
Discrete State, Discrete Control Dynamic
Programming

Kenneth L. Judd, Hoover Institution

April 20, 2020

Discrete-Time Dynamic Programming

• Objective:

E

!
T"

t=1

!(xt, ut, t) +W (xT+1)

#
, (12.1.1)

— X: set of states

— D: the set of controls

— !(x, u, t) payo!s in period t, for x ! X at the beginning of period t, and control u ! D is
applied in period t.

— D(x, t) " D: controls which are feasible in state x at time t.

— F (A;x, u, t) : probability that xt+1 ! A # X conditional on time t control and state

• Value function

V (x, t) $ sup
U(x,t)

E

!
T"

s=t

!(xs, us, s) +W (xT+1)|xt = x

#
. (12.1.2)

• Bellman equation

V (x, t) = sup
u!D(x,t)

!(x, u, t) + E {V (xt+1, t + 1)|xt = x, ut = u} (12.1.3)

• Existence: boundedness of ! is su"cient

2

Autonomous, Innite-Horizon Problem:

• Objective:

max
ut
E

!
%"

t=1

"t!(xt, ut)

#
(12.1.1)

— X: set of states

— D: the set of controls

— D(x) " D: controls which are feasible in state x.

— !(x, u) payo! in period t if x ! X at the beginning of period t, and control u ! D is applied
in period t.

— F (A;x, u) : probability that x+ ! A # X conditional on current control u and current state
x.

• Value function denition: if U(x) is set of all feasible strategies starting at x.

V (x) $ sup
U(x)

E

!
%"

t=0

"t!(xt, ut)

$$$$$x0 = x
#
, (12.1.8)

3

• Bellman equation for V (x)

V (x) = sup
u!D(x)

!(x, u) + "E
%
V (x+)|x, u

&
$ (TV)(x), (12.1.9)

• Optimal policy function, U(x), if it exists, is dened by

U(x) ! arg max
u!D(x)

!(x, u) + "E
%
V (x+)|x, u

&

• Standard existence theorem:

Theorem 1 If X is compact, " < 1, and ! is bounded above and below, then the map

TV = sup
u!D(x)

!(x, u) + "E
%
V (x+) | x, u

&
(12.1.10)

is monotone in V , is a contraction mapping with modulus " in the space of bounded functions, and has
a unique xed point.

4

Applications

• Economics

— Business investment

— Life-cycle decisions on labor, consumption, education

— Portfolio problems

— Economic policy

• Operations Research

— Scheduling, queueing

— Blood bank

— See new book by Powell - “Approximate Dynamic Programming”

• Climate change

— Business response to climate policies

— Optimal policy response to global warming problems

5

Deterministic Growth Example

• Problem:
V (k0) = maxct

'%
t=0 "

tu(ct),

kt+1 = F (kt)& ct
k0 given

(12.1.12)

— Euler equation:
u'(ct) = "u

'(ct+1)F
'(kt+1)

— Bellman equation
V (k) = max

c
u(c) + "V (F (k)& c). (12.1.13)

— Solution to (12.1.12) is a policy function C(k) and a value function V (k) satisfying

0=u'(C(k))F '(k)& V '(k) (12.1.15)

V (k)=u(C(k)) + "V (F (k)& C(k)) (12.1.16)

• (12.1.16) denes the value of an arbitrary policy function C(k), not just for the optimal C(k).

• The pair (12.1.15) and (12.1.16)

— expresses the value function given a policy, and

— a rst-order condition for optimality.

6

Stochastic Growth Accumulation

• Problem:

V (k, #) = max
ct,$t

E

!
%"

t=0

"t u(ct)

#

kt+1 = F (kt, #t)& ct
#t+1 = g(#t, %t)

%t : i.i.d. random variable

k0 = k, #0 = #.

• State variables:

— k: productive capital stock, endogenous

— #: productivity state, exogenous

• The dynamic programming formulation is

V (k, #) = max
c

u(c) + "E{V (F (k, #)& c, #+)|#} (12.1.21)

#+ = g(#, %)

• The control law c = C(k, #) satises the rst-order conditions

0 = uc (C(k, #))& "E {uc(C(k+, #+))Fk(k+, #+) | #}, (12.1.23)

where
k+$ F (k, L(k, #), #)&C(k, #),

7

General Stochastic Accumulation

• Problem:

V (k, #) = max
ct,$t

E

!
%"

t=0

"t u(ct, $t)

#

kt+1 = F (kt, $t, #t)& ct
#t+1 = g(#t, %t)

k0 = k, #0 = #.

• State variables:

— k: productive capital stock, endogenous

— #: productivity state, exogenous

• The dynamic programming formulation is

V (k, #) = max
c,$

u(c, $) + "E{V (F (k, $, #)& c, #+)|#}, (12.1.21)

where #+ is next period’s # realization.

8

• Control laws c = C(k, #) and $ = L(k, #) satisfy foc’s

0= uc(C(k, #), L(k, #))Fk(k, L(k, #), #)& Vk(k, #),
0= u$(C(k, #), L(k, #)) + F$(k, #)uc(C(k, #), L(k, #)).

• Euler equation implies

0 = uc (C(k, #), L(k, #))& "E {uc(C(k+, #+), $+)Fk(k+, $+, #+) | #}, (12.1.23)

where next period’s capital stock and labor supply are

k+$ F (k, L(k, #), #)&C(k, #),
$+ $ L(k+, #+),

9

Discrete State Space, Discrete Control Problems

I Special structure
I Illustrate basic algorthmic ideas

Definition

I State space X = {xi , i = 1, · · · , n}
I Wealth
I Education, job experience
I Capital

I Controls D = {ui |i = 1, ...,m}
I Investment
I Time for education, learning

I Choice of controls determines changes in state
I qt

ij(u) = Pr (xt+1 = xj |xt = xi , ut = u)
I Qt(u) =

(
qt
ij(u)

)
i,j

: Markov transition matrix at t if ut = u.

I π(x , u, t) Payoff at time at time t if state is x ∈ X and control is
u ∈ D

Finite Horizon Problem
I Terminal value:

V T+1
i = W (xi), i = 1, · · · , n.

I Value function, V t
i , is the present value of payoffs if in state xi at

time t
I We often implicitly assume that we use the optimal policy
I This is really a vector of length n

I Bellman equation: time t value function is

V t
i = max

u∈D
[π(xi , u, t) + β

n∑
j=1

qtij(u)V
t+1
j], i = 1, · · · , n

I Bellman equation can be directly computed by value function
iteration:
I max problem is a finite operation: unique value, but not unique

solution u
I Given V t+1 compute V t , for t = T ,T − 1,T − 2, ...1
I Only choice for finite-horizon problems because the problem is not

stationary.

Infinite Horizon Problems

I Infinite-horizon problems
I Bellman equation is now:

Vi = max
u∈D

π(xi , u) + β

n∑
j=1

qij(u)Vj

 , i = 1, · · · , n

I This is a finite system of equations for the unknowns Vi , i = 1, ..., n

Value Function Iteration

I VFIValue function iteration is now

V k+1
i = max

u∈D

π(xi , u) + β

n∑
j=1

qij(u)V
k
j

 , i = 1, · · · , n

I Begin with an initial (and arbitrary) V 0
i and iterate k →∞.

I Convergence implied by contraction mapping property
I Error is given by contraction mapping property:∥∥∥V k − V ∗

∥∥∥ ≤ 1
1− β

∥∥∥V k+1 − V k
∥∥∥

Algorithm 12.1: Value Function Iteration Algorithm
Objective: Solve the Bellman equation
Step 0: Make initial guess V 0; choose stopping criterion ε > 0.
Step 1: For i = 1, ..., n, compute

V `+1
i = maxu∈D π(xi , u) + β

∑n
j=1 qij(u)V

`
j .

Step 2: If ‖ V `+1 − V ` ‖< ε, then go to step 3; else go to step 1.
Step 3: Compute the final solution, setting

U∗ = UV `+1,
P∗i = π(xi ,U

∗
i), i = 1, · · · , n,

V ∗ = (I − βQU∗
)−1P∗,

and STOP.
Output:

Value of a Policy

I Value function idea can be applied to an arbitrary policy
I Let U ∈ Dn denote the policy of choosing Ui ∈ D when in state xi
I The present value, V , of policy U is defined by

Vi = π (xi ,Ui) + β

n∑
j=1

qij(Ui)Vj , i = 1, · · · , n,

Policy Iteration (a.k.a. Howard improvement)

I Value function iteration is slow
I Linear convergence at rate β
I Convergence is particularly slow if β is close to 1.

I Policy iteration is
I Current guess:

V k
i , i = 1, · · · , n.

I Iteration: compute optimal policy today if V k is value tomorrow:

Uk+1
i = argmax

u∈D

[
π(xi , u) + β

n∑
j=1

qij(u)V
k
j

]
, i = 1, · · · , n,

I Compute the value function if the policy Uk+1 is used forever, which
is solution to the linear system

V k+1
i = π

(
xi ,U

k+1
i

)
+ β

n∑
j=1

qij(U
k+1
i)V k+1

j , i = 1, · · · , n,

I Comments:
I Policy iteration depends on only monotonicity

I Policy iteration is faster than value function iteration
I If initial guess is above or below solution then policy iteration is

between truth and value function iterate
I Works well even for β close to 1.

Algorithm 12.2: Policy Function Algorithm
Objective: Solve the Bellman equation, (12.3.4).
Step 0: Choose stopping criterion ε > 0.

EITHER make initial guess, V 0, for the
value function and go to step 1,

OR make initial guess, U1, for the
policy function and go to step 2.

Step 1: U`+1 = UV `

Step 2: P`+1
i = π

(
xi ,U

`+1
i

)
, i = 1, · · · , n

Step 3: V `+1 =
(
I − βQU`+1

)−1
P`+1

Step 4: If ‖ V `+1 − V ` ‖< ε, STOP; else go to step 1.

I Modified policy iteration
I If n is large, difficult to solve policy iteration step

I Alternative approximation: Assume policy U`+1 is used for k periods:

V `+1 =
k∑

t=0

βt
(
QU`+1)t

P`+1 + βk+1
(
QU`+1)k+1

V `

I Theorem 4.1 points out that as the policy function gets close to U∗,
the linear rate of convergence approaches βk+1. Hence convergence
accelerates as the iterates converge.

(Putterman and Shin) The successive iterates of modified policy iteration
with k steps, (12.4.1), satisfy the error bound∥∥V ∗ − V `+1

∥∥
‖V ∗ − V `‖

≤ min

[
β,

β(1− βk)

1− β
‖ U` − U∗ ‖ +βk+1

]

Gaussian acceleration methods for infinite-horizon models
I Key observation: Bellman equation is a simultaneous set of

equations

Vi = max
u∈D

π(xi , u) + β

n∑
j=1

qij(u)Vj

 , i = 1, · · · , n

I Idea: Treat problem as a large system of nonlinear equations
I Value function iteration is the pre-Gauss-Jacobi iteration

V k+1
i = max

u∈D

π(xi , u) + β
n∑

j=1

qij(u)V
k
j

 , i = 1, · · · , n

I True Gauss-Jacobi is

V k+1
i = max

u∈D

[
π(xi , u) + β

∑
j 6=i qij(u)V

k
j

1− βqii (u)

]
, i = 1, · · · , n

I pre-Gauss-Seidel iteration
I Value function iteration is a pre-Gauss-Jacobi scheme.
I Gauss-Seidel alternatives use new information immediately

I Suppose we have V `
i

I At each xi , given V `+1
j for j < i , compute V `+1

i in a pre-Gauss-Seidel
fashion

V `+1
i = max

u∈D
π(xi , u) + β

∑
j<i

qij (u)V
`+1
j + β

∑
j≥i

qij (u)V
`
j

I Iterate (12.4.7) for i = 1, .., n

I Gauss-Seidel iteration
I Suppose we have V `

i

I If optimal control at state i is u, then Gauss-Seidel iterate would be

V `+1
i = π(xi , u) + β

∑
j<i qij(u)V

`+1
j +

∑
j>i qij(u)V

`
j

1− βqii (u)

I Gauss-Seidel: At each xi , given V `+1
j for j < i , compute V `+1

i

V `+1
i = max

u∈D

π(xi , u) + β
∑

j<i qij(u)V
`+1
j + β

∑
j>i qij(u)V

`
j

1− βqii (u)

I Iterate this for i = 1, .., n

I Gauss-Seidel iteration: better notation
I No reason to keep track of `, number of iterations
I At each xi ,

Vi ←− max
u∈D

π(xi , u) + β
∑

j<i qij(u)Vj + β
∑

j>i qij(u)Vj

1− βqij(u)

I Iterate this for i = 1, .., n, 1,, etc.

State versus Information Flows

Consider the following graph:
I Solid arrows are permissible state transitions
I Broken arrows represent information flow

Upwind Gauss-Seidel

I Gauss-Seidel methods in (12.4.7) and (12.4.8)
I Sensitive to ordering of the states.

I Need to find good ordering schemes to enhance convergence.

I Example:
I Two states, x1 and x2, and two controls, u1 and u2

I ui causes state to move to xi , i = 1, 2
I Payoffs:

π(x1, u1) = −1, π(x1, u2) = 0,
π(x2, u1) = 0, π(x2, u2) = 1.

I β = 0.9.

I Solution:
I Optimal policy: always choose u2, moving to x2
I Value function:

V (x1) = 9, V (x2) = 10.
I x2 is the unique steady state, and is stable

I Converges linearly:

V 1(x1) = 0, V 1(x2) = 1, U1(x1) = 2, U1(x2) = 2,
V 2(x1) = 0.9, V 2(x2) = 1.9, U2(x1) = 2, U2(x2) = 2,
V 3(x1) = 1.71, V 3(x2) = 2.71, U3(x1) = 2, U3(x2) = 2,

I Policy iteration converges after two iterations

V 1(x1) = 0, V 1(x2) = 1, U1(x1) = 2, U1(x2) = 2,
V 2(x1) = 9, V 2(x2) = 10, U2(x1) = 2, U2(x2) = 2,

I Upwind Gauss-Seidel
I Value function at absorbing states is trivial to compute

I Suppose s is absorbing state with control u
I V (s) = π(s, u)/(1− β).

I With absorbing state V (s) we compute V (s ′) of any s ′ that sends
system to s.

V
(
s ′
)
= π

(
s ′, u

)
+ βV (s)

I With V (s ′), we can compute values of states s ′′ that send system to
s ′; etc.

Alternative Orderings
It may be difficult to find proper order.
I Alternating Sweep

I Idea: alternate between two approaches with different directions.

W = V k ,
Wi = maxu∈D π(xi , u) + β

∑n
j=1 qij(u)Wj , i = 1, 2, 3, ..., n

Wi = maxu∈D π(xi , u) + β
∑n

j=1 qij(u)Wj , i = n, n − 1, ..., 1
V k+1 = W

I Will always work well in one-dimensional problems since state moves
either right or left, and alternating sweep will exploit this half of the
time.

I In two dimensions, there may still be a natural ordering to be
exploited.

I Simulated Upwind Gauss-Seidel
I It may be difficult to find proper order in higher dimensions
I Idea: simulate using latest policy function to find downwind direction

I Simulate to get an example path, x1, x2, x3, x4, ..., xm
I Execute Gauss-Seidel with states xm, xm−1, xm−2,, x1

Linear Programming Approach

• If D is nite, we can reformulate dynamic programming as a linear programming problem.

• (12.3.4) is equivalent to the linear program

minVi
'n

i=1 Vi
s.t. Vi - !(xi, u) + "

'n
j=1 qij(u)Vj, /i, u ! D,

(12.4.10)

• Computational considerations

— (12.4.10) may be a large problem

— Trick and Zin (1997) pursued an acceleration approach with success.

— OR literature did not favor this approach, but recent work by Daniela Pucci de Farias and Ben
van Roy has revived interest.

24

