Dynamic Programming with Piecewise Linear Interpolation

Kenneth Judd
Hoover Institution

April 27, 2020

Piecewise Linear Interpolation

If Lagrange data $\left\{\left(x_{i}, v_{i}\right): i=1, \ldots, m\right\}$ is given, then its piecewise linear interpolation is

$$
\hat{V}(x ; \mathbf{b})=b_{j, 0}+b_{j, 1} x, \quad \text { if } x \in\left[x_{j}, x_{j+1}\right],
$$

where

$$
\begin{aligned}
b_{j, 1} & =\frac{v_{j+1}-v_{j}}{x_{j+1}-x_{j}} \\
b_{j, 0} & =v_{i}-b_{j, 1} x_{i}
\end{aligned}
$$

for $j=1, \ldots, m-1$.

In the maximization step of numerical DP algorithms, one could directly solve the maximization problem

$$
v_{i}=\max _{a} u\left(x_{i}, a\right)+\beta \hat{V}\left(y ; \mathbf{b}^{+}\right)
$$

where

$$
y=g\left(x_{i}, a\right)
$$

Problem: $\hat{V}\left(x ; \mathbf{b}^{t+1}\right)$ is not differentiable, making it difficult to solve the optimization problem for a.

Min-Function Approach for Concave V

The differentiability problem is solved as follows:

$$
\begin{aligned}
& v_{i}=\max _{a, w, y} u\left(x_{i}, a\right)+\beta w \\
& \text { s.t. } \quad y=g\left(x_{i}, a\right) \\
& \\
& w \leq b_{j, 0}^{+}+b_{j, 1}^{+} y, \quad 1 \leq j<m
\end{aligned}
$$

Optimization solvers can still solve the new model quickly

- The objective function is smooth
- inequality constraints are linear and sparse
- we can apply fast Newton-type optimization algorithms to solve this problem if g is also smooth.
- although this new model adds $(m-1)$ linear inequality constraints, few of them will be active at any iteration
- This approach does not need to find the interval containing y, while the spline approximation of value function must

Convex-Set Approach for Concave V

Both previous methods need to calculate coefficients; this is very complicated for multi-dimensional piecewise linear interpolation. Define a convex set Y

- $x_{j}, j=1, \ldots, m$, vertices
- $\mu_{j}, j=1, \ldots, m$, weights
- Y is the set of points y such that for some $\mu_{j} \geqslant 0$

$$
\begin{aligned}
y & =\sum_{j=1}^{m} \mu_{j} x_{j} \\
\sum_{j=1}^{m} \mu_{j} & =1
\end{aligned}
$$

Define Concave Approximation

Define concave function

- Suppose we have data $\left(x_{j}, y_{j}\right)$ for a concave function on convex set.
- Concave interpolant at x is y

$$
\begin{array}{cl}
y=\max _{\mu_{j} \geq 0, w} & w \\
\text { s.t. } & x=\sum_{j=1}^{m} \mu_{j} x_{j} \\
& w \leq \sum_{j=1}^{m} \mu_{j} y_{j} \\
& \sum_{j=1}^{m} \mu_{j}=1
\end{array}
$$

VFI for Concave V

- Old value function is defined by the set of $\left(v_{j}^{+}, x_{j}^{+}\right)$
- New value function is defined by v_{i} at nodes x_{i} :

$$
\begin{array}{cl}
v_{i}=\max _{\mu_{j} \geq 0, a, w, y} & u\left(x_{i}, a\right)+\beta w \\
\text { s.t. } & y=g\left(x_{i}, a\right) \\
& y=\sum_{j=1}^{m} \mu_{j} x_{j}^{+} \\
& w \leq \sum_{j=1}^{m} \mu_{j} v_{j}^{+} \\
& \sum_{j=1}^{m} \mu_{j}=1
\end{array}
$$

