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Continuous Methods for Continuous-State Problems

» Basic Bellman equation:

Vipew(Xx) = unga(i(()W(u’x) + B E{Voa(x)|x, u)} = (TVoig)(x).

» Notation for value functions
» V,ew is the current value function if V,jy is the “next period’s” value
function
» In finite horizon problems, Vi is Vir1 and View is Vi
» In infinite horizon problems, V,4 is the old guess and V. is the new
guess
» Discretization essentially approximates V with a step function
» Value functions are typically continuous

> Approximation theory provides better methods to approximate
continuous functions.

» General Task

> Find good approximation for Ve, given Vg

» In nonstationary models, we want to find good approximation for V;
for all times t

» Identify parameters of approximation



General Parametric Approach: Approximating V/(x)

» Choose a finite-dimensional parameterization
V(x) = V(x;a), ae R™
and a finite number of states
X ={x1,x2, " ,Xn}

» polynomials with coefficients a and collocation points X

» splines with coefficients a with uniform nodes X
» rational function with parameters a and nodes X
» neural network

» specially designed functional forms

> Objective: find coefficients a € R™ such that V(x; a)
“approximately” satisfies the Bellman equation.



General Parametric Approach: Approximating T

The key element is the T operator that takes the old value function
approximation to the new one.

» T maps functions to functions, not vectors to vectors
» For each x, the value of (TV)(x) is defined by

(TV)(x) = max m(u,x)+ a)dF (x"|x, u)

ueD

» Computers cannot map functions to functions

» We instead must map approximations of V to approximations of V



Definition of T
» For each x;, (TV)(x;) is defined by

y = (TV)5) = max mx,)+5/ x* i, )

» In practice, we compute the approximation T

= (TV)(x) = (TV)(x)

> Integration step: for w; and x; for some numerical quadrature formula
EVOials) = [ Ve a)dr(x . u)
[ e, w.2);a)dF (o)
Y weV(g(x, u,e0); )
¢

» Maximization step: for x; € X, evaluate
Vi = (T\7)(x,-)
> Fitting step:

» Data: (vi,x;), i=1,---,n
> Objective: find an a € R™ such that V(x; a) best fits the data



General Parametric Approach: Value Function Iteration

V(x; a)
(vi,x)), i=1,---.n

Vnew(X) = V(X; anew)

L

» Comparison with discretization
» This procedure examines only a finite number of states, x;:
» But does not assume that the state is always in this finite set.
> Choices for the x; are guided by approximation methods

» Procedure examines only a finite number of ¢ values for the

stochastic shocks
» But does not assume that they are the only ones realized

» Choices for the £; come from quadrature methods



» Synergies

> Smooth interpolation helps Newton's method for max step.

» Smooth interpolation allows more efficient quadrature in (12.7.5).

» Efficient quadrature reduces cost of computing objective in max
problem

» Finite-horizon problems

» Must use value function iteration since V (x, t) depends on time t.
> Begin with terminal value function, V (x, T)
» Compute approximations for each V (x,t), t=T — 1, T — 2, etc.



Algorithm 12.5: Parametric Dynamic Programming

Objective:
Step 0:

Step 1:

Step 2:

Step 3:

with Value Function Iteration
Solve the Bellman equation, (12.7.1).
Choose functional form \7(x; a), and choose
the approximation grid, X = {x, ..., x»}.
Make initial guess V/(x; a°), and choose stopping
criterion € > 0.
Maximization step: Compute

v; = (TV(-a)(x) for all x; € X.

Fitting step: Using the appropriate approximation
method, compute the a’tt € R™ such that
V(x; a"*1) approximates the (v;, x;) data.
If || V(x;a') — V(x;a*1) ||< ¢, STOP; else go to step 1.



Convergence

» T is a contraction mapping
> T may be neither monotonic nor a contraction
» Shape problems
» Standard approximation methods do not preserve shape

» monotone data may not result in a monotone approximation
> concave data may not result in a concave approximation

» Shape problems may become worse with value function iteration



General Parametric Approach: Policy Iteration

» Basic Bellman equation:

V(x) = max 7T(u x)+ BE{V(x)|x,u)} = (TV)(x).

» Policy iteration:

> Current guess: V(x) = V/(x; a) for some a € R™
> lIteration: compute optimal policy today if V(x; a) is value tomorrow

U(x)farg max 7r(x,,u t)+BE{ a) |x, u)}
» If solution is interior, then U (x;) solves

0=, U ), 1)+ B (E{V (x":0) Ix, U () })

» Take ui = U (x;) data for x; nodes, and approximate U (x) with some
method U(x; b) with parameters b

» Compute the value function if the policy U(X; b) is used forever.
This is defined by the linear integral equation

V(x;a') = n(0(x; b),x) + BE{V(x";d)|x, U(x; b))}

that can be solved by a projection method



Summary

» Discretization methods
> Easy to implement
» Numerically stable
» Amenable to many accelerations
» Inefficient approximation to continuous problems

» Continuous approximation methods

» Can exploit smoothness in problems
» Must work to avoid numerical instabilities



