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Discrete-time Dynamic Games

I A discrete-time stochastic game with a finite number of states is
often just called a “stochastic game”
I Ericson-Pakes model of industry dynamics is an example
I Pakes-Mcguire presents a computational method

I Definition of states and actions
I State of the game in period t is ωt ∈ Ω; finite number of states
I N players.
I Player i ’s action at t is x i

t ∈ Xi (ωt), the set of feasible actions
I The players’ actions in period t is xt =

(
x1
t , . . . , x

N
t

)
. As usual, x−i

t

denotes
(
x1
t , . . . , x

i−1
t , x i+1

t , . . . , xN
t

)
.

I Apologies for change in notation. Here x it denotes actions and ωi
t

denotes states



Dynamics and payoffs

I Dynamics
I Changes in states are determined by a Markov process
I Law of motion is

Pr
(
ω′|ωt , xt

)
=

N∏
i=1

i

Pr
((
ω′
)i |ωi

t , x
i
t

)
,

where Pri
(

(ω′)
i |ωi

t , x
i
t

)
is the transition probability for player i ’s

state.
I Payoff

I Player i receives πi (xt , ωt) when players’ actions are xt and the state
is ωt .

I At the beginning of the next period player i receives a payoff
Φi (xt , ωt , ωt+1) IF there is a change in the state. For example, I may
order a machine to come tomorrow but perhaps it does not.



Nash equilibrium

I Bellman equation for player i is

V i (ω) = maxx i πi
(
x i ,X−i (ω) , ω

)
+

βEω′
{

Φi
(
x i ,X−i (ω) , ω, ω′

)
+ V i (ω′) |ω, x i ,X−i (ω)

}
I Player strategy is

X i (ω) = arg maxx i πi
(
x i ,X−i (ω) , ω

)
+

βEω′
{

Φi
(
x i ,X−i (ω) , ω, ω′

)
+ V i (ω′) |ω, x i ,X−i (ω)

}
I Nash equilibrium is a set of Bellman and policy solutions for the set

of players



Discrete-Time Algorithm

Order the states in Ω
Make initial guesses for the value V i (ω) and the policy X i (ω) of each
player i = 1, . . . ,N in each state ω ∈ Ω.
For each state ω ∈ Ω, use V i (ω) and X i (ω) to compute new guesses
V̂ i (ω) and X̂ i (ω) for each player i = 1, . . . ,N

X̂ i ← arg max
x i

πi
(
x i ,X−i , ω

)
+βEω′

{
Φi
(
x i ,X−i , ω, ω′

)
+ V i (ω′) |ω, x i ,X−i

}
, (1)

V̂ i ← πi
(
X̂ i ,X−i , ω

)
+βEω′

{
Φi
(
X̂ i ,X−i , ω, ω′

)
+ V i (ω′) |ω, X̂ i ,X−i

}
. (2)

pre-Gauss-Jacobi at each state ω ∈ Ω and each player i = 1, . . . ,N
Does NOT compute Nash equilibrium at state ω ∈ Ω, only best replies.



Computational Challenge

I Equations (1) and (2) includes (set Φi = 0 to stay simple)

Eω′
{
V i (ω′) |ω,X (ω)

}
=

∑
{ω′:Pr(ω′|ω,X (ω))>0}

V i (ω′) Pr (ω′|ω,X (ω)) ,

(3)
I Number of terms is all states ω′ s.t. Pr (ω′|ω,X (ω)) > 0.

I Independent jumps, only {up, down, no change}, sum has 3N terms,

∑
{ω′:(ω′)i∈{ωi−1,ωi ,ωi+1},i=1,...,N}

V i (ω′) N∏
i=1

i

Pr
((
ω′
)i |ωi ,X i (ω)

)
.

I Each player can move K states implies KN terms.
I CURSE OF DIMENSIONALITY!!!



Continuous-time Model

Same model but with continuous time.
I Each firm’s path is a piecewise-constant, right-continuous function

of time.
I Jumps occur at random times, following a controlled Poisson

process.
I At t hazard rate of a jump is φ(xt , ωt).
I If jump at t, prob. state moves to ω′ is f (ω′|ωt− , xt−), where
ωt− = lims→t− ωs , and xt− = lims→t− xs .

I f (ω′|ωt− , xt−) represents the induced first-order Markov process.
I WLOG, f (ωt− |ωt− , xt−) = 0.



I Over a short interval of time ∆ > 0

Pr (ωt+∆ 6= ωt |ωt , xt) = φ (xt , ωt) ∆ + O
(
∆2) ,

Pr (ωt+∆ = ω′|ωt , xt , ωt+∆ 6= ωt) = f (ω′|ωt , xt) + O (∆) .

I Independent transitions implies

i

Pr
(
ωi
t+∆ 6= ωi

t |ωi
t , x

i
t

)
= φi

(
x it , ω

i
t

)
∆ + O

(
∆2) ,

i

Pr
(
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t+∆ = (ω′)
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i
t , ω

i
t+∆ 6= ωi

t

)
= f i

(
(ω′)

i |ωi
t , x

i
t

)
+ O (∆) ,

where φ (xt , ωt) =
∑N

i=1 φ
i
(
x it , ω

i
t

)
is hazard rate of some jump

I Key fact: during short ∆, at most one jump by one firm, a.s.



Payoff of player i consists of two components.
I payoff flow equal to πi (xt , ωt), a flow
I Φi (xt− , ωt− , ωt) is the jump in player wealth if jump

Objective of player i is

E

{ˆ ∞
0

e−ρtπi (xt , ωt) dt +
∞∑

m=1

e−ρTmΦi
(
xT−m , ωT−m

, ωTm

)}
, (4)

Bellman equation for player i over a short interval of time of length
∆ > 0:

V i = max
x i

πi
(
x i ,X−i , ω

)
∆

+ (1− ρ∆)

{(
1− φ

(
x i ,X−i , ω

)
∆− O

(
∆2))V i

+
(
φ
(
x i ,X−i , ω

)
∆ + O

(
∆2))

×
(
Eω′

{
Φi
(
x i ,X−i , ω, ω′

)
+ V i (ω′) |ω, x i ,X−i

}
+ O (∆)

)}
,
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which, as Δ→ 0, simplifies to the Bellman equation

ρV i(ω) = max
xi∈Xi(ω)

πi(xi�X−i(ω)�ω)−φ(xi�X−i(ω)�ω)V i(ω)

+φ(xi�X−i(ω)�ω) (4)

× Eω′
{
Φi(xi�X−i(ω)�ω�ω′)+ V i(ω′)|ω�xi�X−i(ω)

}
�

Hence, V i(ω) can be interpreted as the asset value to player i of participating in the
game. This asset is priced by requiring that the opportunity cost of holding it, ρV i(ω),
equals the current cash flow, πi(xi�X−i(ω)�ω), plus the expected capital gain or loss
conditional on a jump occurring,

Eω′
{
Φi(xi�X−i(ω)�ω�ω′)+ V i(ω′)|ω�xi�X−i(ω)

} − V i(ω)�

times the hazard rate of a jump occurring, φ(xi�X−i(ω)�ω). Similar to the discrete-time
model, player i’s strategy is found by carrying out the maximization on the right-hand
side of the Bellman equation (4).

Existence For the same reason as in the discrete-time model, computational tractabil-
ity requires the existence of a Markov perfect equilibrium in pure strategies. In what
follows, we provide sufficient conditions for the existence of such an equilibrium.

We focus our attention on games with continuous actions.

Assumption 1. X
i(ω) is nonempty, compact, and convex for all ω and i.

Next we assume that players discount future payoffs.

Assumption 2. ρ > 0.

We further assume that the model’s primitives are continuous.

Assumption 3. πi(x�ω), Φi(x�ω�ω′), φ(x�ω), and f (x�ω) are continuous in x for all
ω, ω′, and i.

Similar continuity assumptions are commonplace in the literature on discrete-time
stochastic games (see Mertens (2002) for a survey).

Let V i(·) denote a (|Ω| × 1) vector of values of player i in the various possible states
and let hi(xi�X−i(ω)�ω�V i(·)) denote the maximand in the Bellman equation (4) for
player i. To guarantee existence in pure strategies, we finally assume that player i’s max-
imization problem always has a unique solution.

Assumption 4. arg maxxi∈Xi(ω) h
i(xi�X−i(ω)�ω�V i(·)) is single-valued for all X−i(ω),

ω, V i(·), and i.
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we update these guesses as we proceed through the state space in the prespecified order.
Specifically, in state ω ∈Ω, given old guesses V i(ω) and Xi(ω), we compute new guesses
V̂ i(ω) and X̂i(ω) for each player i = 1� � � � �N as

X̂i(ω) ← arg max
xi

πi(xi�X−i(ω)�ω)

(9)
+βEω′

{
Φi(xi�X−i(ω)�ω�ω′)+ V i(ω′)|ω�xi�X−i(ω)

}
�

V̂ i(ω) ← πi(X̂i(ω)�X−i(ω)�ω)
(10)

+βEω′
{
Φi(X̂i(ω)�X−i(ω)�ω�ω′)+ V i(ω′)|ω�X̂i(ω)�X−i(ω)

}
�

Note that the old guesses for the policies of player i’s opponents, X−i(ω), and the old
guess for player i’s value, V i(ω), are used when computing the new guesses V̂ i(ω) and
X̂i(ω). This procedure is, therefore, a Gauss–Jacobi scheme at each state ω ∈Ω.

There are two ways to update the old guesses V i(ω) and Xi(ω). PM1 suggest a
Gauss–Jacobi scheme that computes the new guesses V̂ i(ω) and X̂i(ω) for all players
i = 1� � � � �N and all states ω ∈ Ω before replacing the old guesses with the new guesses.
Their value function iteration approach is also called a pre-Gauss–Jacobi method in the
literature on nonlinear equations (see Judd (1998) for an extensive discussion of Gauss–
Jacobi and Gauss–Seidel methods). In contrast to PM1, we employ the block Gauss–
Seidel scheme that is typically used for discrete-time stochastic games with a finite num-
ber of states (e.g., Benkard (2004)). In our block Gauss–Seidel scheme, immediately af-
ter computing V̂ i(ω) and X̂i(ω) for all players i = 1� � � � �N and a given state ω ∈ Ω, we
replace the old guesses with the new guesses for all players in that state. This has the ad-
vantage that “information” is used as soon as it becomes available. The algorithm cycles
through the state space until the changes in the value and policy functions are small (see
Section 5.4 for details).

3.2 Continuous-time algorithm

In its basic form, our computational strategy adapts the block Gauss–Seidel scheme to
the continuous-time model. The sole change is that to update players’ values and poli-
cies in state ω ∈Ω, we replace equations (9) and (10) by

X̂i(ω) ← arg max
xi

πi(xi�X−i(ω)�ω)−φ(xi�X−i(ω)�ω)V i(xi�X−i(ω)�ω)

+φ(xi�X−i(ω)�ω) (11)

× Eω′
{
Φi(xi�X−i(ω)�ω�ω′)+ V i(ω′)|ω�xi�X−i(ω)

}
�

V̂ i(ω) ← 1

ρ+φ(X̂i(ω)�X−i(ω)�ω)
πi(X̂i(ω)�X−i(ω)�ω)

+ φ(X̂i(ω)�X−i(ω)�ω)

ρ+φ(X̂i(ω)�X−i(ω)�ω)
(12)

× Eω′
{
Φi(X̂i(ω)�X−i(ω)�ω�ω′)+ V i(ω′)|ω�X̂i(ω)�X−i(ω)

}
�



Computational considerations

I Equilibrium is a finite set of equations, each equation being a
low-dimensional optimization problem

I LOOKS like dynamic programming but it is not
I This is not a contraction mapping
I There may be multiple solutions, in which case this cannot be a

contraction mapping
I Without a contraction factor you cannot use simple stopping rule

form DP
I The system is a set of nonlinear equations

I Can use Gauss-Jacobi, as did Pakes and Mcguire
I Could use Gauss-Seidel, as later people did (to save memory)
I Different algorithms may produce different solutions
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Table 1. Time per iteration per state per firm and percentage of time spent on computing the expectation.a

Ratio
Continuous

Time Without
Continuous
Time With

Precomputed Precomputed
Discrete Time Addresses Addresses

Discrete to
Continuous

Time Without
Precomputed

Addresses

Continuous
Time Without

to With
Precomputed

Addresses

Discrete to
Continuous
Time With

Precomputed
Addresses

Number Number Number of
of Firms of States Unknowns sec % sec % sec %

2 171 684 1�07 (−6) 55 7�13 (−7) 41 5�85 (−7) 36 1�50 1�22 1�83
3 1140 6840 1�61 (−6) 76 6�67 (−7) 44 5�26 (−7) 38 2�41 1�27 3�06
4 5985 47,880 3�30 (−6) 87 6�68 (−7) 49 5�10 (−7) 41 4�94 1�31 6�48
5 26,334 263,340 8�05 (−6) 98 7�06 (−7) 49 5�24 (−7) 43 11�40 1�35 15�36
6 100,947 1,211,364 2�15 (−5) 97 7�51 (−7) 52 5�37 (−7) 46 28�57 1�40 40�00
7 346,104 4,845,456 6�19 (−5) 100 7�74 (−7) 56 5�47 (−7) 49 80�00 1�42 113�21
8 1,081,575 17,305,200 1�65 (−4) 100 8�23 (−7) 58 5�92 (−7) 56 200�28 1�39 278�44

aQuality ladder model with M = 18 quality levels per firm and a discount factor of 0�925. (k) is shorthand for ×10k .
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Table 2. Time per iteration per state per firm and percentage of time spent on computing the expectation.a

Ratio
Continuous

Time Without
Continuous
Time With

Precomputed Precomputed
Discrete Time Addresses Addresses

Disc. to
Cont. Time

Without
Precomp.
Addresses

Cont. Time
Without to

With
Precomp.
Addresses

Disc. to
Cont.

Time With
Precomp.
Addresses

Number Number Number of
of Firms of States Unknowns sec % sec % sec %

2 45 180 9�78 (−7) 52 6�89 (−7) 42 5�67 (−7) 33 1�42 1�22 1�73
3 165 990 1�45 (−6) 74 6�36 (−7) 44 5�05 (−7) 38 2�29 1�26 2�88
4 495 3960 2�90 (−6) 88 6�36 (−7) 48 4�75 (−7) 43 4�55 1�34 6�10
5 1287 12,870 6�94 (−6) 96 6�42 (−7) 53 4�77 (−7) 46 10�81 1�35 14�57
6 3003 36,036 1�81 (−5) 98 6�88 (−7) 55 4�88 (−7) 45 26�34 1�41 37�12
7 6435 90,090 5�02 (−5) 100 7�33 (−7) 53 5�11 (−7) 48 68�48 1�43 98�26
8 12,870 205,920 1�31 (−4) 100 7�77 (−7) 55 5�24 (−7) 50 168�33 1�48 249�38
9 24,310 437,580 3�82 (−4) 100 7�77 (−7) 62 5�39 (−7) 53 492�16 1�44 709�04

10 43,758 875,160 1�07 (−3) 100 8�34 (−7) 64 5�94 (−7) 44 1282�19 1�40 1800�00
11 75,582 1,662,804 2�99 (−3) 100 8�42 (−7) 67 5�77 (−7) 56 3557�14 1�46 5187�50
12 125,970 3,023,280 8�20 (−3) 100 8�60 (−7) 68 5�95 (−7) 60 9533�08 1�44 13,770�00
13 203,490 5,290,740 2�42 (−2) 100 9�22 (−7) 69 6�20 (−7) 61 26,235�65 1�49 39,033�56
14 319,770 8,953,560 6�76 (−2) 100 9�53 (−7) 72 6�55 (−7) 59 70,946�70 1�45 103,195�27

aQuality ladder model with M = 9 quality levels per firm and a discount factor of 0�925. (k) is shorthand for ×10k .
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Table 3. Number of iterations to convergence.a

Discrete Time Continuous Time Ratio
Number Discount
of Firms Factor <10−4 <10−8 <10−4 <10−8 <10−4 <10−8

3 0�925 118 201 212 446 0.56 0.45
3 0�98 412 702 776 1699 0.53 0.41
3 0�99 782 1367 1531 3393 0.51 0.40
3 0�995 1543 2719 3042 6779 0.51 0.40
6 0�925 118 201 364 725 0.32 0.28
6 0�98 494 780 1674 3324 0.30 0.23
6 0�99 983 1525 3379 6761 0.29 0.23
6 0�995 1900 2945 6797 13,637 0.28 0.22
9 0�925 119 201 404 818 0.29 0.25
9 0�98 492 775 2363 4493 0.21 0.17
9 0�99 988 1526 4973 9469 0.20 0.16
9 0�995 2003 3042 10,148 19,365 0.20 0.16

12 0�925 412 854
12 0�98 2721 5106
12 0�99 6023 11,181
12 0�995 12,580 23,304

aThe stopping rule is either “distance to truth <10−4” or “distance to truth <10−8 .” Quality ladder model with M = 9 quality
levels per firm.

Table 3 compares the discrete- and continuous-time algorithms.17,18 It presents the
number of iterations until the distance between the current iterate V̂ and X̂ , and the
“true” solution V∞ and X∞ as measured by E(V̂ �V∞) and E(X̂�X∞) is below a prespec-
ified tolerance of either 10−4 or 10−8. To obtain V∞ and X∞, we ran the algorithm until
the distance between subsequent iterates as measured by E(V̂ �V ) and E(X̂�X) failed
to decrease any further. The iterations continued until this distance was less than 10−13

and, in some cases, less than 10−15. The final iterates were considered the true solution
since they satisfied the equilibrium conditions essentially up to machine precision.

In light of our previous discussion, we expect the number of iterations to be sensitive
to the number of firms and the discount factor. Hence, Table 3 assumes N ∈ {3�6�9�12}
and β = e−ρ ∈ {0�925�0�98�0�99�0�995}. We omit the cases with N = 12 in discrete time
because one iteration takes more than 3 hours, thus making it impractical to compute
the true solution. We see that the continuous-time algorithm needs more iterations to
converge than its discrete-time counterpart, and that this gap widens very slightly as
we increase β (decrease ρ). On the other hand, the number of iterations needed by the
discrete-time algorithm remains more or less constant as we increase the number of
firms, whereas the number of iterations needed by the continuous-time algorithm in-
creases rapidly as we go from N = 3 to N = 6. Fortunately, the number of iterations in-

17Whether we use precomputed addresses in continuous time is immaterial for the number of iterations
to convergence.

18The starting values are V i(ω) = πi(ω)
1−β and Xi(ω)= 0 in discrete time, and V i(ω) = πi(ω)

ρ and Xi(ω) = 0
in continuous time.
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creases slowly as we go from N = 6 to N = 9 and remains more or less constant there-
after, so that the gap between the algorithms stabilizes.

We last note that both the discrete- and the continuous-time algorithms always con-
verged in the case of the quality ladder model as specified in Section 4. Our experience
with other models is that sometimes either one or both algorithms fail to converge and
that the number of convergence failures is about the same for the two algorithms.19

5.3 Time to convergence

The continuous-time algorithm suffers an iteration penalty because η(X(ω)�ω) sub-
stantially exceeds the discrete-time discount factor β. Even though the continuous-time
algorithm needs more iterations, the loss in the number of iterations is small when com-
pared to the gain from avoiding the curse of dimensionality in computing the expecta-
tion over successor states. Table 4 illustrates this comparison and the total gain from
continuous time. Continuous time beats discrete time by 60% if N = 3, a factor of 12 if
N = 6, a factor of 209 if N = 9, a factor of 3977 if N = 12, and a factor of 29,734 if N = 14.
To put these numbers in perspective, in the case of the 14-firm quality ladder model, it

Table 4. Time to convergence.a

Ratio
Number Discrete Continuous
of Firms Time (min) Time (min) Time per Iteration Number of Iterations Time to Convergence

2 1�80 (−4) 1�12 (−4) 1�73 0�93 1�61
3 1�42 (−3) 8�83 (−4) 2�88 0�56 1�60
4 1�13 (−2) 4�43 (−3) 6�10 0�42 2�54
5 8�78 (−2) 1�70 (−2) 14�57 0�36 5�18
6 6�42 (−1) 5�34 (−2) 37�12 0�32 12�03
7 4�44 (0) 1�47 (−1) 98�26 0�31 30�19
8 2�67 (1) 3�56 (−1) 249�38 0�30 74�94
9 1�66 (2) 7�95 (−1) 709�04 0�29 208�85

10 9�28 (2) 1�77 (0) 1800�00 0�29 523�72
11 4�94 (3) 3�30 (0) 5187�50 0�29 1498�33
12 2�46 (4) 6�18 (0) 13,770�00 0�29 3977�26
13 1�27 (5) 1�13 (1) 39,033�56 0�29 11,246�96
14 6�00 (5) 2�02 (1) 103,195�27 0�29 29,734�23

aThe stopping rule is “distance to truth <10−4 .” Entries in italics are based on an estimated 119 iterations to convergence in

discrete time. Quality ladder model with M = 9 quality levels per firm and a discount factor of 0�925. (k) is shorthand for ×10k .

19There are a number of things one can try to facilitate convergence. First, dampening may help to
“smooth out” the path that the algorithm takes; see footnote 18 of PM1 and Chapter 3 of Judd (1998) for
details. Second, the Stein–Rosenberg theorem asserts, at least for certain systems of linear equations, that
if the Gauss–Jacobi algorithm fails to converge, then so does the Gauss–Seidel algorithm; (see, e.g., Propo-
sition 6.9 in Section 2.6 of Bertsekas and Tsitsiklis (1997)). This suggests that a Gauss–Jacobi scheme such
as PM1 may be less prone to convergence failures than our Gauss–Seidel scheme. Third, one may solve out
for the Nash equilibrium in each state rather than rely on the iterative best reply approach of our algorithm
(see Chen, Doraszelski, and Harrington (2009)).
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Table 5. Stopping rules.a

Ad Hoc Rule Adaptive Rule

Number Discount Terminal Distance Terminal Distance Convergence
of Firms Factor Iteration to Truth Iteration to Truth Factor

3 0�925 131 2�43 (−3) 218 7�84 (−5) 0�9676
3 0�98 313 9�93 (−3) 775 1�00 (−4) 0�9899
3 0�99 455 2�01 (−2) 1483 1�27 (−4) 0�9937
3 0�995 589 4�05 (−2) 2778 1�92 (−4) 0�9953
6 0�925 220 3�84 (−3) 370 8�42 (−5) 0�9777
6 0�98 742 1�78 (−2) 1689 9�17 (−5) 0�9948
6 0�99 1198 3�66 (−2) 3454 8�15 (−5) 0�9978
6 0�995 1832 7�41 (−2) 6766 1�04 (−4) 0�9986
9 0�925 232 4�45 (−3) 407 9�18 (−5) 0�9791
9 0�98 1100 2�30 (−2) 2387 9�01 (−5) 0�9961
9 0�99 1927 4�87 (−2) 5091 7�84 (−5) 0�9984
9 0�995 3129 1�00 (−1) 10,358 8�10 (−5) 0�9992

12 0�925 227 4�73 (−3) 411 1�02 (−4) 0�9781
12 0�98 1276 2�58 (−2) 2751 8�89 (−5) 0�9966
12 0�99 2447 5�59 (−2) 6185 7�48 (−5) 0�9987
12 0�995 4217 1�16 (−1) 12,994 7�01 (−5) 0�9994

aTerminal iteration, distance to truth at terminal iteration, and estimated convergence factor are shown. Prespecified toler-

ance is 10−4 . Continuous-time quality ladder model with M = 9 quality levels per firm. (k) is shorthand for ×10k .

of the conceptual differences between discrete- and continuous-time models. Next we
compare the equilibrium behavior of players and the dynamics implied by that behavior
using the quality ladder model of Section 4 as an example. We finally note some limita-
tions of continuous-time models.

6.1 State changes

Discrete- and continuous-time models differ in how often and how much a state vari-
able can change over a finite interval of time. In discrete-time models, a state vari-
able can change at most once per period, so the number of changes is bounded.21 In
continuous-time models, by contrast, the number of changes over a finite interval of
time is not bounded. This may or may not be appropriate, depending on the institu-
tional and technological details of the economic problem under study. Rigidities in the
decision-making process could put a limit on change, for example, if decisions are made
by a board of directors that meets at fixed times or if there are contractual obligations
that lock a firm into its decision for a period of time.

In addition to restricting how often a state variable can change over a finite interval
of time, discrete-time models also force the changes to take place at regular intervals, a
sometimes useful feature. Consider the automobile industry. Automobile manufacturers

21To allow for a larger number of changes over a finite interval of time in discrete-time models, one could
think about shortening the length of a period by taking the discount factor close to 1. However, as Table 3
shows, the number of iterations to convergence increases with β.



Computational Gains

I Curse of dimensionality in number of firms with discrete time
I NO curse with continuous time



More Computational considerations

I Parallelization?
I Much more dangerous, but should be tried
I Gauss-Jacobi is likely less dangerous than Gauss-Seidel




