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Functional Problems

• Many problems involve solving for some unknown function

— Dynamic programming

— Consumption and investment policy functions

— Pricing functions in asset pricing models

— Strategies in dynamic games

• The projection method is a robust method for solving such problems
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An Ordinary Differential Equation Example

• Consider the differential equation

y
′

− y = 0, y(0) = 1 (11.1.1)

— Solution is y = e
x
.

— We use projection methods to solve it for 0 ≤ x ≤ 3.

• Key Distinction:

— Finite difference methods solve a finite set of equations on a grid - they replace the continuous

domain for x with a discrete set of x values

— Projection methods find a function that approximately solves the functional equation (11.1.1)

- they approximate the unknown function y (x) with a function from a finite-dimensional space

of functions.

• Define L

Ly ≡ y
′

− y . (11.1.2)

— L is an operator mapping functions to functions; domain is C
1

functions and range is C
0

.

— Define Y = {y(x)|y ∈ C
1

, y(0) = 1}

— (11.1.1) wants to find a y ∈ Y such that Ly = 0.
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• Approximate functions: consider family

ŷ(x; a) = 1 +

n∑

j=1

ajx
j
. (11.1.3)

— An affine subset of the vector space of polynomials.

— Note that ŷ(0; a) = 1 for any choice of a, so ŷ(0; a) ∈ Y for any a.
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• Objective: find a s.t. ŷ(x; a) “nearly” solves differential equation (11.1.1).

• Define residual function

R (x; a) ≡ Lŷ = −1 +

n∑

j=1

aj(jx
j−1

− x
j
) (11.1.4)

— R (x; a) is deviation of Lŷ from zero, the target value.

— A projection method adjusts a until it finds a “good” a that makes R(x; a) “nearly” the zero

function.

— Different projection methods use different notions of “good” and “nearly.”
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Example:

• Consider

y
′

− y = 0, y(0) = 1 (11.1.1)

for x ∈ [0, 3] with

ŷ(x; a) = 1 +

3∑

j=1

ajx
j

• Least Squares:

— Find a that minimizes the total squared residual

min
a

∫
3

0

R(x; a)
2

dx. (11.1.5)

— Objective is quadratic in the a’s with f.o.c.’s
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• Method of moments:

— Idea: If R(x; a) were zero, then

∫
3

0
R(x; a) f(x) dx = 0 for all f(x).

— Use low powers of x to identify a via projection conditions

0 =

∫
3

0

R(x; a)x
j
dx , j = 0, 1, 2. (11.1.9)

— Conditions reduce to linear system in a:
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• Galerkin

— Idea: use basis elements, x, x
2

, and x
3

in projection conditions

— Form projections of R against the basis elements

0 =

∫
3

0

R(x; a)x
j
dx , j = 1, 2, 3.

— Another linear equation

• Collocation

— Idea: If R(x; a) = 0 then it is zero at all x.

— Specify a finite set of X and choose a so that R(x; a) is zero x ∈ X. If X = {0, 3/2, 3}, the

uniform grid, this reduces to linear equations

R(0; a) = 0 = −1 + a
1

R(1.5; a) = 0= −1−
1

2
a
1
+

3

4
a
2
+

27

8
a
3

R(3; a)0 = −1− 2a
1
− 3a

2

(11.1.11)

• Chebyshev Collocation

— Idea: interpolation at Chebyshev points is best

— Let

X =

{
3

2

(cos

π

6

+ 1),

3

2

,

3

2

(cos

5π

6

+ 1)

}

the zeroes of T
3
(x) adapted to [0,3]

— Reduces to linear equations R(xi; a) = 0, xi ∈ X.
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Table 11.1: Solutions for Coefficients in (11.1.3)

Scheme: a
1

a
2

a
3

Least Squares 1.290 -.806 .659

Galerkin 2.286 -1.429 .952

Chebyshev Collocation 1.692 -1.231 .821

Uniform Collocation 1.000 -1.000 .667

Optimal L
2

1.754 -.838 .779

Table 11.2: Projection Methods Applied to (11.1.2): L
2
errors of solutions

Uniform Chebyshev Least

n Collocation Collocation Squares Galerkin Best poly.

3 5.3(0) 2.2(0) 3.2(0) 5.3(-1) 1.7(-1)

4 1.3(0) 2.9(-1) 1.5(-1) 3.6(-2) 2.4(-2)

5 1.5(-1) 2.5(-2) 4.9(-3) 4.1(-3) 2.9(-3)

6 2.0(-2) 1.9(-3) 4.2(-4) 4.2(-4) 3.0(-4)

7 2.2(-3) 1.4(-4) 3.8(-5) 3.9(-5) 2.8(-5)

8 2.4(-4) 9.9(-6) 3.2(-6) 3.2(-6) 2.3(-6)

9 2.2(-5) 6.6(-7) 2.3(-7) 2.4(-7) 1.7(-7)

10 2.1(-6) 4.0(-8) 1.6(-8) 1.6(-8) 1.2(-8)

9



Continuous-Time Life-Cycle Consumption Models

• Consider life-cycle problem

maxc

∫
T

0
e
−ρt

u(c) dt,

Ȧ = rA+ w(t)− c(t)

A(0) = A(T ) = 0

(10.6.10)

• Parameters

— u(c) = c
1+γ

/(1 + γ)

— ρ = 0.05, r = 0.10, γ = −2

— w(t) = 0.5 + t/10− 4(t/50)
2

, and T = 50.

• The functions c(t) and A(t) must approximately solve the two point BVP

ċ(t) = −
1

2
c(t)(0.05− 0.10),

Ȧ(t) = 0.1A(t) + w(t)− c(t),

A(0)= A(T ) = 0.

(11.4.7)

• Approximation: degree 10 Chebyshev polys for c(t) and A(T ):

A(t)=

∑
10

i=0
aiTi

(
t−25

25

)
,

c(t) =

∑
10

i=0
ciTi

(
t−25

25

)
,

(11.4.6)
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• Define the two residual functions

R
1
(t)= ċ(t)− 0.025c(t)

R
2
(t)= Ȧ(t)−

(
.1A(t) +

(
.5 +

t

10
− 4(

t

50
)
2

)
− c(t)

)
.

(11.4.8)

• Choose ai and ci so that R
1
(t) and R

2
(t) are nearly zero and A(0) = A(T ) = 0 hold.

— Boundary conditions impose two conditions

— Need 20 more conditions to determine the 22 unknown coefficients.

— Use 10 collocation points on [0, 50]: the 10 zeros of T
10
(t− 25/25)

C ≡ {0.31, 2.72, 7.32, 13.65, 21.09, 28.91, 36.35, 42.68, 47.28, 49.69}

— Choose the ai and ci coefficients, which solve

R
1
(ti)= 0, ti ∈ C, i = 1, ..., 10,

R
2
(ti)= 0, ti ∈ C, i = 1, ..., 10,

A(0) =

∑
10

i=1
ai(−1)

i
= 0,

A(50) =

∑
10

i=1
ai = 0.

(11.4.9)

— 22 linear equations in 22 unknowns.

— The system is nonsingular; therefore there is a unique solution.

• The true solution to the system (11.4.7) can be solved since it is a linear problem.
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• Residuals:

·

c equation residuals

·

A equation residuals

• Note:

— Equioscillation in residuals

— Small size of residuals
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• Errors

relative consumption errors relative asset errors

• Note:

— Lack of equioscillation in errors

— Small size of errors

— Errors are roughly same size as residuals
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Simple Example: One-Sector Growth

• Consider

max
c

∞∑

t=1

β
t
u(ct)

kt+1
= f(kt)− ct

• Optimality implies that ct satisfies

u
′

(ct) = βu
′

(ct+1
)f

′

(kt+1
)

• Problem: The number of unknowns ct, t = 1, 2, ... is infinite.

• Step 0: Express solution in terms of an unknown function

ct = C(kt) : consumption function

— Consumption function C(k) must satisfy the functional equation:

0=u
′

(C(k))− βu
′

(C(f(k)− C(k)))f
′

(f(k)− C(k))

≡(N (C))(k)

— This defines the operator

N : C
0

+
→ C

0

+

— Equilibrium solves the operator equation

0 = N (C)
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• Step 1: Create approximation:

— Find

Ĉ ≡

n∑

i=0

aik
i

which “nearly” solves

N (Ĉ) = 0

— Convert an infinite-dimensional problem to a finite-dimensional problem in R
n

∗ No discretization of state space

∗ A form of discretization, but in spectral domain

• Step 2: Compute Euler equation error function:

R (k; %a) = u
′

(Ĉ(k))− βu
′

(Ĉ(f(k)− Ĉ(k)))f
′

(f(k)− Ĉ(k))
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• Step 3: Choose %a to make R(·;%a) “small” in some sense:

— Least-Squares: minimize sum of squared Euler equation errors

min

#a

∫

R(·;%a)
2

dk

— Galerkin: zero out weighted averages of Euler equation errors

Pi(%a) ≡

∫

R(k;%a)ψ
i
(k)dk = 0, i = 1, · · · , n

for n weighting functions ψ
i
(k).

— Collocation: zero out Euler equation errors at k ∈ {k
1
, k

2
, · · · , kn} :

Pi(%a) ≡ R(ki;%a) = 0 , i = 1, · · · , n
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• Details of

∫
...dk computation:

— Exact integration seldom possible in nonlinear problems.

— Use quadrature formulas — they tell us what are good points.

— Monte Carlo — often mistakenly used for high—dimension integrals

— Number Theoretic methods — best for large dimension

• Details of solving %a:

— Jacobian, %P#a(%a), should be well-conditioned

— Newton’s method is quadratically convergent since it uses Jacobian

— Functional iteration and time iteration ignore Jacobian and are linearly convergent.

— Homotopy methods are almost surely globally convergent

— Least squares may be ill-conditioned (that is, be flat in some directions).
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Bounded Rationality Accuracy Measure

Consider the one-period relative Euler equation error:

E(k) = 1−

(u
′

)
−1

(βu
′

(C (f(k)−C(k))) f
′

(f(k)−C(k)))

C(k)

• Equilibrium requires it to be zero.

• E(k) is measure of optimization error

— 1 is unacceptably large

— Values such as .00001 is a limit for people.

— E(k) is unit-free.

• Define the L
p
, 1 ≤ p < ∞, bounded rationality accuracy to be

log
10
‖ E(k) ‖p

• The L
∞

error is the maximum value of E(k).

Numerical Results

• Machine: Compaq 386/20 w/ Weitek 1167

• Speed: Deterministic case: < 15 seconds

• Accuracy: Deterministic case: 8
th

order polynomial agrees with 250,000—point discretization to

within 1/100,000.
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General Projection Method

• Step 0: Express solution in terms of unknown functions

0 = N (h)

• The h(x) are decision and price rules expressing the dependence on the state x

— consumption as a function of wealth

— aggregate investment as a function of current capital stock and productivity

— an individual’s asset trading as a function of public and his private information

— equilibrium price as a function of.all information

— firm investment as a function of his and rivals’ current capital stock

• The functions h express

— agents on demand curve

— firms on their product supply and factor demand curve

— market clearing

— value functions from dynamic programming problems

— value functions in dynamic games

— laws of motion

— Bayesian updating and\or regression learning rules

• The collection of conditions 0 = N (h) express equilibrium.
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• Step 1: Choose space for approximation:

— Basis for approximation for h:

{ϕ
i
}
∞

i=1
≡ Φ

— Norm:

〈·, ·〉 : C
0

+
×C

0

+
→ R

basis should be complete in space of C
0

+
functions basis should be orthogonal w.r.t. 〈·, ·〉 norm

and basis should be easy to compute norm and basis should be “appropriate” for problem

norms are often of form 〈f, g〉 =

∫

D
f(x)g(x)w(x)dx for some w(x) > 0

— Goal: Find ĥ which “nearly” solves N (ĥ) = 0

ĥ ≡

n∑

i=1

ai ϕi

— We have converted an infinite-dimensional problem to a problem in R
n

∗ No discretization of state space.

∗ Instead, discretize in a functional (spectral) domain.
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— Example Bases:

∗ Φ = {1, k, k
2

, k
3

, · · · }

∗ Φ = {sin k, sin 2k, · · · }: Fourier — (periodic problems)

∗ ϕ
n
= Tn (x): Chebyshev polynomials — (for smooth, nonperiodic problems)

∗ Legendre polynomials

∗ Step functions

∗ Tent functions

∗ B-Splines (smooth generalizations of step and tent functions)

∗ Step functions are also finite element methods, but seldom used outside of economics.

— Nonlinear generalization

∗ For some parametric form, Φ(x; a)

ĥ(x; a) ≡ Φ(x; a)

∗ Examples:

· Neural networks

· Rational functions

∗ Goal: Find an

ĥ ≡ Φ(x; a)

which “nearly” solves N (ĥ) = 0

∗ Promising direction but tools of linear functional analysis and approximation theory are not

available.

21



• Step 2: Compute residual function:

R(·, a) = N̂ (ĥ)
.
= N (ĥ)

.
= N (h)

• Step 3: Choose %a so that R(·;%a) is “small” in 〈·, ·〉.

— Alternative Criteria:

∗ Least-Squares

min

#a

〈R(·;%a), R(·;%a)〉

∗ Galerkin

Pi(%a) ≡ 〈R(·;%a), ϕ
i
〉 = 0, i = 1, · · · , n

∗ Method of Moments

Pi(%a) ≡

〈

R(·;%a), k
i−1

〉

= 0 , i = 1, · · · , n

∗ Collocation

Pi(%a) ≡ R(ki;%a) = 0 , i = 1, · · · , n, ki ∈ {k
1
, k

2
, · · · , kn}

∗ Orthogonal Collocation (a.k.a. Pseudospectral)

Pi(%a) ≡ R(ki;%a) = 0 , i = 1, · · · , n, ki ∈ {k : ϕ
n
(k) = 0}
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• Details of 〈·, ·〉 computation:

— Exact integration seldom possible in nonlinear problems.

— Use quadrature formulas — they tell us what are good points.

— Monte Carlo — often mistakenly used for high—dimension integrals

— Number Theoretic methods — best for large dimension

• Details of solving %a:

— Jacobian, %P#a(%a), should be well-conditioned.

— Newton’s method is quadratically convergent since it uses Jacobian; functional iteration (e.g.,

parameterized expectations) and time iteration ignore Jacobian and are linearly convergent.

— If Φ is orthogonal w.r.t. 〈·, ·〉, then Galerkin method uses orthogonal projections, helping with

conditioning.

— Least squares uses 〈

R,

∂R

∂ai

〉

= 0

projection conditions, which may lead to ill-conditioning.
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New Method: L1 Minimization

• Recent work of Judd, Lontzek, and Michelangeli.

• Given residual function R(x, a), choose a by solving

min
a

∫

|R(x; a)| dx.

— Operationalize by solving

min
a

∑

i

λi dx

−λi≤R(xi; a) ≤ λi

0≤λi

— Can impose conditions on a, such as imposing a shape on the unknown function.

— Initial guess is less important.

— There will always be a solution; most solvers should be able to find one since the λ parameters

enter the constraints and objective linearly
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Convergence Properties of Galerkin Methods

• Zeidler (1989): If the nonlinear operator N is monotone, coercive, and satisfies a growth condition

then Galerkin method proves existence and works numerically.

• Krasnosel’skii and Zabreiko (1984): If N satisfies certain degree conditions, then a large set of

projection methods (e.g., Galerkin methods with numerical quadrature) converge.

• Convergence is neither sufficient nor necessary

— Usually only locally valid

— Convergence theorems don’t tell you when to stop.

— Non-convergent methods are no worse if they satisfy stopping rules
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A Partial Differential Equation Example

• Consider the simple heat equation

θt − θxx = 0

— Domain 0 ≤ x ≤ 1, 0 ≤ t ≤ 1.

— Initial condition θ(x, 0) = sinπx

— Boundary conditions θ(0, t) = 0 , θ(1, t) = 0, 0 ≤ t ≤ 1.

• Unique solution is θ(x, t) = e
−π t

sinπx.
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• Projection approach.

— Form polynomial approximation

ˆ
θ(x, t) = θ

0
(x) +

n∑

i=1

m∑

j=1

aij (x− x
i
) t

j
.

∗ Initial condition is absorbed in

θ
0
(x) = sinπx

∗ Boundary condition is automatically true since approximation is weighted sum of x − x
j

terms, which is zero at x = 0, 1.

∗ Abetter choice may be to use orthogonal polynomials φ and ψ in

∑
n

i=1

∑
m

j=1
aij φi

(x)ψ
j
(t)

in x and t - e.g., Legendre polynomials adapted to [0, 1].

— Residual is a function of both space and time

R(x, t) = −θ
0xx(x) +

n∑

i=1

m∑

j=1

(aij (x− x
i
) jt

j−1

− aij (−i)(i− 1)x
i−2

t
j
). (1)

— The nm unknown coefficients, aij, are fixed by the nm projection conditions

〈
R(x, t), ψ

ij
(x, t)

〉
= 0, i = 1, · · · , n, j = 1, · · · ,m, (2)

where ψ
ij
(x, t) = (x− x

i
)t

j
is a collection of nm basis functions.

— Equations (2 forma systemof linear algebraic equations in the unknown coefficients aij. System

is better conditioned if we use orthogonal polynomials.
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Computing Conditional Expectations

• Many economics problems need to compute conditional expectation functions.

• The conditional expectation of Y given X, denoted E{Y |X}, is a function of X, ψ(X), such that

E {(Y − ψ (X)) g (X)} = 0 (11.6.1)

for all continuous functions g.

— Prediction error Y − ψ(X) is uncorrelated with all functions of X.

— We seek a function ψ̂(X) which approximates E{Y |X}.

• Use projection method to approximate ψ̂(X)

— Construct approximation scheme

ψ̂(X; a) =

n∑

i=0

aiϕi
(X), (11.6.2)

— We now need to find the a coefficients in ψ̂.

— Assume (WLOG) there is a r. v. Z such that Y = g(Z) and X = h(Z).

— The least squares coefficients a solve

min
a

E

{

(ψ (h (Z) ; a)− g(Z))
2

}

. (11.6.3)
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• Monte Carlo approach

— Generate a sample of (Y,X) pairs, {(yi, xi) | i = 1, · · · , N}

— Regress the values of Y on X, solving the least squares problem

min
a

∑

i

(ψ (xi; a)− yi)
2

. (11.6.4)

• Projection method

— For all i, the projection condition E{(g (Z)− ψ(h (Z)))ϕ
i
(h (Z))} = 0.

— Fix coefficients a by imposing n+ 1 projection conditions

E

{

(g(Z)− ψ̂(h(Z); a))ϕ
i
(h(Z))

}

= 0, i = 0, ..., n. (11.6.5)

— (11.6.5) is a linear equation in the a coefficients.

— Use deterministic methods to compute each integral
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• Example:

— Let Y,W ∼ U [0, 1], X = ϕ (Y,W ) = (Y +W + 1)
2

— E{Y |X} = (X
1/2

− 1)/2.

— Monte Carlo

∗ Produce 1,000 (y, w) pairs, and compute xi = ϕ(yi, wi).

∗ Regress y on 1, x, x
2

, x
3

, and x
4

, producing

ψ̂
MC

(x) = −0.1760 + 0.2114x− 0.0075x
2

− 0.0012x
3

+ 0.0001x
4

.

∗ The L
2

norm of ψ̂
MC

− ψ is 0.0431.

— Projection method

∗ Project prediction error ψ̂(ϕ(y, w); a)− y against moments of x:

∫
1

0

∫
1

0

(ψ̂(ϕ(y, w); a)− y) ϕ(y, w)
k
dw dy = 0, k = 0, 1, 2, 3, 4

∗ Linear system of equations in the unknown coefficients a.

∗ Use quadrature for integrals; don’t need 1000 points.

∗ The solution implies

ψ̂
P
= −0.2471 + 0.2878x− 0.0370x

2

+ 0.0035x
3

− 0.0001x
4

.

∗ The L
2

norm of ψ̂
P
− ψ is 0.0039
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— Comparison:

∗ ψ̂
P
error is ten times less than the L

2

error of the ψ̂
MC

∗ ψ̂
P
is faster to compute than ψ̂

MC

• Conditional expectations are linear operators

— Projection method reduces conditional expectations to linear problems combined with quadra-

ture

— No need to resort to Monte Carlo
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