Nonlinear Complementarity Problems and

Applications

Kenneth L. Judd, Hoover Institution
May 13, 2020

There is more to life than equations

We often ignore corners and kinks when perhaps we shouldn't

- Inada condition: demand for a good is always positive
- Zero marginal cost at zero output: supply will always be positive
- Armington formulation means all countries buy all goods made by each other country
- Borrowing constraints: sometimes ignored, sometimes too stringent

Life is not so simple

- There are some goods I do not want
- Sometimes marginal costs are everywhere positive, and firm produces zero
- There are some goods made in Italy that we do not import to USA
- I can borrow, but the interest rate schedule has kinks

Nonlinear complementarity problems to the rescue!

Nonlinear complementarity problems

Problem statement: Given $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$, find an $x \in \mathbf{R}^{n}$ such that

$$
0 \leq x \perp F(x) \geq 0, \quad(\mathrm{NCP}(F))
$$

- perp notation " \perp " means $x^{T} F(x)=0$.
- $x^{T} F(x)=\sum_{i=1}^{n} x_{i} F_{i}(x)$ implies $\operatorname{NCP}(\mathrm{F})$ is equivalent to

$$
x \geq 0, \quad F(x) \geq 0, \quad x_{i} F_{i}(x)=0, \quad i=1,2, \ldots, n
$$

- Complementarity implies either $x_{i}=0$ or $F_{i}(x)=0$ for each $i=$ $1,2, \ldots, n$.

Generalizes concept of equations

- Equivalent to nonsmooth system of equations

$$
\min \left[x_{i}, F_{i}(x)\right]=0, \quad i=1,2, \ldots, n
$$

- If all $x_{i}>0$, then same as system of equations

$$
F_{i}(x)=0, \quad i=1,2, \ldots, n
$$

Example: Constrained Optimization

General problem:

$$
\begin{array}{cl}
\min _{x} & f(x) \\
\text { s.t. } & g(x)=0 \tag{1}\\
& h(x) \leq 0
\end{array}
$$

- $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$: objective function with n choices
$-g: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}: m$ equality constraints
$-h: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{\ell}: \ell$ inequality constraints
$-f, g$, and h are C^{2} on X
- Karush-Kuhn-Tucker (KKT): if x^{*} is local minimum, then exist $\lambda^{*} \in$ \mathbb{R}^{m} and $\mu^{*} \in \mathbb{R}^{\ell}$ such that x^{*} is a stationary, or critical, point of \mathcal{L}, the Lagrangian,

$$
\begin{equation*}
\mathcal{L}(x, \lambda, \mu)=f(x)+\lambda^{\top} g(x)+\mu^{\top} h(x) \tag{2}
\end{equation*}
$$

- First-order conditions, $\mathcal{L}_{x}\left(x^{*}, \lambda^{*}, \mu^{*}\right)=0$, imply that $\left(\lambda^{*}, \mu^{*}, x^{*}\right)$ solves

$$
\begin{align*}
f_{x}+\lambda^{\top} g_{x} & +\mu^{\top} h_{x}=0 \tag{3}\\
g(x) & =0 \\
0 \leq-h(x) & \perp \mu \geq 0
\end{align*}
$$

Application: Arrow-Debreu Model

Model Formulation

- Economy with n agents and m commodities
$-e \in \Re^{n \times m}$ are the endowments
$-\alpha \in \Re^{n \times m}$ and $\beta \in \Re^{n \times m}$ are the utility parameters
$-p \in \Re^{m}$ are the commodity prices
- Agent i maximizes utility with budget constraint

$$
\begin{array}{ll}
\max _{x_{i, *} \geq 0} & \sum_{k=1}^{m} \frac{\alpha_{i, k}\left(1+x_{i, k}\right)^{1-\beta_{i, k}}}{1-\beta_{i, k}} \\
\text { subject to } & \sum_{k=1}^{m} p_{k}\left(x_{i, k}-e_{i, k}\right) \leq 0
\end{array}
$$

- Market k sets price for the commodity

$$
0 \leq p_{k} \quad \perp \sum_{i=1}^{n}\left(e_{i, k}-x_{i, k}\right) \geq 0
$$

asserting that either price is zero or supply equals demand.

- Equilibrium is consumer focs plus the nonlinear complementarity for the market.

Application: Nash Equilibrium

- Characterization of two player equilibrium $\left(x^{*}, y^{*}\right)$
- Complementarity Formulation
- Assume each player's optimization problem is convex. Then

$$
\left.\begin{array}{ll}
\min _{x \geq 0} & f_{1}\left(x, y^{*}\right) \\
\text { subject to } & c_{1}(x) \leq 0
\end{array} \Leftrightarrow \begin{array}{llll}
0 \leq x & \perp & \nabla_{x} f_{1}\left(x, y^{*}\right)+\lambda_{1}^{T} \nabla_{x} c_{1}(x) \geq 0 \\
0 \leq \lambda_{1} & \perp & -c_{1}(x) \geq 0
\end{array}\right] \begin{array}{llll}
\\
\min _{y \geq 0} & f_{2}\left(x^{*}, y\right) \\
\text { subject to } & c_{2}(y) \leq 0
\end{array} \Leftrightarrow \begin{array}{lll}
0 \leq y & \perp & \nabla_{y} f_{2}\left(x^{*}, y\right)+\lambda_{2}^{T} \nabla_{y} c_{2}(y) \geq 0 \\
0 \leq \lambda_{2} & \perp & -c_{2}(y) \geq 0
\end{array}
$$

- Nash equilibrium is solution to

$$
\begin{array}{lll}
0 \leq x & \perp & \nabla_{x} f_{1}(x, y)+\lambda_{1}^{T} \nabla_{x} c_{1}(x) \geq 0 \\
0 \leq y & \perp & \nabla_{y} f_{2}(x, y)+\lambda_{2}^{T} \nabla_{y} c_{2}(y) \geq 0 \\
0 \leq \lambda_{1} & \perp & -c_{1}(y) \geq 0 \\
0 \leq \lambda_{2} & \perp & -c_{2}(y) \geq 0
\end{array}
$$

Application: Oligopoly Model

- Firm $f \in \mathcal{F}$ chooses output x_{f} to maximize profit
$-u$ is the market utility function

$$
u=\left(1+\sum_{f \in \mathcal{F}} x_{f}^{\alpha}\right)^{\frac{\eta}{\alpha}}
$$

- α and η are parameters
$-c_{f}$ is the unit cost for each firm
$-p_{f}=\frac{\partial u}{\partial x_{f}}$ is the firm's price
- In particular, each firm $f \in \mathcal{F}$ maximizes its profits subject to nonnegative output

$$
x_{f}^{*} \in \arg \max _{x_{f} \geq 0}\left(\frac{\partial u}{\partial x_{f}}-c_{f}\right) x_{f}
$$

- Nash equilibrium is system for $f \in \mathcal{F}$

$$
0 \leq x_{f} \quad \perp c_{f}-\frac{\partial u}{\partial x_{f}}-x_{f} \frac{\partial^{2} u}{\partial x_{f}^{2}} \geq 0
$$

Solution Methods

- Sequential linearization methods (PATH)
- Solve the linear complementarity problem for z

$$
0 \leq z \quad \perp \quad F\left(x_{k}\right)+\nabla F\left(x_{k}\right)\left(z-x_{k}\right) \geq 0
$$

- Perform a line search along ray $x_{k}+\left(z-x_{k}\right)$
* use a "merit" function to choose good $x_{k+1}=z$
* merit function rewards points z that look close to a solution
- Repeat until convergence
- Semismooth Reformulation
- Define Fischer-Burmeister function

$$
\phi(a, b):=a+b-\sqrt{a^{2}+b^{2}}
$$

or some function such that $\phi(a, b)=0$ iff $a \geq 0, b \geq 0$, and $a b=0$

- Define the system

$$
[\Phi(x)]_{i}=\phi\left(x_{i}, F_{i}(x)\right)
$$

- x^{*} solves complementarity problem iff $\Phi\left(x^{*}\right)=0$
- Use methods for solving nonsmooth system of equations (not discussed here)
- Some Available Software
- PATH - sequential linearization method
* Todd Munson's PhD thesis at U. Wisconsin
* Not in public domain but available for free through NEOS if you use GAMS or AMPL
* Widely used in applied general equilibrium work
- MILES - sequential linearization method
- SEMI - semismooth linesearch method
- TAO - Toolkit for Advanced Optimization

