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Discrete-time Dynamic Games

» A discrete-time stochastic game with a finite number of states is
often just called a “stochastic game”
» Ericson-Pakes model of industry dynamics is an example
» Pakes-Mcguire presents a computational method
» Definition of states and actions
> State of the game in period t is w; € Q; finite number of states

> N players.

> Player i's action at t is x{ € X' (w;), the set of feasible actions

> The players’ actions in period t is x; = (x7,...,x"). As usual, x;”’
denotes (x¢,...,x\ 1, xi™ o X!

» Apologies for change in notation. Here x/ denotes actions and w!
denotes states



Dynamics and payoffs

» Dynamics
» Changes in states are determined by a Markov process
» Law of motion is
N

Pr |wf?Xf H I’( ‘wtvxt) )

i=1

where Pr' ((w')’ \wi,x{) is the transition probability for player i’s
state.
> Payoff

> Player i receives Wi(xf,wt) when players' actions are x; and the state
is Wt.

> At the beginning of the next period player i receives a payoff
Y (Xt, we, wet1) IF there is a change in the state. For example, | may
order a machine to come tomorrow but perhaps it does not.



Nash equilibrium

» Bellman equation for player i is

Vi(w) = maxa 7' (x', X (w),w) + S
6E0J' {d)l (X’,X_’ (W) ,W7UJ/) + 4 (wl) |w7Xl7 X (w)}
> Player strategy is

X' (w) = argmax, 7 (x', X7 (w) ,w) +
BE {®F (xF, X~ (W), w, ) + VI (&) |w, X', X7 (w)}

» Nash equilibrium is a set of Bellman and policy solutions for the set
of players



Discrete-Time Algorithm

Order the states in
Make initial guesses for the value V/(w) and the policy X/(w) of each
player i =1,... N in each state w € Q.
For each state w € Q, use V/(w) and X/(w) to compute new guesses
Vi(w) and X/(w) for each player i =1,..., N

X« arg mgxwi (xi,X*i,w)

+OEw {7 (' X7 w,0) + V(@) X (1)
Vi« Wi()A(i,X_i,w)

+BE, {q>" ()?’,X‘i,ww’) V(W) |w,f<",x-"}. (2)

pre-Gauss-Jacobi at each state w € Q and each player i=1,... . N
Does NOT compute Nash equilibrium at state w € €, only best replies.



Computational Challenge

» Equations (1) and (2) includes (set ®' = 0 to stay simple)

Ew {V/ (W) w, X(w)} = Z Vi (W) Pr(w|w, X(w)),
{w’:Pr(w’|w,X(w))>0} 3)

» Number of terms is all states w’ s.t. Pr(w’|w, X(w)) > 0.
> Independent jumps, only {up, down, no change}, sum has 3" terms,

N i
H Pr( |w X' (w))
{u’:(w’)"E{w"—l,w",w"+1},i:1 ..... N} i=

» Each player can move K states implies KV terms.
» CURSE OF DIMENSIONALITY!!



Continuous-time Model

Same model but with continuous time.

» Each firm's path is a piecewise-constant, right-continuous function
of time.

» Jumps occur at random times, following a controlled Poisson
process.
> At t hazard rate of a jump is (X, we).
> If jump at t, prob. state moves to w’ is f (w'|w;—, X, ), where
we— = lim,_,,— ws, and x,— = lim,_,,— xs.
» f(w'|w,—,x,—) represents the induced first-order Markov process.
> WLOG, f (w;-|wp—, x,—) = 0.



» Over a short interval of time A > 0

Pr (wt+A # wt|wtaxt) = ¢(Xt,wt) A+ 0O (Az) ,
Pr(wein = W' |we, Xe, Wern 7 we) f(w'|we,xt) + O (A).

» Independent transitions implies

Priwga #wilwn, x)) = ¢ (x,wi) A+ 0 (A%,

Prwha = (@) W xwha #01) = F (@) whx) + 0(8),

where ¢ (x;,w;) = Z,N:1 ¢’ (x{,w}) is hazard rate of some jump
» Key fact: during short A, at most one jump by one firm, a.s.



Payoff of player i consists of two components.

» payoff flow equal to 7' (x;,w;), a flow

> &/(x,—,w,—,w;) is the jump in player wealth if jump
Objective of player i is

o0 o0
E {/ e Pt (X, wy) dt + Z e PTndf (me_,me_MTm)} ,  (4)
0 m=1

Bellman equation for player i over a short interval of time of length
A > 0:

vio= max7ri (xi,X_i,w) A

+(1-pA) { (1-¢ (X, X w)A—-0(A%) V'
+ (¢ (X, X, w) A+ 0 (%))

X (Ew/ (&7 (X', X7 w,0) + VI () Jw, X', X7} + 0 (A) ) }
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which, as A — 0, simplifies to the Bellman equation

pVi(w)= max 7', X (0),0)— ¢, X (0), o)V (w)
xieXi(w)
+o (', X(0), 0) @
x B, (@'(x', X (), 0, 0) + V(0)|w, x', X ()}
Hence, Vi(w) can be interpreted as the asset value to player i of participating in the
game. This asset is priced by requiring that the opportunity cost of holding it, pV(w),

equals the current cash flow, 7/(x, X (), ), plus the expected capital gain or loss
conditional on a jump occurring,

E (@', X (0), 0, 0") +V(0)]o, X', X ()} =V (w),



3.2 Continuous-time algorithm

In its basic form, our computational strategy adapts the block Gauss-Seidel scheme to
the continuous-time model. The sole change is that to update players’ values and poli-
cies in state w € (2, we replace equations (9) and (10) by

Xi(w) < argmax 7' (x', X7 (w), w) — p(x', X (), o)V (x', X (0), ®)

+o(x', X (w), 0) (11
x E{@' (), X (0), 0, ") + V()] x', X (o)},
1
p+d(Xi(w), X (w), w)
d(Xi(0), X (0), w)
p+d(Xi(w), X (w),w)
X E, {P/(X (), X (), 0, @) + Vi(0)]o, X (0), X ().

(X (0), X (0), w)

Vi(a)) <«

(12)




Computational considerations

» Equilibrium is a finite set of equations, each equation being a
low-dimensional optimization problem
» LOOKS like dynamic programming but it is not
» This is not a contraction mapping
» There may be multiple solutions, in which case this cannot be a
contraction mapping
> Without a contraction factor you cannot use simple stopping rule
form DP
» The system is a set of nonlinear equations
» Can use Gauss-Jacobi, as did Pakes and Mcguire
» Could use Gauss-Seidel, as later people did (to save memory)
> Different algorithms may produce different solutions



TaBLE 1. Time per iteration per state per firm and percentage of time spent on computing the expectation.?

Ratio
Continuous Continuous - - -
Time Without Time With Dlsc'rete to Qontln}lous Dlsc.rete to
Precomputed Precomputed (.]ontln.uous Time Wl.thout C(?ntmu?us
Discrete Time Addresses Addresses Time Without to With Time With

Number Number Number of Precomputed Precomputed Precomputed
of Firms of States Unknowns sec % sec % sec % Addresses Addresses Addresses
2 171 684 1.07 (—6) 55 7.13(=7) 41 5.85(=7) 36 1.50 1.22 1.83
3 1140 6840 1.61 (—6) 76 6.67 (=7) 44 5.26 (=7) 38 2.41 1.27 3.06
4 5985 47,880 3.30 (—6) 87 6.68 (—7) 49 5.10(=7) 41 4.94 1.31 6.48
5 26,334 263,340 8.05 (—6) 98 7.06 (—=7) 49 5.24 (=7) 43 11.40 1.35 15.36
6 100,947 1,211,364 2.15(=5) 97 7.51(=7) 52 5.37(=7) 46 28.57 1.40 40.00
7 346,104 4,845,456 6.19 (-5) 100 7.74 (=7) 56 5.47 (=7) 49 80.00 1.42 113.21
8 1,081,575 17,305,200 1.65 (—4) 100 8.23 (=7) 58 5.92 (=7) 56 200.28 1.39 278.44

aQuality ladder model with M = 18 quality levels per firm and a discount factor of 0.925. (k) is shorthand for x 10%.



TaBLE 2. Time per iteration per state per firm and percentage of time spent on computing the expectation.?

Ratio
Continuous Continuous
Time Without Time With Disc. to Cont. Time Disc. to
Precomputed Precomputed Cor%t. Time With(?ut to ~Cont..

Discrete Time Addresses Addresses Without With Time With

Number Number Number of Precomp. Precomp. Precomp.
of Firms of States Unknowns sec % sec % sec % Addresses Addresses Addresses
2 45 180 9.78 (=7) 52 6.89 (—=7) 42 5.67(=7) 33 1.42 1.22 1.73
3 165 990 1.45 (—6) 74 6.36 (=7) 44 5.05(=7) 38 2.29 1.26 2.88
4 495 3960 2.90 (—6) 88 6.36 (=7) 48 4.75 (=7) 43 4.55 1.34 6.10
5 1287 12,870 6.94 (—6) 96 6.42 (=7) 53 477 (=7) 46 10.81 1.35 14.57
6 3003 36,036 1.81 (=5) 98 6.88 (=7) 55 4.88 (=7) 45 26.34 1.41 37.12
7 6435 90,090 5.02 (=5) 100 7.33(=7) 53 5.11 (=7) 48 68.48 1.43 98.26
8 12,870 205,920 1.31(—4) 100 7.77 (—=7) 55 5.24 (=7) 50 168.33 1.48 249.38
9 24,310 437,580 3.82(—4) 100 7.77 (=7) 62 5.39 (=7) 53 492.16 1.44 709.04
10 43,758 875,160 1.07 (=3) 100 8.34 (=7) 64 5.94 (=7) 44 1282.19 1.40 1800.00
11 75,582 1,662,804 2.99 (-3) 100 8.42 (—7) 67 5.77(=7) 56 3557.14 1.46 5187.50
12 125,970 3,023,280 8.20 (=3) 100 8.60 (—7) 68 5.95(=7) 60 9533.08 1.44 13,770.00
13 203,490 5,290,740 2.42 (=2) 100 9.22 (=7) 69 6.20 (=7) 61 26,235.65 1.49 39,033.56
14 319,770 8,953,560 6.76 (—2) 100 9.53 (=7) 72 6.55 (=7) 59 70,946.70 1.45 103,195.27

aQuality ladder model with M = 9 quality levels per firm and a discount factor of 0.925. (k) is shorthand for x 10%.
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TaBLE 3. Number of iterations to convergence.?

i Discrete Time Continuous Time Ratio

Number Discount

of Firms Factor <10~* <1078 <10~* <1078 <1074 <1078
3 0.925 118 201 212 446 0.56 0.45
3 0.98 412 702 776 1699 0.53 0.41
3 0.99 782 1367 1531 3393 0.51 0.40
3 0.995 1543 2719 3042 6779 0.51 0.40
6 0.925 118 201 364 725 0.32 0.28
6 0.98 494 780 1674 3324 0.30 0.23
6 0.99 983 1525 3379 6761 0.29 0.23
6 0.995 1900 2945 6797 13,637 0.28 0.22
9 0.925 119 201 404 818 0.29 0.25
9 0.98 492 775 2363 4493 0.21 0.17
9 0.99 988 1526 4973 9469 0.20 0.16
9 0.995 2003 3042 10,148 19,365 0.20 0.16

12 0.925 412 854

12 0.98 2721 5106

12 0.99 6023 11,181

12 0.995 12,580 23,304

aThe stopping rule is either “distance to truth <10~4” or “distance to truth <10~8.” Quality ladder model with M = 9 quality
levels per firm.



TABLE 4. Time to convergence.?

Number Discrete Continuous Ratio
of Firms Time (min) Time (min) Time per Iteration Number of Iterations Time to Convergence
2 1.80 (—4) 1.12 (—4) 1.73 0.93 1.61
3 1.42 (=3) 8.83 (—4) 2.88 0.56 1.60
4 1.13 (-2) 4.43 (-3) 6.10 0.42 2.54
5 8.78 (-2) 1.70 (-2) 14.57 0.36 5.18
6 6.42 (—-1) 5.34 (-2) 37.12 0.32 12.03
7 4.44 (0) 1.47 (1) 98.26 0.31 30.19
8 2.67 (1) 3.56 (—1) 249.38 0.30 74.94
9 1.66 (2) 7.95 (-1) 709.04 0.29 208.85
10 9.28 (2) 1.77 (0) 1800.00 0.29 523.72
11 4.94(3) 3.30 (0) 5187.50 0.29 1498.33
12 2.46 (4) 6.18 (0) 13,770.00 0.29 3977.26
13 1.27 (5) 1.13 (1) 39,033.56 0.29 11,246.96
14 6.00 (5) 2.02(1) 103,195.27 0.29 29,734.23

aThe stopping rule is “distance to truth <10~4.” Entries in italics are based on an estimated 119 iterations to convergence in
discrete time. Quality ladder model with M = 9 quality levels per firm and a discount factor of 0.925. (k) is shorthand for x 10% .
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TABLE 5. Stopping rules.?

Ad Hoc Rule Adaptive Rule
Number Discount Terminal Distance Terminal Distance Convergence
of Firms Factor Iteration to Truth Iteration to Truth Factor
3 0.925 131 243 (-3) 218 7.84 (=5) 0.9676
3 0.98 313 9.93 (-3) 775 1.00 (—4) 0.9899
3 0.99 455 2.01(-2) 1483 1.27 (—4) 0.9937
3 0.995 589 4.05 (-2) 2778 1.92 (—4) 0.9953
6 0.925 220 3.84 (-3) 370 8.42 (-5) 0.9777
6 0.98 742 1.78 (=2) 1689 9.17 (=5) 0.9948
6 0.99 1198 3.66 (—2) 3454 8.15 (=5) 0.9978
6 0.995 1832 7.41 (-2) 6766 1.04 (—4) 0.9986
9 0.925 232 4.45 (-3) 407 9.18 (=5) 0.9791
9 0.98 1100 2.30(-2) 2387 9.01 (-5) 0.9961
9 0.99 1927 4.87 (=2) 5091 7.84 (=5) 0.9984
9 0.995 3129 1.00 (1) 10,358 8.10 (=5) 0.9992
12 0.925 227 4.73 (=3) 411 1.02 (—4) 0.9781
12 0.98 1276 2.58 (-2) 2751 8.89 (-5) 0.9966
12 0.99 2447 5.59 (-2) 6185 7.48 (=5) 0.9987
12 0.995 4217 1.16 (1) 12,994 7.01 (=5) 0.9994

aTerminal iteration, distance to truth at terminal iteration, and estimated convergence factor are shown. Prespecified toler-
ance is 10~4. Continuous-time quality ladder model with M = 9 quality levels per firm. (k) is shorthand for x 10k,



Computational Gains

» Curse of dimensionality in number of firms with discrete time
» NO curse with continuous time



More Computational considerations

» Parallelization?

» Much more dangerous, but should be tried
» Gauss-Jacobi is likely less dangerous than Gauss-Seidel





