Discrete State Dynamic Games

Kenneth L. Judd, Hoover Institution

May 13, 2020

(ロ)、(型)、(E)、(E)、 E) のQ(()

Discrete-time Dynamic Games

A discrete-time stochastic game with a finite number of states is often just called a "stochastic game"

- Ericson-Pakes model of industry dynamics is an example
- Pakes-Mcguire presents a computational method
- Definition of states and actions
 - State of the game in period t is $\omega_t \in \Omega$; finite number of states
 - N players.
 - Player *i*'s action at *t* is $x_t^i \in \mathbb{X}^i(\omega_t)$, the set of feasible actions
 - The players' actions in period t is x_t = (x_t¹,...,x_t^N). As usual, x_t⁻ⁱ denotes (x_t¹,...,x_tⁱ⁻¹, x_tⁱ⁺¹,...,x_t^N).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Apologies for change in notation. Here xⁱ_t denotes actions and ωⁱ_t denotes states

Dynamics and payoffs

Dynamics

- Changes in states are determined by a Markov process
- Law of motion is

$$\Pr\left(\omega'|\omega_t, x_t\right) = \prod_{i=1}^{N} \Pr^{i}\left(\left(\omega'\right)^{i} |\omega_t^{i}, x_t^{i}\right),$$

where $\Pr^{i}\left(\left(\omega'\right)^{i}|\omega_{t}^{i},x_{t}^{i}\right)$ is the transition probability for player *i*'s state.

- Payoff
 - Player *i* receives πⁱ(x_t, ω_t) when players' actions are x_t and the state is ω_t.
 - At the beginning of the next period player *i* receives a payoff Φⁱ (x_t, ω_t, ω_{t+1}) IF there is a change in the state. For example, I may order a machine to come tomorrow but perhaps it does not.

Nash equilibrium

Bellman equation for player i is

$$V^{i}(\omega) = \max_{x^{i}} \pi^{i} \left(x^{i}, X^{-i}(\omega), \omega \right) + \beta \mathsf{E}_{\omega'} \left\{ \Phi^{i} \left(x^{i}, X^{-i}(\omega), \omega, \omega' \right) + V^{i}(\omega') \left| \omega, x^{i}, X^{-i}(\omega) \right\} \right\}$$

Player strategy is

$$\begin{array}{l} X^{i}\left(\omega\right) = \arg\max_{\mathsf{x}^{i}}\pi^{i}\left(\mathsf{x}^{i}, X^{-i}\left(\omega\right), \omega\right) + \\ \beta \mathsf{E}_{\omega'}\left\{ \Phi^{i}\left(\mathsf{x}^{i}, X^{-i}\left(\omega\right), \omega, \omega'\right) + V^{i}\left(\omega'\right) | \omega, \mathsf{x}^{i}, X^{-i}\left(\omega\right) \right\} \end{array}$$

(ロ)、(型)、(E)、(E)、 E) のQ(()

 Nash equilibrium is a set of Bellman and policy solutions for the set of players

Discrete-Time Algorithm

Order the states in Ω Make initial guesses for the value $V^i(\omega)$ and the policy $X^i(\omega)$ of each player i = 1, ..., N in each state $\omega \in \Omega$. For each state $\omega \in \Omega$, use $V^i(\omega)$ and $X^i(\omega)$ to compute new guesses $\hat{V}^i(\omega)$ and $\hat{X}^i(\omega)$ for each player i = 1, ..., N

$$\begin{aligned}
\hat{X}^{i} &\leftarrow \arg \max_{x^{i}} \pi^{i} \left(x^{i}, X^{-i}, \omega\right) \\
&+ \beta \mathsf{E}_{\omega'} \left\{ \Phi^{i} \left(x^{i}, X^{-i}, \omega, \omega'\right) + V^{i} \left(\omega'\right) | \omega, x^{i}, X^{-i} \right\}, \quad (1) \\
\hat{V}^{i} &\leftarrow \pi^{i} \left(\hat{X}^{i}, X^{-i}, \omega\right) \\
&+ \beta \mathsf{E}_{\omega'} \left\{ \Phi^{i} \left(\hat{X}^{i}, X^{-i}, \omega, \omega'\right) + V^{i} \left(\omega'\right) | \omega, \hat{X}^{i}, X^{-i} \right\}. \quad (2)
\end{aligned}$$

pre-Gauss-Jacobi at each state $\omega \in \Omega$ and each player i = 1, ..., NDoes NOT compute Nash equilibrium at state $\omega \in \Omega$, only best replies.

Computational Challenge

• Equations (1) and (2) includes (set $\Phi^i = 0$ to stay simple)

$$\mathsf{E}_{\omega'}\left\{V^{i}\left(\omega'\right)|\omega,X(\omega)\right\} = \sum_{\left\{\omega':\mathsf{Pr}\left(\omega'|\omega,X(\omega)\right)>0\right\}}V^{i}\left(\omega'\right)\mathsf{Pr}\left(\omega'|\omega,X(\omega)\right),$$
(3)

- Number of terms is all states ω' s.t. $\Pr(\omega'|\omega, X(\omega)) > 0$.
 - ▶ Independent jumps, only {up, down, no change}, sum has 3^N terms,

$$\sum_{\left\{\omega':(\omega')^{i}\in\left\{\omega^{i}-1,\omega^{i},\omega^{i}+1\right\},i=1,\ldots,N\right\}}V^{i}\left(\omega'\right)\prod_{i=1}^{N}\Pr^{i}\left(\left(\omega'\right)^{i}|\omega^{i},X^{i}(\omega)\right).$$

Each player can move K states implies K^N terms.
 CURSE OF DIMENSIONALITY!!!

Continuous-time Model

Same model but with continuous time.

- Each firm's path is a piecewise-constant, right-continuous function of time.
- Jumps occur at random times, following a controlled Poisson process.
 - At t hazard rate of a jump is $\phi(x_t, \omega_t)$.
 - ► If jump at *t*, prob. state moves to ω' is $f(\omega'|\omega_{t^-}, x_{t^-})$, where $\omega_{t^-} = \lim_{s \to t^-} \omega_s$, and $x_{t^-} = \lim_{s \to t^-} x_s$.
 - $f(\omega'|\omega_{t^-}, x_{t^-})$ represents the induced first-order Markov process.

• WLOG, $f(\omega_{t^{-}}|\omega_{t^{-}}, x_{t^{-}}) = 0.$

• Over a short interval of time $\Delta > 0$

$$\Pr\left(\omega_{t+\Delta} \neq \omega_t | \omega_t, x_t\right) = \phi\left(x_t, \omega_t\right) \Delta + O\left(\Delta^2\right),$$

$$\Pr\left(\omega_{t+\Delta} = \omega' | \omega_t, x_t, \omega_{t+\Delta} \neq \omega_t\right) = f\left(\omega' | \omega_t, x_t\right) + O\left(\Delta\right).$$

Independent transitions implies

$$\overset{i}{\Pr} \begin{pmatrix} \omega_{t+\Delta}^{i} \neq \omega_{t}^{i} | \omega_{t}^{i}, x_{t}^{i} \end{pmatrix} = \phi^{i} \left(x_{t}^{i}, \omega_{t}^{i} \right) \Delta + O \left(\Delta^{2} \right),$$

$$\overset{i}{\Pr} \left(\omega_{t+\Delta}^{i} = \left(\omega^{\prime} \right)^{i} | \omega_{t}^{i}, x_{t}^{i}, \omega_{t+\Delta}^{i} \neq \omega_{t}^{i} \right) = f^{i} \left(\left(\omega^{\prime} \right)^{i} | \omega_{t}^{i}, x_{t}^{i} \right) + O \left(\Delta \right),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\phi(x_t, \omega_t) = \sum_{i=1}^{N} \phi^i(x_t^i, \omega_t^i)$ is hazard rate of some jump • Key fact: during short Δ , at most one jump by one firm, a.s. Payoff of player *i* consists of two components.

• payoff flow equal to $\pi^i(x_t, \omega_t)$, a flow

• $\Phi^i(x_{t^-}, \omega_{t^-}, \omega_t)$ is the jump in player wealth if jump Objective of player *i* is

$$\mathsf{E}\left\{\int_{0}^{\infty}e^{-\rho t}\pi^{i}\left(x_{t},\omega_{t}\right)dt+\sum_{m=1}^{\infty}e^{-\rho T_{m}}\Phi^{i}\left(x_{T_{m}^{-}},\omega_{T_{m}^{-}},\omega_{T_{m}}\right)\right\},\qquad(4)$$

Bellman equation for player i over a short interval of time of length $\Delta>0$:

$$\begin{split} V^{i} &= \max_{x^{i}} \pi^{i} \left(x^{i}, X^{-i}, \omega \right) \Delta \\ &+ \left(1 - \rho \Delta \right) \left\{ \left(1 - \phi \left(x^{i}, X^{-i}, \omega \right) \Delta - O \left(\Delta^{2} \right) \right) V^{i} \\ &+ \left(\phi \left(x^{i}, X^{-i}, \omega \right) \Delta + O \left(\Delta^{2} \right) \right) \\ &\times \left(\mathsf{E}_{\omega'} \left\{ \Phi^{i} \left(x^{i}, X^{-i}, \omega, \omega' \right) + V^{i} \left(\omega' \right) | \omega, x^{i}, X^{-i} \right\} + O \left(\Delta \right) \right) \right\}, \end{split}$$

62 Doraszelski and Judd

Quantitative Economics 3 (2012)

which, as $\Delta \rightarrow 0$, simplifies to the Bellman equation

$$\rho V^{i}(\omega) = \max_{x^{i} \in \mathbb{X}^{i}(\omega)} \pi^{i}(x^{i}, X^{-i}(\omega), \omega) - \phi(x^{i}, X^{-i}(\omega), \omega) V^{i}(\omega) + \phi(x^{i}, X^{-i}(\omega), \omega)$$

$$\times \mathcal{E}_{\omega'} \{ \Phi^{i}(x^{i}, X^{-i}(\omega), \omega, \omega') + V^{i}(\omega') | \omega, x^{i}, X^{-i}(\omega) \}.$$

$$(4)$$

Hence, $V^i(\omega)$ can be interpreted as the asset value to player *i* of participating in the game. This asset is priced by requiring that the opportunity cost of holding it, $\rho V^i(\omega)$, equals the current cash flow, $\pi^i(x^i, X^{-i}(\omega), \omega)$, plus the expected capital gain or loss conditional on a jump occurring,

$$\mathbb{E}_{\omega'}\left\{\Phi^{i}(x^{i},X^{-i}(\omega),\omega,\omega')+V^{i}(\omega')|\omega,x^{i},X^{-i}(\omega)\right\}-V^{i}(\omega),$$

3.2 Continuous-time algorithm

In its basic form, our computational strategy adapts the block Gauss–Seidel scheme to the continuous-time model. The sole change is that to update players' values and policies in state $\omega \in \Omega$, we replace equations (9) and (10) by

$$\hat{X}^{i}(\omega) \leftarrow \arg\max_{x^{i}} \pi^{i}(x^{i}, X^{-i}(\omega), \omega) - \phi(x^{i}, X^{-i}(\omega), \omega)V^{i}(x^{i}, X^{-i}(\omega), \omega)
+ \phi(x^{i}, X^{-i}(\omega), \omega)$$
(11)
$$\times E_{\omega'} \{ \Phi^{i}(x^{i}, X^{-i}(\omega), \omega, \omega') + V^{i}(\omega') | \omega, x^{i}, X^{-i}(\omega) \},$$

$$\hat{V}^{i}(\omega) \leftarrow \frac{1}{\rho + \phi(\hat{X}^{i}(\omega), X^{-i}(\omega), \omega)} \pi^{i}(\hat{X}^{i}(\omega), X^{-i}(\omega), \omega)
+ \frac{\phi(\hat{X}^{i}(\omega), X^{-i}(\omega), \omega)}{\rho + \phi(\hat{X}^{i}(\omega), X^{-i}(\omega), \omega)}$$
(12)
$$\times E_{\omega'} \{ \Phi^{i}(\hat{X}^{i}(\omega), X^{-i}(\omega), \omega, \omega') + V^{i}(\omega') | \omega, \hat{X}^{i}(\omega), X^{-i}(\omega) \}.$$

Computational considerations

 Equilibrium is a finite set of equations, each equation being a low-dimensional optimization problem

- LOOKS like dynamic programming but it is not
 - This is not a contraction mapping
 - There may be multiple solutions, in which case this cannot be a contraction mapping
 - Without a contraction factor you cannot use simple stopping rule form DP
- The system is a set of nonlinear equations
 - Can use Gauss-Jacobi, as did Pakes and Mcguire
 - Could use Gauss-Seidel, as later people did (to save memory)

Different algorithms may produce different solutions

					Continuous Continuous		Ratio				
					Time With		Time Wi		Discrete to	Continuous	Discrete to
					Precompu		Precompu		Continuous	Time Without	Continuous
			Discrete T	ïme	Address	es	Address		Time Without	to With	Time With
Number	Number	Number of							Precomputed	Precomputed	Precomputed
of Firms	of States	Unknowns	sec	%	sec	%	sec	%	Addresses	Addresses	Addresses
2	171	684	1.07 (-6)	55	7.13 (-7)	41	5.85 (-7)	36	1.50	1.22	1.83
3	1140	6840	1.61 (-6)	76	6.67 (-7)	44	5.26 (-7)	38	2.41	1.27	3.06
4	5985	47,880	3.30 (-6)	87	6.68 (-7)	49	5.10 (-7)	41	4.94	1.31	6.48
5	26,334	263,340	8.05 (-6)	98	7.06 (-7)	49	5.24 (-7)	43	11.40	1.35	15.36
6	100,947	1,211,364	2.15 (-5)	97	7.51 (-7)	52	5.37 (-7)	46	28.57	1.40	40.00
7	346,104	4,845,456	6.19 (-5)	100	7.74 (-7)	56	5.47 (-7)	49	80.00	1.42	113.21
8	1,081,575	17,305,200	1.65 (-4)	100	8.23 (-7)	58	5.92 (-7)	56	200.28	1.39	278.44

TABLE 1. Time per iteration per state per firm and percentage of time spent on computing the expectation.^a

^aQuality ladder model with M = 18 quality levels per firm and a discount factor of 0.925. (k) is shorthand for $\times 10^k$.

					Cartin		Continuous		Ratio		
Number Number		Number of	Discrete Time		Continuous Time Without Precomputed Addresses		Continuous Time With Precomputed Addresses		Disc. to Cont. Time Without Precomp.	Cont. Time Without to With Precomp.	Disc. to Cont. Time With Precomp.
of Firms	of States	Unknowns	sec	%	sec	%	sec	%	Addresses	Addresses	Addresses
2	45	180	9.78 (-7)	52	6.89 (-7)	42	5.67 (-7)	33	1.42	1.22	1.73
3	165	990	1.45 (-6)	74	6.36 (-7)	44	5.05 (-7)	38	2.29	1.26	2.88
4	495	3960	2.90 (-6)	88	6.36 (-7)	48	4.75 (-7)	43	4.55	1.34	6.10
5	1287	12,870	6.94 (-6)	96	6.42 (-7)	53	4.77 (-7)	46	10.81	1.35	14.57
6	3003	36,036	1.81 (-5)	98	6.88 (-7)	55	4.88 (-7)	45	26.34	1.41	37.12
7	6435	90,090	5.02 (-5)	100	7.33 (-7)	53	5.11 (-7)	48	68.48	1.43	98.26
8	12,870	205,920	1.31 (-4)	100	7.77 (-7)	55	5.24 (-7)	50	168.33	1.48	249.38
9	24,310	437,580	3.82 (-4)	100	7.77 (-7)	62	5.39 (-7)	53	492.16	1.44	709.04
10	43,758	875,160	1.07 (-3)	100	8.34 (-7)	64	5.94 (-7)	44	1282.19	1.40	1800.00
11	75,582	1,662,804	2.99 (-3)	100	8.42 (-7)	67	5.77 (-7)	56	3557.14	1.46	5187.50
12	125,970	3,023,280	8.20 (-3)	100	8.60 (-7)	68	5.95 (-7)	60	9533.08	1.44	13,770.00
13	203,490	5,290,740	2.42 (-2)	100	9.22 (-7)	69	6.20 (-7)	61	26,235.65	1.49	39,033.56
14	319,770	8,953,560	6.76 (-2)	100	9.53 (-7)	72	6.55 (-7)	59	70,946.70	1.45	103,195.27

TABLE 2. Time per iteration per state per firm and percentage of time spent on computing the expectation.^a

^a Quality ladder model with M = 9 quality levels per firm and a discount factor of 0.925. (*k*) is shorthand for $\times 10^k$.

78 Doraszelski and Judd

Quantitative Economics 3 (2012)

Number	Discount	Discrete Time		Continue	ous Time	Ratio	
of Firms	Factor	$< 10^{-4}$	$< 10^{-8}$	$< 10^{-4}$	$< 10^{-8}$	$< 10^{-4}$	$< 10^{-8}$
3	0.925	118	201	212	446	0.56	0.45
3	0.98	412	702	776	1699	0.53	0.41
3	0.99	782	1367	1531	3393	0.51	0.40
3	0.995	1543	2719	3042	6779	0.51	0.40
6	0.925	118	201	364	725	0.32	0.28
6	0.98	494	780	1674	3324	0.30	0.23
6	0.99	983	1525	3379	6761	0.29	0.23
6	0.995	1900	2945	6797	13,637	0.28	0.22
9	0.925	119	201	404	818	0.29	0.25
9	0.98	492	775	2363	4493	0.21	0.17
9	0.99	988	1526	4973	9469	0.20	0.16
9	0.995	2003	3042	10,148	19,365	0.20	0.16
12	0.925			412	854		
12	0.98			2721	5106		
12	0.99			6023	11,181		
12	0.995			12,580	23,304		

TABLE 3. Number of iterations to convergence.^a

^aThe stopping rule is either "distance to truth $<10^{-4}$ " or "distance to truth $<10^{-8}$." Quality ladder model with M = 9 quality levels per firm.

TABLE 4. Time to convergence.^a

Number	Discrete	Continuous	Ratio					
of Firms	Time (min)	Time (min)	Time per Iteration	Number of Iterations	Time to Convergence			
2	1.80 (-4)	1.12 (-4)	1.73	0.93	1.61			
3	1.42 (-3)	8.83 (-4)	2.88	0.56	1.60			
4	1.13 (-2)	4.43 (-3)	6.10	0.42	2.54			
5	8.78 (-2)	1.70 (-2)	14.57	0.36	5.18			
6	6.42 (-1)	5.34 (-2)	37.12	0.32	12.03			
7	4.44 (0)	1.47 (-1)	98.26	0.31	30.19			
8	2.67 (1)	3.56 (-1)	249.38	0.30	74.94			
9	1.66 (2)	7.95 (-1)	709.04	0.29	208.85			
10	9.28 (2)	1.77 (0)	1800.00	0.29	523.72			
11	4.94 (3)	3.30(0)	5187.50	0.29	1498.33			
12	2.46 (4)	6.18 (0)	13,770.00	0.29	3977.26			
13	1.27 (5)	1.13 (1)	39,033.56	0.29	11,246.96			
14	6.00(5)	2.02 (1)	103,195.27	0.29	29,734.23			

^aThe stopping rule is "distance to truth $<10^{-4}$." Entries in italics are based on an estimated 119 iterations to convergence in discrete time. Quality ladder model with M = 9 quality levels per firm and a discount factor of 0.925. (*k*) is shorthand for $\times 10^k$.

82 Doraszelski and Judd

Quantitative Economics 3 (2012)

		Ad Ho	oc Rule		Adaptive Rul	le
Number of Firms	Discount Factor	Terminal Iteration	Distance to Truth	Terminal Iteration	Distance to Truth	Convergence Factor
3	0.925	131	2.43 (-3)	218	7.84 (-5)	0.9676
3	0.98	313	9.93 (-3)	775	1.00 (-4)	0.9899
3	0.99	455	2.01 (-2)	1483	1.27 (-4)	0.9937
3	0.995	589	4.05 (-2)	2778	1.92 (-4)	0.9953
6	0.925	220	3.84 (-3)	370	8.42 (-5)	0.9777
6	0.98	742	1.78 (-2)	1689	9.17 (-5)	0.9948
6	0.99	1198	3.66 (-2)	3454	8.15 (-5)	0.9978
6	0.995	1832	7.41 (-2)	6766	1.04 (-4)	0.9986
9	0.925	232	4.45 (-3)	407	9.18 (-5)	0.9791
9	0.98	1100	2.30(-2)	2387	9.01 (-5)	0.9961
9	0.99	1927	4.87 (-2)	5091	7.84 (-5)	0.9984
9	0.995	3129	1.00(-1)	10,358	8.10 (-5)	0.9992
12	0.925	227	4.73 (-3)	411	1.02 (-4)	0.9781
12	0.98	1276	2.58 (-2)	2751	8.89 (-5)	0.9966
12	0.99	2447	5.59 (-2)	6185	7.48 (-5)	0.9987
12	0.995	4217	1.16(-1)	12,994	7.01 (-5)	0.9994

TABLE 5. Stopping rules.^a

^aTerminal iteration, distance to truth at terminal iteration, and estimated convergence factor are shown. Prespecified tolerance is 10^{-4} . Continuous-time quality ladder model with M = 9 quality levels per firm. (*k*) is shorthand for $\times 10^k$.

Computational Gains

Curse of dimensionality in number of firms with discrete time

(ロ)、(型)、(E)、(E)、 E) のQ(()

► NO curse with continuous time

More Computational considerations

Parallelization?

- Much more dangerous, but should be tried
- Gauss-Jacobi is likely less dangerous than Gauss-Seidel

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●