown rate β < 1, then at iteration k choose a large L << k,

estimate β

β̂k,L = max
1<j<L

‖ xk−j − xk−j+1 ‖
‖ xk−j−1 − xk−j ‖

,

estimate the error

‖ xk+1 − x∗ ‖≤
‖ xk+1 − xk ‖

1− β̂k,L
and stop only if

‖ xk+1 − xk ‖≤ ε(1− β̂k,L).

∗ A less stringent alternative would be a p-norm

β̂k,L =

 1

L

L∑
j=1

(
‖ xk−j − xk−j+1 ‖
‖ xk−j−1 − xk−j ‖

)p1/p

∗ p =∞ in the p-norm definition is the same as the max definition.

– Conclusion:

∗ There is no fool-proof, general method

∗ Heuristic rules generally do well when carefully implemented using a consistent theory of the

rate of convergence

18

Evaluating the Errors in the Final Result

• When we have completed a computation, we

– Hope that error is small – difficult to verify

– Hope that error is small in terms of economic significance – more feasible

– Need to choose ε to accomplish this.

• Error Bounds

– Sometimes, we can put a bound on the actual error, ‖ x∗ − x̂ ‖; called forward error analysis .

– Usually difficult to determine ‖ x∗ − x̂ ‖ with useful precision

∗ Error bounds tend to be very conservative, producing, at best, information about the order of

magnitude of the error.

∗ Error bounds often need information about the true solution, which is not available, and must

also be approximated.

– Forward error analysis is rarely available (dynamic programming is unusual).

19

• Error Evaluation: Compute and Verify

– Use numerical solution to generate information about its quality

– Consider solving f (x) = 0 for some function f .

∗ A numerical solution, x̂, will generally not satisfy f (x) = 0 exactly.

∗ Use f (x̂), or some related g(x̂), to measure importance of error if we accept x̂.

– compute and verify

∗ first, compute an approximation

∗ second, verify that it is an acceptable approximation according to some economically mean-

ingful criteria.

20

– Consider f (x) = x2 − 2 = 0.

∗ A three-digit machine would produce x̂ = 1.41.

∗ We compute (on the three-digit machine) f (1.41) = −.01.

∗ f (1.41) = −.01 may tell us that x̂ = 1.41 is an acceptable approximation

∗ The value f (x̂) can be a useful index of acceptability in our economic problems, but only if it

is formulated correctly

– Let E(p) = D(p)− S(p) be an excess demand function

∗ Suppose numerical solution p̂ to E (p) = 0 implies E(p̂) = 10.0.
∗ p̂ is acceptable depending on D(p̂) and S(p̂).

· If D(p̂) = 105, then E(p̂) is 10−4 of D(p̂) – looks good

· If D(p̂) = 10, then E(p̂) equals D(p̂) – looks bad!

21

– In general,

∗ Compute a candidate solution x̂ to f (x) = 0.
∗ Then verify that x̂ is acceptable by computing g(x̂) where

· g is function(s) with same zeros as f .

· g is unit-free

· g expresses importance of error.
∗ In excess demand example,

· solve E(p) = 0

· but compute g(p̂) ≡ S(p̂)/D(p̂)− 1 to check p̂.

∗ In economic, g(x̂) expresses quantities like

· measures of agents’ optimization errors

· “leakage” between demand and supply.

– Compute and verify is always possible

22

• Backward error analysis

– Find a problem, f̂ (x) = 0, such that x̂ is exact solution

– If f̂ (.)
.
= f (.), then accept x̂ as an approximation to f (x) = 0.

– For example, is x = 1.41 is an acceptable solution to x2 − 2 = 0

∗ x = 1.41 is solution to x2 − 1.9881 = 0.

∗ If x2 − 1.9881 = 0 is “close enough” to x2 − 2 = 0, then accept x = 1.41 as solution.

• Multiplicity:

– There are many x̂ that satisfy stopping rules and error analysis.

– Existence of multiple acceptable equilibria makes it difficult to make precise statements (e.g.,

comparative statics) about equilibrium.

– However, we could usually run some diagnostics to estimate the size of the set of acceptable

solutions.
– Two ideas:

∗ For any guess x̂, do random sampling of x near x̂ to see how many nearby points satisfy

acceptance criterion.

∗ Restart algorithm from many initial guesses to see if you get values for x̂ that are not close to

each other.

23

• General Philosophy

– Any economic model approximates reality

– A good numerical approximation is as useful as exact solution.

– But, we should always do some error analysis

24

Computational Complexity of an Algorithm

• Measured by relation between accuracy and computational effort.

– Let ε denote the error

– N : computational effort (flops, iterates, ..) to reduce error to ε

– Examine N(ε) for small ε, or its inverse, ε(N) for large N .

– If iterative method converges linearly at rate β andN is the number of iterations, then ε(N) ∼ βN

and N(ε) ∼ (log ε)(log β)−1.

– If an algorithm obeys the convergence rule

lim
ε→0

N(ε)

ε−p
= lim

ε→0
εpN(ε) = a <∞

then we need aε−p operations to bring error down to ε.

– Asymptotic ranking depends on p, not a

25

• Asymptotic results are not necessarily relevant

– Suppose algorithm A uses aε−p operations and B uses bε−q operations

∗ Algorithm A is asymptotically more efficient if q > p.

∗ Algorithm A is better with target ε only if aε−p < bε−q, i.e.

ε < ε∗ ≡ (b/a)1/(q−p)

∗ E.g., if q = 2, p = 1, b = 1, and a = 1000, then ε∗ = 0.001.

– Asymptotic superiority may imply superiority only for very small ε.

• Know many algorithms since best choice depends on accuracy target.

26

Types of processes

• Serial processing

– One action at a time

– Each action potentially uses any previous computation

• Parallel processing: multiple simultaneous actions

– Parallel or distributed processing uses many processors

– Must manage communication among independent processes

– Parallel processing is present in modern processors; e.g., pipelining

• This course will mainly focus on serial processes and algorithms, but will discuss parallel algorithms

that can be implemented easily.

27

