
Continuous-State Dynamic Programming

Kenneth L. Judd, Hoover Institution

April 27, 2020



Continuous Methods for Continuous-State Problems
I Basic Bellman equation:

Vnew (x) = max
u∈D(x)

π(u, x) + β E{Vold(x
+)|x , u)} ≡ (TVold)(x).

I Notation for value functions
I Vnew is the current value function if Vold is the “next period’s” value

function
I In finite horizon problems, Vold is Vt+1 and Vnew is Vt

I In infinite horizon problems, Vold is the old guess and Vnew is the new
guess

I Discretization essentially approximates V with a step function
I Value functions are typically continuous
I Approximation theory provides better methods to approximate

continuous functions.

I General Task
I Find good approximation for Vnew given Vold

I In nonstationary models, we want to find good approximation for Vt

for all times t
I Identify parameters of approximation



General Parametric Approach: Approximating V (x)

I Choose a finite-dimensional parameterization

V (x)
.
= V̂ (x ; a), a ∈ Rm

and a finite number of states

X = {x1, x2, · · · , xn}

I polynomials with coefficients a and collocation points X
I splines with coefficients a with uniform nodes X
I rational function with parameters a and nodes X
I neural network
I specially designed functional forms

I Objective: find coefficients a ∈ Rm such that V̂ (x ; a)
“approximately” satisfies the Bellman equation.



General Parametric Approach: Approximating T

The key element is the T operator that takes the old value function
approximation to the new one.
I T maps functions to functions, not vectors to vectors
I For each x , the value of (TV )(x) is defined by

(TV )(x) = max
u∈D(x)

π(u, x) + β

ˆ
V̂ (x+; a)dF (x+|x , u)

I Computers cannot map functions to functions
I We instead must map approximations of V to approximations of V



Definition of T̂
I For each xj , (TV )(xj) is defined by

vj = (TV )(xj) = max
u∈D(xj )

π(u, xj) + β

ˆ
V̂ (x+; a)dF (x+|xj , u)

I In practice, we compute the approximation T̂

vj = (T̂V )(xj)
.
= (TV )(xj)

I Integration step: for ωj and xj for some numerical quadrature formula

E{V (x+; a)|xj , u)} =

ˆ
V̂ (x+; a)dF (x+|xj , u)

=

ˆ
V̂ (g(xj , u, ε); a)dF (ε)

.
=

∑
`

ω`V̂ (g(xj , u, ε`); a)

I Maximization step: for xi ∈ X , evaluate

vi = (TV̂ )(xi )

I Fitting step:
I Data: (vi , xi ), i = 1, · · · , n
I Objective: find an a ∈ Rm such that V̂ (x ; a) best fits the data



General Parametric Approach: Value Function Iteration

a −→ V̂ (x ; a)

−→ (vi , xi ), i = 1, · · · , n
−→ Vnew (x) = V̂ (x ; anew )

I Comparison with discretization
I This procedure examines only a finite number of states, xi :

I But does not assume that the state is always in this finite set.
I Choices for the xi are guided by approximation methods

I Procedure examines only a finite number of ε values for the
stochastic shocks

I But does not assume that they are the only ones realized
I Choices for the εi come from quadrature methods



I Synergies
I Smooth interpolation helps Newton’s method for max step.
I Smooth interpolation allows more efficient quadrature in (12.7.5).
I Efficient quadrature reduces cost of computing objective in max

problem

I Finite-horizon problems
I Must use value function iteration since V (x , t) depends on time t.
I Begin with terminal value function, V (x ,T )
I Compute approximations for each V (x , t), t = T − 1,T − 2, etc.



Algorithm 12.5: Parametric Dynamic Programming
with Value Function Iteration

Objective: Solve the Bellman equation, (12.7.1).
Step 0: Choose functional form V̂ (x ; a), and choose

the approximation grid, X = {x1, ..., xn}.
Make initial guess V̂ (x ; a0), and choose stopping
criterion ε > 0.

Step 1: Maximization step: Compute
vj = (TV̂ (·; ai ))(xj) for all xj ∈ X .

Step 2: Fitting step: Using the appropriate approximation
method, compute the ai+1 ∈ Rm such that
V̂ (x ; ai+1) approximates the (vi , xi ) data.

Step 3: If ‖ V̂ (x ; ai )− V̂ (x ; ai+1) ‖< ε, STOP; else go to step 1.



Convergence

I T is a contraction mapping
I T̂ may be neither monotonic nor a contraction
I Shape problems

I Standard approximation methods do not preserve shape
I monotone data may not result in a monotone approximation
I concave data may not result in a concave approximation

I Shape problems may become worse with value function iteration



General Parametric Approach: Policy Iteration
I Basic Bellman equation:

V (x) = max
u∈D(x)

π(u, x) + β E{V (x+)|x , u)} ≡ (TV )(x).

I Policy iteration:
I Current guess: V (x)

.
= V̂ (x ; a) for some a ∈ Rm

I Iteration: compute optimal policy today if V̂ (x ; a) is value tomorrow

U (x) = arg max
u∈D(x)

π(xi , u, t) + βE
{
V̂
(
x+; a

)
|x , u)

}
I If solution is interior, then U (xi ) solves

0 = πu(xi ,U (xi ) , t) + β
d

du

(
E
{
V̂
(
x+; a

)
|xi ,U (xi ))

})
I Take ui = U (xi ) data for xi nodes, and approximate U (x) with some

method Û(x ; b) with parameters b
I Compute the value function if the policy Û(x ; b) is used forever.

This is defined by the linear integral equation

V̂ (x ; a′) = π(Û(x ; b), x) + β E{V̂ (x+; a′)|x , Û(x ; b))}

that can be solved by a projection method



Summary

I Discretization methods
I Easy to implement
I Numerically stable
I Amenable to many accelerations
I Inefficient approximation to continuous problems

I Continuous approximation methods
I Can exploit smoothness in problems
I Must work to avoid numerical instabilities


