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Epsilon-distinguishable set (EDS) algorithm

A novel accurate method for solving dynamic economic models:
works for problems with high dimensionality, intractable for earlier
solution methods:

we accurately solve models 20-50 state variables using a laptop.

EDS algorithm is a global method: can handle strong
non-linearities and inequality constraints.

we solve a new Keynesian model with the zero lower bound.

Examples of potential applications of the EDS algorithm:

macroeconomics (many heterogeneous agents);
international economics (many countries);
industrial organization (many �rms);
�nance (many assets);
climate change (many sectors and countries); etc.
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The idea of the EDS algorithm

EDS algorithm merges stochastic simulation and projection
approaches:

we use simulation to approximate the ergodic measure of the solution;
we construct a �xed grid covering the support of the constructed
ergodic measure;
we use projection techniques to accurately solve the model on that grid.

The key novel piece of our analysis: the EDS grid construction:

"ε-distinguishable set (EDS)" = a set of points situated at the distance
at least ε from one another, where ε > 0 is a parameter.

In addition, we use non-product monomial integration and low-cost
derivative free solvers suitable for high dimensional problems.
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A grid of points covering the ergodic set

An illustration of an ε-distinguishable set.
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Remarks

Codes

Not yet available for the EDS method;
But a simple and well documented MATLAB code is available for
generalized stochastic simulation method (GSSA);
GSSA is less e¢ cient but can also solve models with 20-50 state
variables.

Our class of problems di¤ers from Krusell and Smith (1998)

we can have any agents (government, monetary authority, consumers
�rms) but not too many like 20-50, and we work with a true state
space;
Krusell and Smith (1998) have a continuum of similar agents, and they
describe aggregate behavior with a reduced state space (moments of
the aggregate variables).
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Mathematical foundations

We provide mathematical foundations for the EDS grid

We establish computational complexity, dispersion, the cardinality and
degree of uniformity of the EDS grid constructed on simulated series.

We perform the typical and the worst-case analysis for the
discrepancy of the EDS grid.

We relate our results to recent mathematical literature on

covering problems (e.g., measuring entropy); see, Temlyakov (2011).
random sequential packing problems; (e.g. germ contagion); see,
Baryshnikov et al. (2008).
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Random sequential packing problems

Rényi�s (1958) car parking model: Cars that park at random occupy
74% of the curb.

Constructing ε-distinguishable sets is like parking cars in
multidimensional space.
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Illustrative example: a representative-agent model

The representative-agent neoclassical growth model:

max
fkt+1,ctg∞

t=0

E0
∞

∑
t=0

βtu (ct )

s.t. ct + kt+1 = (1� δ) kt + θt f (kt ) ,

ln θt+1 = ρ ln θt + εt+1, εt+1 � N
�
0, σ2

�
where initial condition (k0, θ0) is given;
u (�) = utility function; f (�) = production function;
ct = consumption; kt+1 = capital; θt = productivity;
β = discount factor; δ = depreciation rate of capital;
ρ = autocorrelation coe¢ cient of the productivity level;
σ = standard deviation of the productivity shock.
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Conventional projection methods, Judd (1992)

Characteristic features

Solve a model on a prespeci�ed grid of points.

Use quadrature integration for approximating conditional
expectations.

Compute polynomial coe¢ cients of decision functions using Newton�s
type solver.
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Projection-style method

Projection-style method.
Step 1. Choose functional forms bK (�, b) for parameterizing K .
Choose a grid fkm , θmgm=1,...,M on which bK is constructed.
Step 2. Choose nodes, εj , and weights, ωj , j = 1, ..., J, for integration.
Compute next-period productivity θ0m,j = θ

ρ
m exp

�
εj
�
for all j , m.

Step 3. Solve for b that approximately satisfy the model�s equations:

u0 (cm) = β
J

∑
j=1

ωj �
h
u0
�
c 0m,j

� �
1� δ+ θ0m,j f

0 (k 0m)
�i
,

cm = (1� δ) km + θm f (km)� k 0m .
c 0m,j = (1� δ) k 0m + θ0m,j f (k

0
m)� k 00m,j

where k 0m = bK (km , θm ; b) and k 00m,j = bK �k 0m , θ0m,j ; b�.
3 potential curses of dimensionality: 1) grid construction;
2) approximation of integrals; 3) solvers.
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Curse of dimensionality 1: Tensor product grid

Tensor product rules ) number of grid points grows exponentially with
number of state variables.

2 state variables with 4 grid points ) 4� 4 = 42 = 16
3 state variables with 4 grid points ) 43 = 64
10 state variables with 4 grid points ) 410 = 1, 048, 576

) Not tractable even for moderately large models.
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Approximation of integrals

Integral is approximated by weighted sum of integrand evaluated in a set
of integration nodes

Z
RN
g (ε)w (ε) dε �

J

∑
j=1

ωjg (εj ) ,

where fεjgJj=1 = integration nodes, fωjgJj=1 = integration weights.
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Nodes and weights for one dimensional distribution
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Curse of dimensionality 2: tensor-product integration

Tensor product integration rules ) number of integration nodes grows
exponentially with number of state variables.

2 shocks with 4 nodes ) 4� 4 = 42 = 16
3 shocks with 4 nodes ) 43 = 64
10 shocks with 4 nodes ) 410 = 1, 048, 576

) Not tractable even for moderately large number of shocks.
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Curse of dimensionality 3: Newton solvers

How do we �nd b for capital function bK (k, θ; b)?
Projection-style method.
Step 1. ...
Step 2. ...
Step 3. Solve for b that approximately satisfy the model�s equations:

u0 (cm) = β
J

∑
j=1

ωj �
h
u0
�
c 0m,j

� �
1� δ+ θ0m,j f

0 (k 0m)
�i
,

cm = (1� δ) km + θm f (km)� k 0m .
cm,j = (1� δ) k 0m + θ0m,j f (k

0
m)� k 00m,j

where k 0m = bK (km , θm ; b) and k 00m,j = bK �k 0m , θ0m,j ; b�.
) The larger is the number of state variables and the more complicated
are the equations, the higher is the cost of solving for b using conventional
Newton-style methods.
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Stochastic simulation methods, e.g., Marcet (1988)

Characteristic features

Compute a solution on simulated series.

Fix shocks fθtgTt=1 .
Guess a decision function bK (k, θ; b);
Simulate time series fkt , ctgTt=1
Check equilibrium conditions and recompute bb;
Iterate on b until convergence.

Use Monte Carlo integration for approximating conditional
expectations.

Use learning techniques for solving for parameters of decision
functions.
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Advantage of stochastic simulation method

Advantage of stochastic simulation method: "Grid" is adaptive: we
solve the model only in the area of the state space that is visited in
equilibrium.

Judd, Maliar and Maliar (05/03/2013) Merging Simulation & Projection ApproachesMFM at University of Chicago 17 / 56



Reduction in cost in a 2-dimensional case

How much can we save on cost using the ergodic-set domain
comparatively to the hypercube domain?

Suppose the ergodic set is a circle (it was an ellipse in the �gure).

In the 2-dimensional case, a circle inscribed within a square occupies
about 79% of the area of the square.

The reduction in cost is proportional to the shaded area in the �gure.

It does not seem to be a large gain.
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Reduction in cost in a p-dimensional case

In a 3-dimensional case, the gain is larger (a volume of a sphere of
diameter 1 is 52% of the volume of a cube of width 1)

In a d-dimensional case, the ratio of a hypersphere�s volume to a
hypercube�s volume

Vd =

8<: (π/2)
d�1
2

1�3�...�d for d = 1, 3, 5...
(π/2)

d
2

2�4�...�d for d = 2, 4, 6...
.

Vd declines very rapidly with dimensionality of state space. When
d = 10 ) Vd = 3 � 10�3 (0.3%). When d = 30 ) Vd = 2 � 10�14.
We face a tiny fraction of cost we would have faced on the hypercube.
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Shortcomings of stochastic simulation approach

1 Simulated points is not an e¢ cient choice for constructing a grid:

there are many closely situated and hence, redundant points;
there are points outside the high probability set.

2 Simulated points is not an e¢ cient choice for the purpose of
integration �accuracy of Monte Carlo integration is low.

Et [yt+1] � y t+1 �
n

∑
τ=1

yτ+1

Suppose var (yτ+1) = 1% (like in RBC models)

n = 100 draws ) var (y t+1) = 0.1%

n = 10, 000 draws ) var (y t+1) = 0.01%

Monte Carlo method has slow
p
n rate of convergence.

) The overall accuracy of solution is restricted by low accuracy of Monte
Carlo integration, e.g., PEA by Marcet�s (1988) has low accuracy.
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Ine¢ ciency of Monte Carlo integration

Why is Monte Carlo integration ine¢ cient?

Because we compute expectations from noisy simulated data as do
econometricians who do not know true density of DGP.

But we do know the true density of DGP (we de�ne the shocks
ourselves, e.g., ln θt+1 = ρ ln θt + εt+1).

We can compute integrals far more accurately using quadrature
methods based on true density of DGP!
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Merging projection and stochastic simulation

What do we do?

Similar to stochastic simulation approach: use simulation to
identify and approximate the ergodic set.

Similar to projection approach: construct a �xed EDS grid and use
the quadrature-style integration to accurately solve the model on that
grid.

We use integration and optimization methods that are tractable in
high dimensional problems: non-product monomial integration
formulas and derivative-free solvers.
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Our ingredient 1: the EDS grid construction
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Our ingredient 1 (cont.): the EDS grid construction
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Our ingredient 2: non-product integration
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Our ingredient 2 (cont): non-product integration

Monomial formulas are a cheap alternative for approximating
high-dimensional integrals.
There is a variety of monomial formulas di¤ering in accuracy and cost.

Example

Let εh � N
�
0, σ2

�
, h = 1, 2, 3 be uncorrelated random variables.

Consider the following monomial integration rule with 2 � 3 nodes:

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
ε1j σ

p
3 �σ

p
3 0 0 0 0

ε2j 0 0 σ
p
3 �σ

p
3 0 0

ε3j 0 0 0 0 σ
p
3 �σ

p
3

where weights of all nodes are equal, ωj = 1/6 for all j .

Monomial rules are practical for problems with very high dimensionality,
for example, with N = 100, this rule has only 2N = 200 nodes.
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Our ingredient 3: derivative-free solvers

Fixed-point iteration

The cost of Newton�s type method grows quickly with dimensionality
because of the growing number of terms in Jacobian and Hessian.

A simple and e¢ cient alternative is �xed-point iteration

b(j+1) = (1� ξ) b(j) + ξbb,
where ξ 2 (0, 1) is damping parameter.
Cost of �xed-point iteration grows little with dimensionality.

Fixed-point iteration works for very high dimensions, like 400 state
variables!
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Combining all together: EDS algorithm iterating on Euler
equation

Parameterize the RHS of the Euler equation by a polynomial bK (k, θ; b),
K (k, θ) � bK (k, θ; b) = b0 + b1k + b2θ + ....+ bnθL

Step 1. Simulate fkt , θtgT+1t=1 . Construct an EDS grid, fkm , θmg
M
m=1.

Step 2. Fix b � (b0, ..., bn). Given fkm , θmgMm=1 solve for fcmg
M
m=1.

Step 3. Use θ0m,j = θ
ρ
m exp (εj ) to implement monomial integration:

bk 0m = J

∑
j=1

8<:β
u0
�
c 0m,j

�
u0 (cm)

�
1� δ+ θ0m,j f

0 �k 0m�� k 0m
9=;ωj .

Regress bk 0m on �1, km , θm , k2m , kmθm , θ
2
m , ..., θ

L
m

�
=) get bb.

Step 4. Solve for the coe¢ cients using damping,

b(j+1) = (1� ξ) b(j) + ξbb, ξ 2 (0, 1) .
Iterate on b until convergence.
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Representative-agent model: parameters choice

Production function: f (kt ) = kα
t with α = 0.36.

Utility function: u (ct ) =
c1�γ
t �1
1�γ with γ 2

� 1
5 , 1, 5

	
.

Process for shocks: ln θt+1 = ρ ln θt + εt+1 with ρ = 0.95 and σ = 0.01.
Discount factor: β = 0.99.
Depreciation rate: δ = 0.025.
Accuracy is measured by an Euler-equation residual,

R (ki , θi ) � Ei

"
β
c�γ
i+1

c�γ
i

�
1� δ+ αθi+1kα�1

i+1

�#
� 1.
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Table 1. Accuracy and speed of the Euler equation EDS
algorithm in the representative-agent model

Polynomial degree Mean error Max error CPU (sec)

1st degree �4.29 �3.31 24.7
2nd degree �5.94 �4.87 0.8
3rd degree �7.26 �6.04 0.9
4th degree �8.65 �7.32 0.9
5th degree �9.47 �8.24 5.5

Target number of grid points is M = 25.
Realized number of grid points is M (ε) = 27.
Mean and Max are unit-free Euler equation errors in log10 units, e.g.,

�4 means 10�4 = 0.0001 (0.01%);

�4.5 means 10�4.5 = 0.0000316 (0.00316%).

Benchmark parameters: γ = 1, δ = 0.025, ρ = 0.95, σ = 0.01.
In the paper, also consider γ = 1/5 (low risk aversion) and γ = 5 (high
risk aversion). Accuracy and speed are similar.
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Autocorrection of the EDS grid
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Table 2: Accuracy and speed in the one-agent model:
Smolyak grid versus EDS grid

Test on a simulation Test on a hypercube
Polyn. Smolyak grid EDS grid Smolyak grid EDS grid
deg. Mean Max Mean Max Mean Max Mean Max

1st -3.31 -2.94 -4.23 -3.31 -3.25 -2.54 -3.26 -2.38
2nd -4.74 -4.17 -5.89 -4.87 -4.32 -3.80 -4.41 -3.25
3rd -5.27 -5.13 -7.19 -6.16 -5.39 -4.78 -5.44 -4.11
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EDS algorithm iterating on Bellman equation

Parameterize the value function by a polynomial V � bV (�; b):bV (k, θ; b) = b0 + b1k + b2θ + ....+ bnθL.

Step 1. Find bK corresponding to bV (�; b). Simulate fkt , θtgT+1t=1 .
Construct an EDS grid, fkm , θmgMm=1.
Step 2. Fix b � (b0, ..., bn). Given fkm , θmgMm=1 solve for fcmg

M
m=1.

Step 3. Use θ0m,j = θ
ρ
m exp (εj ) to implement monomial integration:

Vm � u (cm) + β
J

∑
j=1

bV �k 0m , θ0m,j ; b�ωj .

Regress Vm on
�
1, km , θm , k2m , kmθm , θ

2
m , ..., θ

L
m

�
=) get bb.

Step 4. Solve for the coe¢ cients using damping,

b(j+1) = (1� ξ) b(j) + ξbb, ξ 2 (0, 1) .

Iterate on b until convergence.
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Table 3. Accuracy and speed of the Bellman equation EDS
algorithm in the representative-agent model

Polynomial degree Mean error Max error CPU (sec)

1st degree � � �
2nd degree �3.98 �3.11 0.5
3rd degree �5.15 �4.17 0.4
4th degree �6.26 �5.12 0.4
5th degree �7.42 �5.93 0.4

Target number of grid points is M = 25.
Realized number of grid points is M (ε) = 27.
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Multi-country model

The planner maximizes a weighted sum of N countries�utility functions:

maxn
fcht ,kht+1gNh=1

o∞

t=0

E0
N

∑
h=1

vh
 

∞

∑
t=0

βtuh
�
cht
�!

subject to

N

∑
h=1

cht +
N

∑
h=1

kht+1 =
N

∑
h=1

kht (1� δ) +
N

∑
h=1

θht f
h
�
kht
�
,

where vh is country h�s welfare weight.
Productivity of country h follows the process

ln θht+1 = ρ ln θht + εht+1,

where εht+1 � ςt+1 + ςht+1 with ςt+1 � N
�
0, σ2

�
is identical for all

countries and ςht+1 � N
�
0, σ2

�
is country-speci�c.
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Table 3. Accuracy and speed in the multi-country model

Polyn. M1 Q(1)
degree Mean Max CPU Mean Max CPU

N=2 1st �4.09 �3.19 44 sec �4.07 �3.19 45 sec
2nd �5.45 �4.51 2 min �5.06 �4.41 1 min
3rd �6.51 �5.29 4 min �5.17 �4.92 2 min

N=20 1st �4.21 �3.29 20 min �4.17 �3.28 3 min
2nd �5.08 �4.17 5 hours �4.83 �4.10 32 min

N=40 1st �4.23 �3.31 5 hours �4.19 �3.29 2 hours
2nd � � - �4.86 �4.48 24 hours

N=100 1st �4.09 �3.24 10 hours �4.06 �3.23 36 min
N=200 1st � � - �3.97 �3.20 2 hours

M1 means monomial integration with 2N nodes; Q(1) means quadrature
integration with one node in each dimension; Mean and Max are mean and
maximum unit-free Euler equation errors in log10 units, respectively; CPU
is running time.
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A new Keynesian (NK) model

A stylized new Keynesian model with Calvo-type price frictions and
a Taylor (1993) rule with the ZLB

Literature that estimates the models:
-Christiano, Eichenbaum and Evans (2005), Smets and Wouters (2003,
2007), Del Negro, Schorfheide, Smets and Wouters (2007).
Literature that �nds numerical solutions: mostly relies on local
(perturbation) solution methods. Few papers apply global solution
methods to low-dimensional problems.
Perturbation:
-most use linear approximations (Christiano, Eichenbaum&Rebelo, 2009);
-some use quadratic approx. (Kollmann, 2002, Schmitt-Grohé&Uribe, 2007);
-very few use cubic approximations (Rudebusch and Swanson, 2008).
Global solution methods: at most 4 state variables and simplifying
assumptions.
-Adam and Billi (2006): all except one FOCs are linearized;
-Adjemian and Juillard (2011): extended path method of Fair&Taylor (1984)
) perfect foresight.
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A new Keynesian (NK) model

Assumptions:

Households choose consumption and labor.

Perfectly competitive �nal-good �rms produce goods using
intermediate goods.

Monopolistic intermediate-good �rms produce goods using labor and
are subject to sticky price (á la Calvo, 1983).

Monetary authority obeys a Taylor rule with zero lower bound (ZLB).

Government �nances a stochastic stream of public consumption by
levying lump-sum taxes and by issuing nominal debt.

6 exogenous shocks and 8 state variables =) The model is large
scale (it is expensive to solve or even intractable under conventional
global solution methods that rely on product rules).
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The representative household

The utility-maximization problem:

max
fCt ,Lt ,Btgt=0,...,∞

E0
∞

∑
t=0

βt exp
�
ηu,t

� "C 1�γ
t � 1
1� γ

� exp
�
ηL,t

� L1+ϑ
t � 1
1+ ϑ

#

s.t. PtCt +
Bt

exp
�
ηB ,t

�
Rt
+ Tt = Bt�1 +WtLt +Πt

where
�
B0, ηu,0, ηL,0, ηB ,0

�
is given.

�Ct , Lt , and Bt = consumption, labor and nominal bond holdings, resp.;
�Pt , Wt and Rt = the commodity price, nominal wage and (gross)
nominal interest rate, respectively;
�Tt = lump-sum taxes;
�Πt = the pro�t of intermediate-good �rms;
� β = discount factor; γ > 0 and ϑ > 0.
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The representative household

Stochastic processes for shocks

ηu,t and ηL,t = exogenous preference shocks;

ηB ,t = exogenous premium in the return to bonds;

ηu,t+1 = ρuηu,t + εu,t+1, εu,t+1 � N
�
0, σ2u

�
ηL,t+1 = ρLηL,t + εL,t+1, εL,t+1 � N

�
0, σ2L

�
ηB ,t+1 = ρBηB ,t + εB ,t+1, εB ,t+1 � N

�
0, σ2B

�
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Final-good producers

The pro�t-maximization problem:

Perfectly competitive producers
Use intermediate goods i 2 [0, 1] as inputs

max
Yt (i )

PtYt �
Z 1

0
Pt (i)Yt (i) di

s.t. Yt =
�Z 1

0
Yt (i)

ε�1
ε di

� ε
ε�1
, ε � 1 (1)

�Yt (i) and Pt (i) = quantity and price of an intermediate good i , resp.;
�Yt and Pt = quantity and price of the �nal good, resp.;
�Eq (1) = production function (Dixit-Stiglitz aggregator function).

Result 1: Demand for the intermediate good i : Yt (i) = Yt
�
Pt (i )
Pt

��ε
.

Result 2: Aggregate price index Pt =
�R 1

0 Pt (i)
1�ε di

� 1
1�ε
.
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Intermediate-good producers

The cost-minimization problem:

Monopolisticly competitive

Use labor as an input

Are hit by a productiviy shock

Are subject to sticky prices

min
Lt (i )

TC (Yt (i)) = (1� v)WtLt (i)

s.t. Yt (i) = exp
�
ηθ,t

�
Lt (i)

ηθ,t+1 = ρθηθ,t + εθ,t+1, εθ,t+1 � N
�
0, σ2θ

�
�TC = nominal total cost (net of government subsidy v);
�Lt (i) = labor input;
� exp

�
ηθ,t

�
is the productivity level.
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Intermediate-good producers (price decisions)

Calvo-type price setting:
1� θ of the �rms sets prices optimally, Pt (i) = ePt , for i 2 [0, 1];
θ is not allowed to change the price, Pt (i) = Pt�1 (i), for i 2 [0, 1].

The pro�t-maximization problem of a reoptimizing �rm i :

maxePt
∞

∑
j=0

βj θjEt
n

Λt+j

hePtYt+j (i)� Pt+jmct+jYt+j (i)io
s.t. Yt (i) = Yt

�
Pt (i)
Pt

��ε

(2)

�Eq (2) is the demand for an intermediate good i ;
�Λt+j is the Lagrange multiplier on the household�s budget constraint;
�mct+j is the real marginal cost of output at time t + j .
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Government

The government budget constraint:

Tt +
Bt

exp
�
ηB ,t

�
Rt
= Pt

GYt
exp

�
ηG ,t

� + Bt�1 + vWtLt

� GYt
exp(ηG ,t)

= Gt is government spending;

� vWtLt is the subsidy to the intermediate-good �rms;
� ηG ,t is a government-spending shock,

ηG ,t+1 = ρG ηG ,t + εG ,t+1, εG ,t+1 � N
�
0, σ2G

�
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Monetary authority

Taylor rule with ZLB on the net nominal interest rate:

Rt = max

8<:1, R�

�
Rt�1
R�

�µ
"�

πt
π�

�φπ
�
Yt
YN ,t

�φy
#1�µ

exp
�
ηR ,t

�9=;
�R� = long-run gross nominal interest rate;
�πt = gross in�ation rate between t � 1 and t;
�π� = in�ation target;
�YN ,t = natural level of output;
� ηR ,t = monetary shock

ηR ,t+1 = ρRηR ,t + εR ,t+1, εR ,t+1 � N
�
0, σ2R

�
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Natural equilibrium

"Natural equilibrium" - the model in which the potential
ine¢ ciencies have been eliminated:

Natural level of output YN ,t in the Taylor rule is a solution to a
planner�s problem

max
fCt ,Ltgt=0,...,∞

E0
∞

∑
t=0

βt exp
�
ηu,t

� "C 1�γ
t � 1
1� γ

� exp
�
ηL,t

� L1+ϑ
t � 1
1+ ϑ

#
s.t. Ct = exp

�
ηθ,t

�
Lt � Gt

where Gt is given.
This implies

YN ,t =

"
exp

�
ηθ,t

�1+ϑ�
exp

�
ηG ,t

���γ exp
�
ηL,t

�#
1

ϑ+γ
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Summary of equilibrium conditions

Aggregate production

Yt = exp
�
ηθ,t

�
Lt∆t

Aggregate resource constraint

Ct + Gt = Yt

Taylor rule with ZLB on the net nominal interest rate

Rt = max

8<:1, R�

�
Rt�1
R�

�µ
"�

πt
π�

�φπ
�
Yt
YN ,t

�φy
#1�µ

exp
�
ηR ,t

�9=;
Natural level of output

YN ,t =

"
exp

�
ηθ,t

�1+ϑ�
exp

�
ηG ,t

���γ exp
�
ηL,t

�#
1

ϑ+γ

.
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Summary of equilibrium conditions

We have

Stochastic processes for 6 exogenous shocks�
ηu,t , ηL,t , ηB ,t , ηθ,t , ηG ,t , ηR ,t

	
.

8 endogenous equilibrium equations & 8 unknowns
fCt ,Yt ,Rt , Lt ,∆t ,πt ,Ft ,Stg.
2 endogenous state variables f∆t�1,Rt�1g.
Thus, there are 8 (endogenous plus exogenous) state variables.
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Computational papers on ZLB

How to impose the ZLB on nominal interest rate?

Perturbation methods do not allow us to impose the ZLB in the
solution procedure.

The conventional approach in the literature is to disregard the ZLB
when computing perturbation solutions and to impose the ZLB in
simulations when running simulation (that is, whenever Rt happens to
be smaller than 1 in simulation, we set it at 1).

Christiano, Eichenbaum&Rebelo (2009)

In contrast, our global EDS method does allow us to impose the
ZLB both in the solution and simulation procedures.
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Parameter values

We calibrate the model using the results in Smets and Wouters (2003,
2007), and Del Negro, Smets and Wouters (2007).

Preferences: γ = 1; ϑ = 2.09; β = 0.99
Intermediate-good production: ε = 4.45
Fraction of �rms that cannot change price: θ = 0.83
Taylor rule: φy = 0.07; φπ = 2.21; µ = 0.82
In�ation target: π� 2 f1, 1.0598g
Government to output ratio: G = 0.23
Stochastic processes for shocks:
ρu = 0.92; ρL = 0.25; ρB = 0.22; ρθ = 0.95; ρR = 0.15; ρG = 0.95
σu = 0.54%; σL 2 f18.21%, 40.54%g; σB = 0.23%; σθ = 0.45%;
σR = 0.28%; σG = 0.38%

We compute 1st and 2nd perturbation solutions using Dynare, and we
compute 2nd and 3rd degree EDS solutions.
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Time-series solution and EDS grid
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Table 4. Accuracy and speed in the NK model with 0%
in�ation target and 18.21% volatility of labor shock

PER1 PER2 EDS2 EDS3

CPU 0.15 24.3 4.4
Mean �3.03 �3.77 �3.99 �4.86
Max �1.21 �1.64 �2.02 �2.73
Rmin 0.9916 0.9929 0.9931 0.9927
Rmθx 1.0340 1.0364 1.0356 1.0358

Fr(R�1),% 2.07 1.43 1.69 1.68
4R,% 0.17 0.09 0.05 0
4C ,% 1.00 0.19 0.12 0
4Y ,% 1.00 0.19 0.12 0
4L,% 0.65 0.33 0.16 0
4π,% 0.30 0.16 0.11 0

PER 1 and PER 2 = 1st and 2nd order Dynare solutions; EDS2 and EDS3 = 2nd and 3rd degree

EDS algorithm; Mean and Max = average and max absolute errors (in log10 units); Rmin and

Rmax = min and max R; Fr = frequency of R� 1; 4X = max di¤erence from EDS3.
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Table 5. Accuracy and speed in the NK model with 5.98%
in�ation target and 40.54% volatility of labor shock

PER1 PER2 EDS2 EDS3

CPU 0.15 22.1 12.0
Mean �2.52 �2.90 �3.43 �4.00
Max �0.59 �0.42 �1.31 �1.91
Rmin 1.0014 1.0065 1.0060 1.0060
Rmax 1.0615 1.0694 1.0653 1.0660
Fr(R�1),% 0 0 0 0
4R,% 0.63 0.39 0.25 0
4C ,% 6.57 1.49 0.72 0
4Y ,% 6.57 1.48 0.72 0
4L,% 3.16 1.30 0.54 0
4π,% 1.05 0.79 0.60 0

PER 1 and PER 2 = 1st and 2nd order Dynare solutions; EDS2 and EDS3 = 2nd and 3rd

degree EDS; Mean and Max = average and max absolute errors (in log10 units); Rmin and

Rmax = min and max R; Fr = frequency of R� 1; 4X = max di¤erence from EDS3.
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Table 6. Accuracy and speed in the NK model with 0%
in�ation target, 18.21% volatility of labor shock and ZLB

PER1 PER2 EDS2 EDS3

CPU 0.15 21.4 3.58
Mean �3.02 �3.72 �3.57 �3.65
Max �1.21 �1.34 �1.58 �1.81
Rmin 1.0000 1.0000 1.0000 1.0000
Rmax 1.0340 1.0364 1.0348 1.0374
Fr(R�1),% 1.76 1.19 2.46 2.23
4R,% 0.33 0.34 0.34 0
4C ,% 4.31 3.65 2.26 0
4Y ,% 4.33 3.65 2.26 0
4L,% 3.37 3.17 2.45 0
4π,% 1.17 1.39 0.79 0

PER 1 and PER 2 = 1st and 2nd order Dynare solutions; EDS2 and EDS3 = 2nd and 3rd

degree EDS; Mean and Max = average and max absolute errors (in log10 units); Rmin and

Rmax = min and max R; Fr = frequency of R� 1; 4X = max di¤erence from EDS3.
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Simulated series: ZLB is not imposed versus ZLB is
imposed

Judd, Maliar and Maliar (05/03/2013) Merging Simulation & Projection ApproachesMFM at University of Chicago 55 / 56



Conclusion

The EDS algorithm accurately solves models that were considered to
be unfeasible until now.

A mix of techniques taken together allows us to address the
challenges of high-dimensional problems:

EDS grid domain - a tiny fraction of the standard hypercube domain;
monomial and one-node integration rules;
derivative-free solvers.

A proper coordination of the above techniques is crucial for accuracy
and speed.
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