Numerical Methods in Economics MIT Press, 1998

Notes for Chapter 2: Elementary Concepts

Kenneth L. Judd Hoover Institution

February 20, 2020

The Economics of Computation

- Economics: the study of allocation of scarce resources
- Computation as an economic problem:
 - Scarce resources:
 - * Hardware
 - \cdot CPU central processing unit to manipulate data, do arithmetic
 - · Memory cache (very fast), RAM (fast), hard drive (slow)
 - * Software
 - \cdot algorithms to do mathematics
 - · interfaces that make it easy to describe problems to the computer, and easy for you to process output
 - \ast Human time: opportunity cost varies greatly across economists
 - * Human ability: I quote Chari: "Abstracting from irrelevant detail [in macro models] is essential given scarce computational resources not to mention the limits of the human mind in absorbing detail!"
 - Preferences
 - \ast Reduce resource use
 - \ast Increase accuracy of results
 - \ast Increase reliability; i.e., the likelihood of the algorithm working

Computer Arithmetic

- Finite representation of real numbers: $\pm m2^{\pm n}$
 - -m: mantissa (an integer)
 - -n: exponent (an integer)
 - Typical double precision:
 - * Uses 64 bits ("single precision" used 32; common until mid-80's)
 - * m = 52, n = 10, plus sign bits, one for each.
- Machine epsilon
 - Smallest relative quantity
 - Definition: $\varepsilon_M = \sup \{x | 1 + x \ " = " 1\}$ ("=" means computer equality, that is, up to computer error)
 - Double precision: ε_M is $2^{-52} \doteq 10^{-16}$ if m = 52; typical choice for desktops

- Machine zero
 - Smallest absolute quantity
 - Definition: $0_M = \sup \{x | x " = " 0\}$
 - Double precision: 0_M is about 10^{-308} if n = 10
- Extended precision:
 - Desirable to use in many cases; occasionally necessary.
 - Specialized hardware can reduce ε_M and/or 0_M
 - Software packages can produce arbitrary precision arithmetic.
 - \ast Implemented in Mathematica, Maple, and some other programs.
 - * Can be added to C and Fortran programs via operator overloading.

- Arithmetic operations take time
 - Integer addition is fastest
 - Real addition and multiplication are a bit slower
 - Division is slower than multiplication and addition
 - Power, trigonometric and logarithmic operations are slower
 - The computer does only addition and multiplication; everything else is a sequence of those operations

Errors: The Central Problem of Numerical Mathematics

- Rounding
 - -1/3 = .33333... needs to be truncated.
 - 1/10 has a finite decimal expression but an infinite binary expression which must be cut

• Truncation

– Exponential function is defined an infinite sum

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (2.7.1)

but must be approximated with a finite expression, such as

$$\sum_{n=0}^{N} \frac{x^n}{n!}$$

– Infinite series: If a quantity is defined by

$$x^* = \lim_{n \to \infty} x_n$$

we must take x_n for some finite n.

• Error Propagation

- Initial errors are magnified by many mathematical operations
- Example: $x^2 26x + 1 = 0$
 - * True solution $x^* = 13 \sqrt{168} = .0385186 \cdots$
 - \ast Five-digit machine says

$$x^* = 13 - \sqrt{168} \doteq 13.000 - 12.961 = 0.039 \equiv \hat{x}_1$$

* A better approach (even in five-digit machine)

$$13 - \sqrt{168} = \frac{1}{13 + \sqrt{168}} \doteq \frac{1}{25.961} \doteq 0.038519 \equiv \hat{x}_2,$$

• Numerical methods must formulate algorithms which minimize the creation and propagation of errors.

Efficient Evaluations of Expressions

• Consider cost of evaluating

$$\sum_{k=0}^{n} a_k x^k \tag{2.4.1}$$

- Obvious method involves n additions, n multiplications, and m-1 exponentiations
- Alternative: replace x^i with $x \cdot x \cdot \ldots \cdot x$, i 1 multiplications
- Better method: compute $x^1 = x$, $x^{i+1} = x * x^i$, i = 1, n, to replace n 1 exponentiations with n 1 multiplications.
- Best method is *Horner's method*:

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

$$= a_0 + x(a_1 + \dots + x(a_{n-1} + x \cdot a_n))$$
(2.4.2)

Table 2.1: Polynomial Evaluation Costs

	additions	multiplications	exponentiations
Direct Method 1:	n	n	n-1
Alternative:	n	n + (n-1) n/2	0
Better Method	n	2n - 1	0
Horner's Method:	n	n	0

• Lesson: Mathematically irrelevant changes to a mathematical expression can have large impact on computational time

Direct versus Iterative Methods

- Direct methods:
 - Aim to compute high accuracy answer
 - Uses fixed number of steps (depending on size of input)
 - Example: quadratic formula

$$0 = ax^2 + bx + c$$
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Iterative methods:
 - Compute sequence

$$x_{k+1} = g(x_k, x_{k-1}, \cdots)$$

and stop when stopping criterion is satisfied

- Uses unknown number of steps
- Accuracy is adjusted by adjusting stopping criterion
- User faces a tradeoff between time and accuracy.
- Example: By varying N, we can determine quality of approximation to e^x

$$e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!} \doteq \sum_{i=0}^{N} \frac{x^i}{i!}$$

Rates of Convergence

- Suppose sequence $x_k \in \mathbb{R}^n$ satisfies $\lim_{k \to \infty} x_k = x^*$.
- x_k converges at rate q to x^* if

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^q} < \infty,$$
(2.8.1)

- If (2.8.1) is true for q = 2, we say that x_k converges quadratically. Example: $x_k = 10^{-2^k}$ - If q = 1 and

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} \le \beta < 1$$
(2.8.2)

we say x_k converges *linearly at rate* β .

- If $\beta = 0$, x_k is said to converge *superlinearly*.
- Convergence at rate q > 1 implies superlinear (and linear) convergence.

Stopping Rules

- Iterative algorithms need to know when to stop
- Problem: Suppose you know that

$$x_{k+1} = g(x_k, x_{k-1}, \cdots)$$

converges to some unknown solution x^* .

- We want to
 - Stop the sequence only when we are close to x^*
 - Stop sequence for small k

• Consider the sequence

$$x_k = \sum_{j=1}^k \frac{1}{j}$$
(2.8.3)

- The limit of x_k is infinite
- But x_k goes to infinity slowly; e.g., $x_{1000} = 7.485$
- Hard to tell x_k diverges from examining numerical sequence.

- We rely on heuristic methods, *stopping rules*, to end a sequence.
 - Stop when the sequence is not "changing much."
 - * "Stop when $|x_{k+1} x_k|$ is small"

$$|x_{k+1} - x_k| \le \varepsilon$$

for some small ε .

- \ast This rule is never good.
 - · Depends on units.

· Can fail spectacularly: for example, if $\varepsilon = 0.001$ it would end (2.8.3) at $k = 1000, x_k = ??$.

 \ast This simple rule is not reliable

- Stop when the sequence is not "changing much" relative to zero
 - * "Stop when $|x_{k+1} x_k|$ is small relative to $|x_k|$ "

$$\frac{|x_{k+1} - x_k|}{|x_k|} \le \varepsilon$$

for some small ε .

- * This may never stop if x_k converges to zero.
- * Solution is hybrid rule for any $\delta > 0$: "stop if changes are small relative to $\delta + |x_k|$ "

Stop and accept
$$x_{k+1}$$
 if $\frac{|x_{k+1} - x_k|}{\delta + |x_k|} \le \varepsilon$ (2.8.4)

- * (2.8.4) can fail spectacularly: for example, if $\varepsilon = 0.001$ and $\delta = 1$, it would end (2.8.3) at $k = 9330, x_k = 7.48547$.
- * This simple rule is not reliable
- * Economists love this rule; they know that "convergence" is helped by increasing ε .

– Use additional information

* If x_k converges quadratically, (2.8.4) works well enough if $\varepsilon \ll 1$ since, for some M > 0

$$\|x_{k+1} - x^*\| < M \| x_{k+1} - x^* \|^2$$
(2.8.1)

* If x_k satisfies

$$\|x_{k+1} - x_k\| \le \beta \|x_k - x_{k-1}\|$$
(2.8.5)

for some $\beta < 1$, then we know that

$$|| x_k - x^* || \le \frac{|| x_k - x_{k-1} ||}{1 - \beta}.$$

Hence, the rule

Stop and accept
$$x_{k+1}$$
 if $||x_{k+1} - x_k|| \le \varepsilon (1 - \beta)$ (2.8.6)

will stop only when $|| x_k - x^* || \leq \varepsilon$.

* If x_k converges linearly at unknown rate $\beta < 1$, then at iteration k choose a large $L \ll k$, estimate β

$$\hat{\beta}_{k,L} = \max_{1 < j < L} \frac{\| x_{k-j} - x_{k-j+1} \|}{\| x_{k-j-1} - x_{k-j} \|},$$

estimate the error

$$||x_{k+1} - x^*|| \le \frac{||x_{k+1} - x_k||}{1 - \hat{\beta}_{k,L}}$$

and stop only if

$$\parallel x_{k+1} - x_k \parallel \leq \varepsilon (1 - \hat{\beta}_{k,L}).$$

 \ast A less stringent alternative would be a p-norm

$$\hat{\beta}_{k,L} = \left(\frac{1}{L} \sum_{j=1}^{L} \left(\frac{\|x_{k-j} - x_{k-j+1}\|}{\|x_{k-j-1} - x_{k-j}\|}\right)^p\right)^{1/p}$$

* $p=\infty$ in the p-norm definition is the same as the max definition. – Conclusion:

- * There is no fool-proof, general method
- * Heuristic rules generally do well when carefully implemented using a consistent theory of the rate of convergence

Evaluating the Errors in the Final Result

- When we have completed a computation, we
 - Hope that error is small difficult to verify
 - Hope that error is small in terms of *economic significance* more feasible
 - Need to choose ε to accomplish this.
- Error Bounds
 - Sometimes, we can put a bound on the actual error, $|| x^* \hat{x} ||$; called *forward error analysis*.
 - Usually difficult to determine $\parallel x^* \hat{x} \parallel$ with useful precision
 - * Error bounds tend to be very conservative, producing, at best, information about the order of magnitude of the error.
 - * Error bounds often need information about the true solution, which is not available, and must also be approximated.

– Forward error analysis is rarely available (dynamic programming is unusual).

- Error Evaluation: Compute and Verify
 - Use numerical solution to generate information about its quality
 - Consider solving f(x) = 0 for some function f.
 - * A numerical solution, \hat{x} , will generally not satisfy f(x) = 0 exactly.
 - * Use $f(\hat{x})$, or some related $g(\hat{x})$, to measure importance of error if we accept \hat{x} .
 - compute and verify
 - * first, *compute* an approximation
 - \ast second, verify that it is an acceptable approximation according to some economically meaningful criteria.

- Consider $f(x) = x^2 2 = 0$.
 - * A three-digit machine would produce $\hat{x} = 1.41$.
 - * We compute (on the three-digit machine) f(1.41) = -.01.
 - * f(1.41) = -.01 may tell us that $\hat{x} = 1.41$ is an acceptable approximation
 - * The value $f(\hat{x})$ can be a useful index of acceptability in our economic problems, but only if it is formulated correctly
- Let E(p) = D(p) S(p) be an excess demand function
 - * Suppose numerical solution \hat{p} to E(p) = 0 implies $E(\hat{p}) = 10.0$.
 - * \hat{p} is acceptable depending on $D(\hat{p})$ and $S(\hat{p}).$
 - · If $D(\hat{p}) = 10^5$, then $E(\hat{p})$ is 10^{-4} of $D(\hat{p})$ looks good
 - · If $D(\hat{p}) = 10$, then $E(\hat{p})$ equals $D(\hat{p})$ looks bad!

– In general,

* Compute a candidate solution \hat{x} to f(x) = 0.

* Then *verify* that \hat{x} is acceptable by computing $g(\hat{x})$ where

 \cdot g is function(s) with same zeros as f.

 $\cdot g$ is unit-free

- \cdot g expresses importance of error.
- \ast In excess demand example,

 \cdot solve E(p) = 0

- · but compute $g(\hat{p}) \equiv S(\hat{p})/D(\hat{p}) 1$ to check \hat{p} .
- * In economic, $g(\hat{x})$ expresses quantities like
 - \cdot measures of agents' optimization errors
 - \cdot "leakage" between demand and supply.

– Compute and verify is always possible

• Backward error analysis

– Find a problem,
$$\hat{f}(x) = 0$$
, such that \hat{x} is exact solution

- If $\hat{f}(.) \doteq f(.)$, then accept \hat{x} as an approximation to f(x) = 0.

– For example, is x = 1.41 is an acceptable solution to $x^2 - 2 = 0$

* x = 1.41 is solution to $x^2 - 1.9881 = 0$.

* If $x^2 - 1.9881 = 0$ is "close enough" to $x^2 - 2 = 0$, then accept x = 1.41 as solution.

- Multiplicity:
 - There are many \hat{x} that satisfy stopping rules and error analysis.
 - Existence of multiple acceptable equilibria makes it difficult to make precise statements (e.g., comparative statics) about equilibrium.
 - However, we could usually run some diagnostics to estimate the size of the set of acceptable solutions.
 - Two ideas:
 - * For any guess \hat{x} , do random sampling of x near \hat{x} to see how many nearby points satisfy acceptance criterion.
 - * Restart algorithm from many initial guesses to see if you get values for \hat{x} that are not close to each other.

• General Philosophy

- Any economic model approximates reality
- A good numerical approximation is as useful as exact solution.
- But, we should always do some error analysis

Computational Complexity of an Algorithm

- Measured by relation between accuracy and computational effort.
 - Let ε denote the error
 - N: computational effort (flops, iterates, ..) to reduce error to ε
 - Examine $N(\varepsilon)$ for small ε , or its inverse, $\varepsilon(N)$ for large N.
 - If iterative method converges linearly at rate β and N is the number of iterations, then $\varepsilon(N) \sim \beta^N$ and $N(\varepsilon) \sim (\log \varepsilon) (\log \beta)^{-1}$.
 - If an algorithm obeys the convergence rule

$$\lim_{\varepsilon \to 0} \frac{N(\varepsilon)}{\varepsilon^{-p}} = \lim_{\varepsilon \to 0} \varepsilon^p N(\varepsilon) = a < \infty$$

then we need $a\varepsilon^{-p}$ operations to bring error down to ε .

– Asymptotic ranking depends on p, not a

- Asymptotic results are not necessarily relevant
 - Suppose algorithm A uses $a\varepsilon^{-p}$ operations and B uses $b\varepsilon^{-q}$ operations
 - * Algorithm A is asymptotically more efficient if q > p.
 - * Algorithm A is better with target ε only if $a\varepsilon^{-p} < b\varepsilon^{-q}$, i.e.

$$\varepsilon < \varepsilon^* \equiv (b/a)^{1/(q-p)}$$

* E.g., if q = 2, p = 1, b = 1, and a = 1000, then $\varepsilon^* = 0.001$.

- Asymptotic superiority may imply superiority only for very small ε .
- Know many algorithms since best choice depends on accuracy target.

Types of processes

- Serial processing
 - One action at a time
 - Each action potentially uses any previous computation
- Parallel processing: multiple simultaneous actions
 - Parallel or distributed processing uses many processors
 - Must manage communication among independent processes
 - Parallel processing is present in modern processors; e.g., pipelining
- This course will mainly focus on serial processes and algorithms, but will discuss parallel algorithms that can be implemented easily.