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Structural Estimation

e Great interest in estimating models based on economic
structure
o Dynamic programming models
o Games — static, dynamic
o Auctions
o Dynamic stochastic general equilibrium

e Major computational challenge because estimation

involves also solving model

e \We show that many computational difficulties can be

avoided by using optimization tools
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Structural Estimation

Specify model with structural parameters, ¢

Find 6 such that equilibrium implications of ¢ match data

Objectives: Maximum likelihood, matching moments, ...

Difficulties

1. Computing an equilibrium implied by ¢ may be costly

2. Find all equilibria consistent with ¢ is usually
intractable!

Current Practice in econometrics

1. Use less efficient “two-step” methods

2. Use “speculative” methods - Nested Pseudo Likelihood

(NPL)
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Basic Problem — DP Example

e Individual (agent) solves a dynamic programming problem
e Econometrician observes state (partially) and decisions

e Likelihood function for data X
L(0,D;X)

where 0 is set of parameters and D is decision rule

e Rationality imposes a relationship between ¢ and D
0=G(0,D)

e We want to find maximum likelihood & but impose

rationality condition
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Hazold Zurcher Model — Data

Bus #: 5297
events year month | odometer at replacement

1st engine replacement | 1979 June 242400
2nd engine replacement | 1984  August 384900

year = month | odometer reading

1974 Dec 112031

1975 Jan 115223

1975 Feb 118322

1975 Mar 120630

1975 Apr 123918

1975 May 127329

1975 Jun 130100

1975 Jul 133184

1975 Aug 136480

1975 Sep 139429
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Hazold Zurcher Model

Time series data: (z1,25,...,dr) and (dy,ds, ..., d7)
o Observed state is x;: mileage since last overhaul
o dy: decision at ¢, d; = 0 (no repair) or 1 (repair)

) - parameters on repair costs, transition probabilities

Viz,€e0) = max [u(x,d,0) +e(d) + BEV (x,d; 0)]

de{0,1}
V(x;6) - value to repairman of a bus with x, before he

knows current shock to costs

Bellman equation
o V(x;0)=F(x,V(0)), where V(0) = [V (x;0)],

o V(x;0) implies a decision rule, D(x), which implies a

transition process, 11y, for states and decisions
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NFXP: Rust (1987)

Define £(0,V (0); X)
0 — V() — Il — L(O,V(0); X) =

Write a program to compute V (0)

Write a program to solve max L0,V (0); X)

Nesting:
o Inner loop to computes V' (0)
o Outer loop to solve L(6,V (0); X)

likelihood
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Difficulties with NFXP

e QOuter loop needs 8_[1

ol
o Analytic derivatives are hard to do by hand

o Numerical derivatives need high accuracy on £(¢) and
V(60 solutions

e Quter loop would like 82—£ No Way!!
p 527 y!!
e Slow since one must solve V' (#) for each  examined in

outer loop
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Is Structural Estimation Difficult ?

e Current View: Erdem et a. (2004):

Estimating structural models can be
computationally difficult. For example, dynamic
discrete choice models are commonly estimated
using the nested fixed point algorithm (see Rust
1994). This requires solving a dynamic
programming problem (DP) thousands of times
during estimation and numerically maximizing a

nonlinear likelihood function. ...

e Our view: Gauss-Jacobi or Gauss-Seidel methods are often
used in economics even though they are at best linearly

convergent. Apply the rabid dog principle!.
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Our Approach: Constrained Optimization

e Use MPEC modeling ideas
e Eliminate "nested” structure
e Eliminate fixed point

e Formulate problem as a constrained nonlinear optimization

problem

max L(0,V;X)
(6,V)

st. V—=FWV,0)=0
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Nonlinear Optimization Analogues

e Consider problem

max [ (6,v)

0,y
st. y=g(y,0)

e NFXP is essentially a nonlinear substitution of variables
method

o Define Y(4) by Y(0) = g (Y(0),0)

o Substitute out the y variables in objective to get

max f (0, Y(0))
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Nonlinear Optimization Analogues

e Nested Pseudo-Likelihood (NPL) — Aguirregabiria and
Mira, Econometrica (2002):

o Essentially a Gauss-Seidel method

gt = argm@axf(@,yi)
i+1

y — g (yi,9i+1)

o Convergence related to the eigenvalues of g,; no
reason to believe that all the eigenvalues are stable

e [hese methods are regarded as inefficient in the nonlinear

programming literature
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J-S Advantages

e J-S evaluates Bellman errors
V —F(V,0) perd,
whereas NFXP solves Bellman equations
Vo = F(Ve,0) =0

for each ¢

e User only needs to write down Bellman equation for
optimizer - NO NEED TO WRITE SOLVER

Therefore, J-S is faster and easier to use
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The MPECapproach: The
likelihood hill depends
on theta and sigma. The
manifolds  in theta-sigma
space represent

constraints imposed by
equilibrium. The problem
is an ordinary  max lik
problem with constraints.

Figure

3
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Comparison with Rust Implementation

e FEase of use

o Rust: Gauss
— a high-level symbolic language
— built-in linear algebra routines
o J-S: AMPL
— all solvers have access to linear algebra routines

— flexible approach to matrices, tensors, and indexed
sets

e \ectorization

o Rust: Efficient use of GAUSS requires the user to

“vectorize” a program

o J-S: All vectorization is done automatically in AMPL
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Comparison with Rust Implementation

e Optimization Method
o Rust: BHHH/BFGS

o J-S: Use solvers far superior to these methods

e Derivatives
o Rust: compute the value of and its derivatives
numerically in a subroutine
o J-S: Use true analytic derivatives; done automatically
and efficiently by AMPL using automatic

differentiation.
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Comparison with Rust Implementation

e Dynamic programming method

o Rust: Contraction mapping fixed point
(poly)algorithm.
— combine contraction with Newton-Kantorovich
iterations
— contraction iterations are linearly convergent
— quadratic convergence is achieved only at final

stage.

o J-S: Newton-style methods
— globally faster than contraction mapping

— particularly important if 3 is close to 1
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J-S AMPL Implementation

e Express problem in straightforward language

e Access almost any solver:
IPOPT, KNITRO, SNOPT, Filter, MINOS, PENNON

e Gradients and Hessians are computed analytically and

automatically and efficiently
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e 1000 data points

e 120 states

e estimate quadratic cost, replacement cost and transition

probabilities

Time

five parameter case

Solver CPU time

KNITRO 0.5 sec
SNOPT 1.5 sec
IPOPT 2 sec
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Sensitivity to Number of States

e 1000 data points

e estimate quad cost, replacement cost and transition

probabilities
KNITRO
num. of states | CPU time (in sec.) | Maj. lter.
120 0.23 18
240 0.42 21
360 0.55 19
480 0.98 21
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CW: Estimation of Games: January, 2007

Econemetrica, Vol. 75, No. 1 (January, 2007), 1-53

SEQUENTIAL ESTIMATION OF DYNAMIC DISCRETE GAMES
unique vector P, but a set of vectors. In this case, the MLE can be defined as

(26) Opie = argmax{ sup  Qy(8, P) subject to P = ¥(0, P)}.

920 L peqo,1yvixi

This estimator can be shown to be consistent, asymptotically normal, and ef-
ficient. However, in practice, this estimator can be extremely difficult to im-
plement. Notice that for each trial value of 8, we have to compute all the vec-
tors P that are an equilibrium associated with 6 and then select the one with
the maximum value for Qy (8, P). Finding all the Markov perfect equilibria
of a dynamic game can be very difficult even for relatively simple models (see
McKelvey and McLennan (1996)). Note also that with multiple equilibria, the
number of evaluations of ¥ for different values of P increases very impor-
tantly. These problems motivate the pseudo likelihood estimators we develop
in the following subsections.



CW:

Estimation of Games: September, 2007

Econometrica, Vol. 75, No. 5 (September, 2007), 1331-1370
ESTIMATING DYNAMIC MODELS OF IMPERFECT COMPETITION

By Parrick BaJari, C. LANIER BENKARD, AND JONATHAN LEVIN!

One reason for this is the perceived difficulty of incorporating informa-
tion from a dynamic equilibrium into an estimation algorithm. Research on
dynamic competition (e.g., Ericson and Pakes (1995), Pakes and McGuire
(1994, 2001), Gowrisankaran and Town (1997), and Benkard (2004)) has shown
that computing an equilibrium for even relatively simple industry models is all
but prohibitive. For models with the complexity usually required for empirical
work, the situation is even bleaker. Even with advancing computer technology,
computing equilibria over and over, as would be required in a typical estima-
tion routine, seems out of the question. Moreover, dynamic games often admit
a vast multiplicity of equilibria. This multiplicity greatly complicates the appli-
cation of estimators that require computing equilibria and then matching these
equilibria to observed data.



CW: Estimation of Games: 2012

Econometrica, Vol. 80, No. 3 (May, 2012), 1019-1061

THE COSTS OF ENVIRONMENTAL REGULATION
IN A CONCENTRATED INDUSTRY

By STEPHEN P. Ryan!

Previous work, such as Benkard (2004), has shown that maximum-likelihood
approaches to estimating the parameters of dynamic models can be computa-
tionally demanding, due to the necessity of having to solve for an equilibrium
at every guess of the parameter vector. Furthermore, the presence of multiple
equilibria requires the econometrician to both compute the set of all possible
equilibria and to specify how agents decide on which equilibrium will be played
in the data, as in Bajari, Hong, and Ryan (2010).*!



Figure 1: NFXP applied to games with multiple equilibria.



Strategy for Games

max L(V', V% ...,0;X)

o,V
s.t. V1 VZ ..., satisfy equilibrium equations given 0
o NFXP

o Guess ¢ and compute all Nash equilibrium

o Multiple equilibria produces intractable problem
e J-S

o Multiple equilibria reduces to problem of global

optimization, which maximum likelihood already has!
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