Discrete State, Discrete Control Dynamic
Programming

Kenneth L. Judd, Hoover Institution

April 20, 2020

Discrete-Time Dynamic Programming

e Objective:
T
E {Z (@, ue,) + W(CET+1)} , (12.1.1)
t=1
— X: set of states
— D: the set of controls

— 7(x, u, t) payoffs in period ¢, for x € X at the beginning of period ¢, and control u € D is
applied in period .
— D(x,t) C D: controls which are feasible in state z at time ¢.

— F(A; x,u,t) : probability that x;,1 € A C X conditional on time ¢ control and state

e Value function

T
V(z,t) = sup F {Z m(xs, Us, S) + W(xper)|a: = x} : (12.1.2)
U(x,t)

s=t

e Bellman equation

V(z,t)= sup 7(x,u, t)+ E{V(xiq, t+)2 = x,up = u} (12.1.3)
ueD(z,t)

e Existence: boundedness of 7 is sufficient

Autonomous, Infinite-Horizon Problem:

e Objective:

Hile {i B (4, ut)} (12.1.1)
t=1

— X set of states
— D: the set of controls
— D(x) C D: controls which are feasible in state x.

— 7(x, u) payoff in period t if z € X at the beginning of period ¢, and control u € D is applied
in period t.

— F(A;z,u) : probability that 2 € A C X conditional on current control u and current state
.

e Value function definition: if U(x) is set of all feasible strategies starting at x.

Viz)=supFE {Z B (s, uy)

U(x) =0

Ty = :1:} : (12.1.8)

e Bellman equation for V' (x)

V(z) = 211;1()) m(x, u)+ B E {V(z")|z,u} = (TV)(x), (12.1.9)

e Optimal policy function, U(z), if it exists, is defined by

U(z) € arg max n(x, u)+ S E{V(z")|z,u}

ueD(x)
e Standard existence theorem:

Theorem 1 If X is compact, B < 1, and 7 is bounded above and below, then the map

TV = sup w(z,u)+LE{V(z") |z, u} (12.1.10)
ueD(x)

1s monotone in'V, s a contraction mapping with modulus 5 in the space of bounded functions, and has
a unique fixed point.

Applications
e Fconomics

— Business investment
— Life-cycle decisions on labor, consumption, education
— Portfolio problems

— Economic policy
e Operations Research

— Scheduling, queueing
— Blood bank

— See new book by Powell - “Approximate Dynamic Programming”
e Climate change

— Business response to climate policies

— Optimal policy response to global warming problems

Deterministic Growth Example

e Problem:
V (ko) = maxq, 32,5 Bu(cy),
kt—i—l = F(k?t) — Ct (12112)

ko given

— Euler equation:
u'(er) = Bu'(ceen) FY (K1)

— Bellman equation

V(k) = max u(c) + BV (F (k) — c). (12.1.13)

— Solution to (12.1.12) is a policy function C'(k) and a value function V (k) satisfying
0=u'(C(k))F'(k) — V'(k) (12.1.15)
V(k)=u(C(k))+ BV (F(k) — C(k)) (12.1.16)

e (12.1.16) defines the value of an arbitrary policy function C'(k), not just for the optimal C'(k).
o The pair (12.1.15) and (12.1.16)

— expresses the value function given a policy, and

— a first-order condition for optimality.

Stochastic Growth Accumulation

e Problem:

Vi(k,0) = E t

(k. 0) = max {Z g u<ct>}
ki1 = F(k,0r) — ¢
Or11 = g(eta €t)

g; : 11.d. random variable
ko=Fk, 0y =20.

e State variables:

— k: productive capital stock, endogenous

— 6: productivity state, exogenous

e The dynamic programming formulation is
V(k,0) = max u(c)+ BE{V(F(k,0) —c,07)|0}
0" =g(0,¢)

e The control law ¢ = C(k, 0) satisfies the first-order conditions

0 = u. (C(k,0)) — B E {u(C(k+,07) FL(k*,67) | 0,

where

k= F(k, L(k, 0),0) — C(k, 6),

(12.1.21)

(12.1.23)

General Stochastic Accumulation

e Problem:

V(k,0) =max E {Z B (e, by) }

ct by
K1 = F(kta ly, 9t) — Gt

0141 = g(eta €t>
ko=k, 0p=20.

e State variables:

— k: productive capital stock, endogenous

— 6: productivity state, exogenous

e The dynamic programming formulation is

V(k,0) = max u(c,l) + BE{V (F(k,£,0) — c,07)|0},

c,l

where 07 is next period’s @ realization.

(12.1.21)

e Control laws ¢ = C'(k,0) and ¢ = L(k,) satisty foc’s

0= UC(O(k7 9)7 L(kv 9))Fk(k7 L(kv 0)7 9) - Vk(kv 9)7
0= w(C(k,), L(k, 0)) + Fy(k, 0)uc(C(k, 6), L(k, 0)).

e Fuler equation implies
0=u.(C(k,0),L(k,0)) — BE{u(C(k™,0"), () F(kT,07,07) | 63, (12.1.23)

where next period’s capital stock and labor supply are

k= F(k, L(k, 0),0) — C(k,6),
0+ = L(k*,07),

Discrete State Space, Discrete Control Problems

» Special structure

» lllustrate basic algorthmic ideas

Definition

> State space X = {x;, i=1,---,n}
> Wealth
> Education, job experience
> Capital

» Controls D = {u;|i =1,...,m}
> Investment
» Time for education, learning
» Choice of controls determines changes in state
> g5 (u) = Pr(xe1 = glx = X, e = u)
> Qi (u) = (q,ﬁ-(u))ij : Markov transition matrix at t if u; = u.

» 7(x,u,t) Payoff at time at time ¢ if state is x € X and control is
ueD

Finite Horizon Problem

» Terminal value:
Vit = W(x), i=1,---,n.

> Value function, V/, is the present value of payoffs if in state x; at
time t
> We often implicitly assume that we use the optimal policy
» This is really a vector of length n

» Bellman equation: time t value function is

v —max[ﬂ(x,,ut—i—ﬁZqU V“’l] 1, .,n
Jj=1

» Bellman equation can be directly computed by value function
iteration:

» max problem is a finite operation: unique value, but not unique
solution u

> Given V'™ compute V!, fort =T, T—-1,T—2,...1

» Only choice for finite-horizon problems because the problem is not
stationary.

Infinite Horizon Problems

» Infinite-horizon problems

» Bellman equation is now:

n
‘/i:TEag 7T(X”u)—i_ﬁzlqU(u)\/J 7i:13"'7n
J:

» This is a finite system of equations for the unknowns V;,i =1, ...

Value Function lteration

» VFIValue function iteration is now

Vik+1:TEag W(Xivu)—’—ﬁzqij(u)‘/jk) i:]-v"'vn

=t

> Begin with an initial (and arbitrary) V and iterate k — oo.
» Convergence implied by contraction mapping property
» Error is given by contraction mapping property:

Hvk _ V*

1 k+1 kH
< —— |V -V
- 1—BH

Algorithm 12.1: Value Function Iteration Algorithm

Objective:
Step O:
Step 1:

Step 2:
Step 3:

Output:

Solve the Bellman equation

Make initial guess V0; choose stopping criterion € > 0.
For i =1,..., n, compute

VIt = maxuep m(xi,u) + B3], q5(u) V.

If || V1 — V¥ ||< ¢, then go to step 3; else go to step 1.
Compute the final solution, setting

U =uvtt,

Pr = m(x;, UF), i=1,---,n,

Ve = (1 - QU)LP,

and STOP.

Value of a Policy

» Value function idea can be applied to an arbitrary policy
» Let U € D" denote the policy of choosing U; € D when in state x;
» The present value, V, of policy U is defined by

\/,':7T(X,',Uj)+52 qu(Ul) \/j7 I:17 , n,
j=1

Policy Iteration (a.k.a. Howard improvement)

» Value function iteration is slow

» Linear convergence at rate /3
» Convergence is particularly slow if 3 is close to 1.

» Policy iteration is

» Current guess:
Vi i=1,---,n.

> |teration: compute optimal policy today if V¥ is value tomorrow:
n
k+1 k .
U= = argznea%(|:7T(X,',u)+ﬁ'zl qi(u) Vi|, i=1,---,n,
=

» Compute the value function if the policy U** is used forever, which
is solution to the linear system

‘/ikJr:l =m (Xi7 U;Hrl) +/BZ qU(UIk+1) \/jk+17 i= 17 s, N,
j=1

» Comments:
» Policy iteration depends on only monotonicity
> Policy iteration is faster than value function iteration

> If initial guess is above or below solution then policy iteration is
between truth and value function iterate
» Works well even for 3 close to 1.

Algorithm 12.2: Policy Function Algorithm
Objective: Solve the Bellman equation, (12.3.4).
Step 0: Choose stopping criterion € > 0.

EITHER make initial guess, V©, for the
value function and go to step 1,

OR make initial guess, U, for the
policy function and go to step 2.

Step 1: Ut =y vt

Step 2: Pf“ = (x,-, U,-“l) , i=1---,n
-1

Step3: VHL=(1-pQUTT) P

Step 4: If || VL — V¥ ||< ¢, STOP; else go to step 1.

» Modified policy iteration

» If nis large, difficult to solve policy iteration step

UZ+1

» Alternative approximation: Assume policy is used for k periods:

k+1
£
4

¢ _k) K ytt
V+1_;ﬁt(Q >P+1+6+1(Q)

» Theorem 4.1 points out that as the policy function gets close to U™,
the linear rate of convergence approaches 8™, Hence convergence
accelerates as the iterates converge.

(Putterman and Shin) The successive iterates of modified policy iteration
with k steps, (12.4.1), satisfy the error bound

B -8 6k)
1-

v —ve)

ns i H U@ U* || +Bk+1
[V*— Ve

< min |3,

Gaussian acceleration methods for infinite-horizon models

> Key observation: Bellman equation is a simultaneous set of
equations

n

\//ZTeal))(7T(Xi,U)+ﬁZQij(U)Vj ,i:17...,n
j=t

» |dea: Treat problem as a large system of nonlinear equations

» Value function iteration is the pre-Gauss-Jacobi iteration

k+1 _) . k i—=1.---
% = max 7T(X,,U)+BZ; qi(u) V|, i=1,---,n
J:

» True Gauss-Jacobi is
V-k+1 7T(X,'7 U) + B Zj;éi qu(u) ‘/jk

- Teaﬁ(1-— Bq,',' (U) ’
» pre-Gauss-Seidel iteration
» Value function iteration is a pre-Gauss-Jacobi scheme.
> Gauss-Seidel alternatives use new information immediately
» Suppose we have VI.Z
» At each x;, given \/J.EJr1 for j < i, compute \/I.ZJr1 in a pre-Gauss-Seidel

i=1

S,

» Gauss-Seidel iteration
» Suppose we have V/

> If optimal control at state i is u, then Gauss-Seidel iterate would be

Zj<i qij(u) Vj£+1 + Zj>,' qij(u) le
1 - Bqi(u)

> Gauss-Seidel: At each x;, given V/*! for j < i, compute V/**

\/i[+1 = ﬂ—(Xl'a LI) + /8

e) A ai(u) Vi B a(e) V)
! ueD 1-— Bqﬁ(u)

> lterate this for i=1,..,n

» Gauss-Seidel iteration: better notation
» No reason to keep track of £, number of iterations
» At each x;,
m(xi,u) + B2 qi(u)Vi+ B>, qi(v) V]
Vi «+— max
ueD 1 — Bgii(u)

» lterate this for i =1,..,n,1,...., etc.

State versus Information Flows

Consider the following graph:
» Solid arrows are permissible state transitions

» Broken arrows represent information flow

7 _ 6 5

(

Upwind Gauss-Seidel

» Gauss-Seidel methods in (12.4.7) and (12.4.8)
» Sensitive to ordering of the states.

» Need to find good ordering schemes to enhance convergence.
» Example:

» Two states, x1 and x2, and two controls, u; and wu

» u; causes state to move to x;, i = 1,2

> Payoffs:
w(x1,u1) = -1, m(x1,u2) =0,
w(xe,u1) =0, w(xe,u2) =1.
> 3=00.
> Solution:

» Optimal policy: always choose up, moving to x2
> Value function:
V(x1) =9, V(x)=10.

» x5 is the unique steady state, and is stable

» Converges linearly:

VI(X]-) = 07 Vl(XZ) = 1) Ul(Xl) = 2) Ul(X2) = 27
V2(X1) = 09, V2(X2) = 19, U2(X1) = 2, U2(X2) = 2,
V3(x1) = 1.71, V3(x) = 2.71, U3(x1) =2, U3(x2) = 2,

» Policy iteration converges after two iterations

Vi(a) =0, V() =1, U'(a) =2, U'(e) =
V2(x1) = 9, V2(x) = 10, U2(x1) U2(x)

» Upwind Gauss-Seidel
» Value function at absorbing states is trivial to compute
» Suppose s is absorbing state with control u
> V(s) =mn(s,u)/(1-B).

> With absorbing state V/ (s) we compute V (s’) of any s’ that sends
system to s.

V(s')=n(s',u)+BV(s)
> With V (s’), we can compute values of states s’ that send system to
s'; etc.

Alternative Orderings

It may be difficult to find proper order.
> Alternating Sweep

> Idea: alternate between two approaches with different directions.

w = vk

W = maxuen 70, u) + B0, ai()Wi, i =1,2,3,...n
W; = maxuep 7r(x,-,u)—|—,BZJ’7:1 gi(L)W;, i=nn-1,..,1
Vk+1 - W

> Will always work well in one-dimensional problems since state moves
either right or left, and alternating sweep will exploit this half of the
time.

» In two dimensions, there may still be a natural ordering to be
exploited.

» Simulated Upwind Gauss-Seidel

> It may be difficult to find proper order in higher dimensions
» Idea: simulate using latest policy function to find downwind direction

» Simulate to get an example path, x1, x2, x3, X4, ..., Xm
» Execute Gauss-Seidel with states Xm, Xm—1, Xm—2, -+++, X1

Linear Programming Approach

e If D is finite, we can reformulate dynamic programming as a linear programming problem.

e (12.3.4) is equivalent to the linear program

. n
miny; Y7, V,

12.4.10
st. Vi>m(xiu)+ 52?:1 %j(u)vj, Vi,u € D, ()

e Computational considerations

— (12.4.10) may be a large problem
— Trick and Zin (1997) pursued an acceleration approach with success.

— OR literature did not favor this approach, but recent work by Daniela Pucci de Farias and Ben
van Roy has revived interest.

