Neural Networks -- two inputs, one hidden layer

ni1333= X = @3 Remove["Global x"]; DateList[Date[]] // Most
oufizsg= {2020, 5, 11, 23, 2}

We now examine a simple two-dimensional, single hidden layer, neural network.

2 | 3 NeuralNet 2D lecture.nb

Define neural net nodes and the approximation

G will be our neuron. Make G evaluate vectors elementwise
npisz4= G[list_List] := G/e@list

We will first create a small neural net so that you can see the structure
n(1335)= humnodes = 33 dim = 23

niisse- amat = Table[ws,j, {i, 1, numnodes}, {j, 1, dim}];
bvec = Table[b;, {i, 1, numnodes}];
basis = G /@ (amat. {x, y} + bvec)

Out[1338]= {G[lerXWl,lerWl,Z} 5 G[b2+XW2’1+yW2,2] 5 G[b3+XW3’l+yW3’2]}

ni1339= cvec = Table[ci, {i, Length[basis]}]

ouftzsel= {C1, C2, C3}

ni1za0p= model = Sum[c; basis[[i]], {1, Length[basis]}] +dg

Out[1340]= G[bl+XW1,1+le’2:| C1+G[b2+XW2’l+yW2’2] C2+G|:b3+XW3’1+yW3’2:| C3+d0

3 NeuralNet 2D lecture.nb | 3

Math time
Mathematically, a neuron is equivalent to the function:
Y =9(Z')V,X, +bJ,
=1
which can be conveniently modeled, using a matrix form,

Y=0(W.X+b),

where W=[W, W, - W,],and X=

4 | 3 NeuralNet 2D lecture.nb

Alayer of neurons can be conveniently represented, using matrix notation, as follows:

W, . W,
w= @ @
Wa oo Wy

i

The row index in each element of this matrix represents the destination neuron of the correspondii
connection, whereas the column index refers to the input source of the connection.

3 NeuralNet 2D lecture.nb | 5

Designating by Y the output of the layer, you can write

-

o(im,x,+b‘]

‘ M
Y=Y, |= O(Zw,x,+l;,] =0(W.X +b),
j=l

T M
O[Zw\,x, +b,]

j=!

- -

6 | 3 NeuralNet 2D lecture.nb

The function achieved by this network is

v -y =0(Wy b)=0(Wo(w?y' + 1) +b')=0 (W0 (W (0(W'X +"))+ b)+ D').

3 NeuralNet 2D lecture.nb | 7

Picture time

The neural net literature is filled with pictures, leaving the reader to decode the hieroglyphics in order to understand the underlying math.

Here we see a common picture representing a single neuron with multiple inputs and a scalar output

Bias

Inputs
Weights b

X1

X2
Outputs

f =

Activation
Trans.fer function
function

Note the jargon:
Transfer function is nothing more than the weighted sum of the inputs plus the bias.

Bias is just an additive term
Activation function is just a function of one variable
“Outputs” should be “output” since it is a scalar for an individual neuron.

Fortunately, they got “inputs” right.

8 | 3 NeuralNet 2D lecture.nb

The picture above represents a single neuron. Here is what a full single hidden layer neural network looks like where each circle represents a
neuron

>
/

.o’ 2

.

O .,,,,,; ~—
’/4
.) '-s oK v;'_z&“ DX -\0:./5 .
7 e ‘ \ S f‘\f

w%vﬂw

’ '0 ~ 0 SRS

éélﬂzg‘:\|.jéaaias>‘,
ZESRN\ R g

\Y (O // Output layer

Input layer . Hidden layer

X; B Yi » ;, €—, Target

3 NeuralNet 2D lecture.nb | 9

We now specify a more serious net

n(1341:= numnodes = 93 dim = 23
amat = Table[w; ;, {i, 1, numnodes}, {j, 1, dim}];
bvec = Table[b;, {i, 1, numnodes}];
basis = G /@ (amat. {x, y} + bvec);
cvec = Table[c;, {i, Length[basis]}];
model = Sum[c; basis[[i1]], {i, Length[basis]}] +dO;

10 | 3 NeuralNet 2D lecture.nb

Define node function
We use sigmoid function EXCEPT we avoid overflow and under flow

nisa71= G[x_] = If[-20 s x <20, 1/ (1 +Exp[-x]), If[x< -20, 0, 1]]
1
ouiza7 If|-20 < x <20, ———— If[x < -20, 0, 1]
1+Exp[-x]
np348)= PLOot[G[x], {x, -10, 10}]

1.0

Out[1348]=

Set up the optimization

nisa9= vars = Join[amat, bvec, cvec, {d0}] // Flatten
Out[1349]= {Wl,l, Wi,25 Wo 15 W2 2, W31, W3,2, Wg,1, Wq 2, W5 1, W52, Wg 1, We,2, W7,1, W7,2,

Wg 1, Wg,2, Wo,1, Wg,2, b1, b, b3, bs, bs, bg, bs, bg, by, c1, ¢z, 3, C4, Cs5, C6, C7, Cg, Co, dO}

nissop= init = vars - vars + 1
varsin = {vars, init} // Transpose;

3 NeuralNet 2D lecture.nb | 11

Fit a 2D example function

niaszi= FIX_, y_1 = Exp[- (x*/10+2y*/8)];
Plot3D[f[x, y], {x, -5, 5}, {y, -5, 5}, PlotRange -» All]

Out[1353]=

12 | 3 NeuralNet 2D lecture.nb

In[1354]:=

Out[1356]=

In[1357]:=

Out[1362]=

mpts = 10;
npts = 2 mpts +1;
xpts = (Range[npts] -mpts-1) /2.

(-5., -4.5, -4.,-3.5,-3., -2.5, -2., -1.5, -1., -0.5, 0., 0.5, 1., 1.5, 2.

inputs = Flatten[Outer[List, xpts, xpts], 1];
inputsT = inputs // Transpose;

zpts = feee inputs;

data = Join[inputsT, {zpts}];

dataT = data // Transpose;
ListPointPlot3D[dataT]

05 R E s X

3 NeuralNet 2D lecture.nb | 13

Let’s use a global optimizer with multiple initial guesses to solve the least squares problem

nises)= fit = FindFit[dataT, model, varsin, {x, y}, MaxIterations -» 100, Method -> "NMinimize"]
NMinimize: Failed to converge to the requested accuracy or precision within 100 iterations.
Out[1363]= {Wl,l - -0.19068, w; , » 0.790665, wy,; » 0.221148, w, , » -0.929863, w3 ; » 0.0568638, w3z, > 0.970384, ws ; » 0.222165,
Wg,2 > 1.18064, w5 ; > 1.0348, w5 , > 0.69876, wg,; - 0.520327, wg , » 0.921683, wy,; > 1.07408, w7 , > 0.0869792,
Wg 1 - 0.713561, wg > > -0.911572, wg ; » -1.15364, wy , - 0.506211, b; - 0.341216, b, -~ -0.644581, b3z - -3.02443,

b, > 1.21553, bs > 1.38668, bg » -1.22828, b; - -1.49811, bg > -1.50161, by » - 1.46302, c; —» -9.2217, ¢, » -7.21993,
c3 > 0.956138, c4 » 1.25642, Cs > 0.436296, g > -1.07132, ¢ > -0.452691, cg > -0.738582, ¢y > -0.375862, dO > 8.05017)

Note:
Mathematica said it could not solve the problem to the standard 8-digit precision.
These problems are ill-conditioned, so we should use sloppy stopping rules.

Mathematica is using double precision arithmetic.
Most neural network software uses single precision.
If you want better, you need to set the options
“Better” costs you time.

14 | 3 NeuralNet 2D lecture.nb

Plot the neural net result

ni1se4p= modelf = Function[{x, y}, Evaluate[model /. fit]];
Plot3D[modelf[x, y], {X, -5, 5}, {y, -5, 5}]

ouf1365= gg

3 NeuralNet 2D lecture.nb | 15

Plot the error. Note that the errorisin [-0.02, 0.02].

ni1zes= Plot3D[f[x, y] - modelf[x, y]l, {Xx, -5, 5}, {y, -5, 5}]

Out[1366]=

16 | 3 NeuralNet 2D lecture.nb

ni1s67= ContourPlot[f[x, y] - modelf[x, y], {x, -5, 5}, {y, -5, 5}]

Out[1367]=

Let’s look at the contours of the true function

niises- ContourPlot [FX, y], {X, -5, 5}, {y, -5, 5}]

oF

Out[1368]=

-2

-4

3 NeuralNet 2D lecture.nb

| 17

18 | 3 NeuralNet 2D lecture.nb

Here are the contours of the neural network

ini369:= ContourPlot[modelf[x, y], {x, -5, 5}, {y, -5, 5}]

oF

Out[1369]=

-2

-4

Comments on the optimization step

The optimization problems are hideously large.
Standard methods are not used.
The dominant method is stochastic gradient and its refinements.

Stochastic gradient
Take steepest descent direction method

Need the gradient: NNs are designed to make this easy!
They call it backpropagation; we call it automatic differentiation

Computing gradient means evaluating NN for all input data
Too expensive!

Instead use a random sample

Use this stochastically approximated gradient to adjust all weights and biases

3 NeuralNet 2D lecture.nb | 19

20 | 3 NeuralNet 2D lecture.nb

Software and Hardware

TensorFlow is dominant neural net package
The language looks horrible to me
There are Python front ends to make it easier
Challenge: You need to fight through the NN jargon

Massive parallelization is used.

Itis the future

Becoming Human
Exploring Artificial Intelligence & What it Means to be Human

