Discrete State, Discrete Control Dynamic Programming

Kenneth L. Judd, Hoover Institution

April 20, 2020

Discrete-Time Dynamic Programming

• Objective:

$$E\left\{\sum_{t=1}^{T} \pi(x_t, u_t, t) + W(x_{T+1})\right\},$$
(12.1.1)

- -X: set of states
- $-\mathcal{D}$: the set of controls
- $-\pi(x, u, t)$ payoffs in period t, for $x \in X$ at the beginning of period t, and control $u \in \mathcal{D}$ is applied in period t.
- $-D(x,t) \subseteq \mathcal{D}$: controls which are feasible in state x at time t.
- -F(A; x, u, t): probability that $x_{t+1} \in A \subset X$ conditional on time t control and state
- Value function

$$V(x,t) \equiv \sup_{\mathcal{U}(x,t)} E\left\{\sum_{s=t}^{T} \pi(x_s, u_s, s) + W(x_{T+1})|x_t = x\right\}.$$
 (12.1.2)

• Bellman equation

$$V(x,t) = \sup_{u \in D(x,t)} \pi(x, u, t) + E\left\{V(x_{t+1}, t+1) | x_t = x, u_t = u\right\}$$
(12.1.3)

• Existence: boundedness of π is sufficient

Autonomous, Infinite-Horizon Problem:

• Objective:

$$\max_{u_t} E\left\{\sum_{t=1}^{\infty} \beta^t \pi(x_t, u_t)\right\}$$
(12.1.1)

- -X: set of states
- $-\mathcal{D}$: the set of controls
- $-D(x) \subseteq \mathcal{D}$: controls which are feasible in state x.
- $-\pi(x, u)$ payoff in period t if $x \in X$ at the beginning of period t, and control $u \in \mathcal{D}$ is applied in period t.
- -F(A; x, u): probability that $x^+ \in A \subset X$ conditional on current control u and current state x.
- Value function definition: if $\mathcal{U}(x)$ is set of all feasible strategies starting at x.

$$V(x) \equiv \sup_{\mathcal{U}(x)} E\left\{ \sum_{t=0}^{\infty} \left. \beta^t \pi(x_t, \, u_t) \right| x_0 = x \right\},\tag{12.1.8}$$

• Bellman equation for V(x)

$$V(x) = \sup_{u \in D(x)} \pi(x, u) + \beta E \left\{ V(x^+) | x, u \right\} \equiv (TV)(x),$$
(12.1.9)

• Optimal policy function, U(x), if it exists, is defined by

$$U(x) \in \arg \max_{u \in D(x)} \pi(x, u) + \beta E\left\{V(x^+)|x, u\right\}$$

• Standard existence theorem:

Theorem 1 If X is compact, $\beta < 1$, and π is bounded above and below, then the map

$$TV = \sup_{u \in D(x)} \pi(x, u) + \beta E \left\{ V(x^+) \mid x, u \right\}$$
(12.1.10)

is monotone in V, is a contraction mapping with modulus β in the space of bounded functions, and has a unique fixed point.

Applications

- Economics
 - Business investment
 - Life-cycle decisions on labor, consumption, education
 - Portfolio problems
 - Economic policy
- Operations Research
 - Scheduling, queueing
 - Blood bank
 - See new book by Powell "Approximate Dynamic Programming"
- Climate change
 - Business response to climate policies
 - Optimal policy response to global warming problems

Deterministic Growth Example

• Problem:

$$V(k_{0}) = \max_{c_{t}} \sum_{t=0}^{\infty} \beta^{t} u(c_{t}),$$

$$k_{t+1} = F(k_{t}) - c_{t}$$

$$k_{0} \text{ given}$$
(12.1.12)

– Euler equation:

$$u'(c_t) = \beta u'(c_{t+1}) F'(k_{t+1})$$

– Bellman equation

$$V(k) = \max_{c} u(c) + \beta V(F(k) - c).$$
(12.1.13)

- Solution to (12.1.12) is a policy function C(k) and a value function V(k) satisfying

$$0 = u'(C(k))F'(k) - V'(k)$$
(12.1.15)

$$V(k) = u(C(k)) + \beta V(F(k) - C(k))$$
(12.1.16)

- (12.1.16) defines the value of an arbitrary policy function C(k), not just for the optimal C(k).
- The pair (12.1.15) and (12.1.16)
 - expresses the value function given a policy, and
 - a first-order condition for optimality.

Stochastic Growth Accumulation

• Problem:

$$V(k,\theta) = \max_{c_t,\ell_t} E\left\{\sum_{t=0}^{\infty} \beta^t u(c_t)\right\}$$
$$k_{t+1} = F(k_t,\theta_t) - c_t$$
$$\theta_{t+1} = g(\theta_t,\varepsilon_t)$$
$$\varepsilon_t : \text{ i.i.d. random variable}$$
$$k_0 = k, \ \theta_0 = \theta.$$

- State variables:
 - -k: productive capital stock, endogenous
 - $-\theta$: productivity state, exogenous
- The dynamic programming formulation is

$$V(k,\theta) = \max_{c} u(c) + \beta E\{V(F(k,\theta) - c, \theta^{+})|\theta\}$$
(12.1.21)
$$\theta^{+} = g(\theta, \varepsilon)$$

 \bullet The control law $c=C(k,\theta)$ satisfies the first-order conditions

$$0 = u_c \left(C(k, \theta) \right) - \beta E \left\{ u_c (C(k^+, \theta^+)) F_k(k^+, \theta^+) \mid \theta \right\},$$
(12.1.23)

where

$$k^+ \equiv F(k, L(k, \theta), \theta) - C(k, \theta),$$

General Stochastic Accumulation

• Problem:

$$V(k,\theta) = \max_{c_t,\ell_t} E\left\{\sum_{t=0}^{\infty} \beta^t u(c_t,\ell_t)\right\}$$
$$k_{t+1} = F(k_t,\ell_t,\theta_t) - c_t$$
$$\theta_{t+1} = g(\theta_t,\varepsilon_t)$$
$$k_0 = k, \ \theta_0 = \theta.$$

• State variables:

- -k: productive capital stock, endogenous
- $-\theta$: productivity state, exogenous
- The dynamic programming formulation is

$$V(k,\theta) = \max_{c,\ell} \ u(c,\ell) + \beta E\{V(F(k,\ell,\theta) - c,\theta^+)|\theta\},$$
(12.1.21)

where θ^+ is next period's θ realization.

• Control laws $c = C(k, \theta)$ and $\ell = L(k, \theta)$ satisfy foc's

$$0 = u_c(C(k,\theta), L(k,\theta))F_k(k, L(k,\theta), \theta) - V_k(k,\theta),$$

$$0 = u_\ell(C(k,\theta), L(k,\theta)) + F_\ell(k,\theta)u_c(C(k,\theta), L(k,\theta)).$$

• Euler equation implies

$$0 = u_c \left(C(k,\theta), L(k,\theta) \right) - \beta E \left\{ u_c (C(k^+,\theta^+),\ell^+) F_k(k^+,\ell^+,\theta^+) \mid \theta \right\},$$
(12.1.23)

where next period's capital stock and labor supply are

$$\begin{split} k^+ &\equiv F(k, L(k, \theta), \theta) - C(k, \theta), \\ \ell^+ &\equiv L(k^+, \theta^+), \end{split}$$

Discrete State Space, Discrete Control Problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Special structure

Illustrate basic algorithmic ideas

Definition

• State space $X = \{x_i, i = 1, \cdots, n\}$

- Wealth
- Education, job experience
- Capital

• Controls
$$\mathcal{D} = \{u_i | i = 1, ..., m\}$$

- Investment
- Time for education, learning
- Choice of controls determines changes in state

▶
$$q_{ij}^t(u) = \Pr(x_{t+1} = x_j | x_t = x_i, u_t = u)$$

▶ $Q^t(u) = (q_{ij}^t(u))_{i,j}$: Markov transition matrix at t if $u_t = u$.

• $\pi(x, u, t)$ Payoff at time at time t if state is $x \in X$ and control is $u \in D$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Finite Horizon Problem

Terminal value:

$$V_i^{T+1} = W(x_i), \ i = 1, \cdots, n.$$

- Value function, V^t_i, is the present value of payoffs if in state x_i at time t
 - We often implicitly assume that we use the optimal policy
 - This is really a vector of length n
- Bellman equation: time t value function is

$$V_i^t = \max_{u \in D} [\pi(x_i, u, t) + \beta \sum_{j=1}^n q_{ij}^t(u) V_j^{t+1}], \ i = 1, \cdots, n$$

- Bellman equation can be directly computed by value function iteration:
 - max problem is a finite operation: unique value, but not unique solution u
 - Given V^{t+1} compute V^t , for t = T, T 1, T 2, ...1
 - Only choice for finite-horizon problems because the problem is not stationary.

Infinite Horizon Problems

- Infinite-horizon problems
- Bellman equation is now:

$$V_i = \max_{u \in \mathcal{D}} \left[\pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) V_j \right], \ i = 1, \cdots, n$$

▶ This is a finite system of equations for the unknowns V_i , i = 1, ..., n

Value Function Iteration

VFIValue function iteration is now

$$V_i^{k+1} = \max_{u \in \mathcal{D}} \left[\pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) V_j^k \right], \ i = 1, \cdots, n$$

- Begin with an initial (and arbitrary) V_i^0 and iterate $k \to \infty$.
- Convergence implied by contraction mapping property
- Error is given by contraction mapping property:

$$\left\| V^k - V^* \right\| \leq rac{1}{1-eta} \left\| V^{k+1} - V^k \right\|$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algorithm 12.1: Value Function Iteration Algorithm
Objective: Solve the Bellman equation
Step 0: Make initial guess
$$V^0$$
; choose stopping criterion $\epsilon > 0$.
Step 1: For $i = 1, ..., n$, compute
 $V_i^{\ell+1} = \max_{u \in D} \pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) V_j^{\ell}$.
Step 2: If $|| V^{\ell+1} - V^{\ell} || < \epsilon$, then go to step 3; else go to step 1.
Step 3: Compute the final solution, setting
 $U^* = UV^{\ell+1}$,
 $P_i^* = \pi(x_i, U_i^*)$, $i = 1, \cdots, n$,
 $V^* = (I - \beta Q^{U^*})^{-1}P^*$,
and STOP.

Output:

Value of a Policy

- Value function idea can be applied to an arbitrary policy
- Let $U \in \mathcal{D}^n$ denote the policy of choosing $U_i \in \mathcal{D}$ when in state x_i
- The present value, V, of policy U is defined by

$$V_i = \pi(x_i, U_i) + \beta \sum_{j=1}^n q_{ij}(U_i) V_j, \ i = 1, \cdots, n,$$

Policy Iteration (a.k.a. Howard improvement)

- Value function iteration is slow
 - Linear convergence at rate β
 - Convergence is particularly slow if β is close to 1.
- Policy iteration is
 - Current guess:

$$V_i^k$$
, $i=1,\cdots,n$.

• Iteration: compute optimal policy today if V^k is value tomorrow:

$$U_i^{k+1} = \arg \max_{u \in \mathcal{D}} \left[\pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) V_j^k \right], \ i = 1, \cdots, n,$$

Compute the value function if the policy U^{k+1} is used forever, which is solution to the linear system

$$V_i^{k+1} = \pi \left(x_i, U_i^{k+1} \right) + \beta \sum_{j=1}^n q_{ij}(U_i^{k+1}) V_j^{k+1}, \ i = 1, \cdots, n,$$

Comments:

Policy iteration depends on only monotonicity

- Policy iteration is faster than value function iteration
 - If initial guess is above or below solution then policy iteration is between truth and value function iterate

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Works well even for β close to 1.

Algorithm 12.2: Policy Function Algorithm	
Objective:	Solve the Bellman equation, (12.3.4).
Step 0:	Choose stopping criterion $\epsilon > 0$.
	EITHER make initial guess, V^0 , for the
	value function and go to step 1,
	OR make initial guess, U^1 , for the
	policy function and go to step 2.
Step 1:	$U^{\ell+1} = \mathcal{U} V^\ell$
Step 2:	$P_i^{\ell+1} = \pi \left(x_i, U_i^{\ell+1} \right), i = 1, \cdots, n$
Step 3:	$V^{\ell+1} = \left(I - eta Q^{U^{\ell+1}} ight)^{-1} P^{\ell+1}$
Step 4:	If $ V^{\ell+1} - V^{\ell} < \epsilon$, STOP; else go to step 1.

◆□ ▶ ◆□ ▶ ▲目 ▶ ▲目 ▶ ◆□ ▶

- Modified policy iteration
- ▶ If *n* is large, difficult to solve policy iteration step
 - Alternative approximation: Assume policy $U^{\ell+1}$ is used for k periods:

$$V^{\ell+1} = \sum_{t=0}^{k} \beta^{t} \left(Q^{U^{\ell+1}} \right)^{t} P^{\ell+1} + \beta^{k+1} \left(Q^{U^{\ell+1}} \right)^{k+1} V^{\ell}$$

Theorem 4.1 points out that as the policy function gets close to U^{*}, the linear rate of convergence approaches β^{k+1}. Hence convergence accelerates as the iterates converge.

(*Putterman and Shin*) The successive iterates of modified policy iteration with k steps, (12.4.1), satisfy the error bound

$$\frac{\left\|\boldsymbol{V}^*-\boldsymbol{V}^{\ell+1}\right\|}{\left\|\boldsymbol{V}^*-\boldsymbol{V}^{\ell}\right\|} \leq \min\left[\beta, \ \frac{\beta(1-\beta^k)}{1-\beta} \parallel U^{\ell}-U^*\parallel+\beta^{k+1}\right]$$

Gaussian acceleration methods for infinite-horizon models

 Key observation: Bellman equation is a simultaneous set of equations

$$V_i = \max_{u \in \mathcal{D}} \left[\pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) V_j \right], \ i = 1, \cdots, n$$

Idea: Treat problem as a large system of nonlinear equations
 Value function iteration is the *pre-Gauss-Jacobi* iteration

$$V_i^{k+1} = \max_{u \in \mathcal{D}} \left[\pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) V_j^k \right], \ i = 1, \cdots, n$$

True Gauss-Jacobi is

$$V_i^{k+1} = \max_{u \in \mathcal{D}} \left[\frac{\pi(x_i, u) + \beta \sum_{j \neq i} q_{ij}(u) V_j^k}{1 - \beta q_{ii}(u)} \right], \ i = 1, \cdots, n$$

- pre-Gauss-Seidel iteration
 - Value function iteration is a pre-Gauss-Jacobi scheme.
 - Gauss-Seidel alternatives use new information immediately
 - Suppose we have V^ℓ_i
 - At each x_i , given $V_i^{\ell+1}$ for j < i, compute $V_i^{\ell+1}$ in a pre-Gauss-Seidel $S \subseteq \mathbb{C}$

- Gauss-Seidel iteration
- Suppose we have V_i^{ℓ}

▶ If optimal control at state *i* is *u*, then Gauss-Seidel iterate would be

$$V_i^{\ell+1} = \pi(x_i, u) + \beta \frac{\sum_{j < i} q_{ij}(u) V_j^{\ell+1} + \sum_{j > i} q_{ij}(u) V_j^{\ell}}{1 - \beta q_{ii}(u)}$$

► Gauss-Seidel: At each x_i , given $V_j^{\ell+1}$ for j < i, compute $V_i^{\ell+1}$

$$V_{i}^{\ell+1} = \max_{u \in \mathcal{D}} \frac{\pi(x_{i}, u) + \beta \sum_{j < i} q_{ij}(u) V_{j}^{\ell+1} + \beta \sum_{j > i} q_{ij}(u) V_{j}^{\ell}}{1 - \beta q_{ii}(u)}$$

• Iterate this for i = 1, ..., n

Gauss-Seidel iteration: better notation

No reason to keep track of l, number of iterations

At each x_i,

$$V_i \longleftarrow \max_{u \in \mathcal{D}} \frac{\pi(x_i, u) + \beta \sum_{j < i} q_{ij}(u) V_j + \beta \sum_{j > i} q_{ij}(u) V_j}{1 - \beta q_{ij}(u)}$$

Iterate this for i = 1, ..., n, 1,, etc.

State versus Information Flows

Consider the following graph:

- Solid arrows are permissible state transitions
- Broken arrows represent information flow

Upwind Gauss-Seidel

- Gauss-Seidel methods in (12.4.7) and (12.4.8)
- Sensitive to ordering of the states.
 - Need to find good ordering schemes to enhance convergence.
- Example:
 - Two states, x_1 and x_2 , and two controls, u_1 and u_2
 - u_i causes state to move to x_i , i = 1, 2
 - Payoffs:

$$\begin{aligned} \pi(x_1, u_1) &= -1, \ \pi(x_1, u_2) = 0, \\ \pi(x_2, u_1) &= 0, \ \pi(x_2, u_2) = 1. \end{aligned}$$

- β = 0.9.
- Solution:
 - Optimal policy: always choose u₂, moving to x₂
 - Value function:

$$V(x_1) = 9, V(x_2) = 10.$$

x₂ is the unique steady state, and is stable

Converges linearly:

$$\begin{array}{l} V^1(x_1)=0, \ V^1(x_2)=1, \ U^1(x_1)=2, \ U^1(x_2)=2, \\ V^2(x_1)=0.9, \ V^2(x_2)=1.9, \ U^2(x_1)=2, \ U^2(x_2)=2, \\ V^3(x_1)=1.71, \ V^3(x_2)=2.71, \ U^3(x_1)=2, \ U^3(x_2)=2, \end{array}$$

Policy iteration converges after two iterations

$$V^{1}(x_{1}) = 0, V^{1}(x_{2}) = 1, U^{1}(x_{1}) = 2, U^{1}(x_{2}) = 2, V^{2}(x_{1}) = 9, V^{2}(x_{2}) = 10, U^{2}(x_{1}) = 2, U^{2}(x_{2}) = 2,$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

- Upwind Gauss-Seidel
- Value function at absorbing states is trivial to compute
 - Suppose s is absorbing state with control u

• $V(s) = \pi(s, u)/(1 - \beta).$

With absorbing state V (s) we compute V (s') of any s' that sends system to s.

$$V(s') = \pi(s', u) + \beta V(s)$$

With V (s'), we can compute values of states s'' that send system to s'; etc.

Alternative Orderings

It may be difficult to find proper order.

Alternating Sweep

Idea: alternate between two approaches with different directions.

$$\begin{aligned} W &= V^k, \\ W_i &= \max_{u \in \mathcal{D}} \pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) W_j, \ i = 1, 2, 3, ..., n \\ W_i &= \max_{u \in \mathcal{D}} \pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) W_j, \ i = n, n-1, ..., 1 \\ V^{k+1} &= W \end{aligned}$$

- Will always work well in one-dimensional problems since state moves either right or left, and alternating sweep will exploit this half of the time.
- In two dimensions, there may still be a natural ordering to be exploited.
- Simulated Upwind Gauss-Seidel
 - It may be difficult to find proper order in higher dimensions
 - Idea: simulate using latest policy function to find downwind direction
 - Simulate to get an example path, x₁, x₂, x₃, x₄, ..., x_m
 - Execute Gauss-Seidel with states $x_m, x_{m-1}, x_{m-2}, ..., x_1$

Linear Programming Approach

- If \mathcal{D} is finite, we can reformulate dynamic programming as a linear programming problem.
- (12.3.4) is equivalent to the linear program

$$\min_{V_i} \sum_{i=1}^n V_i$$

s.t. $V_i \ge \pi(x_i, u) + \beta \sum_{j=1}^n q_{ij}(u) V_j, \ \forall i, u \in \mathcal{D},$ (12.4.10)

- Computational considerations
 - -(12.4.10) may be a large problem
 - Trick and Zin (1997) pursued an acceleration approach with success.
 - OR literature did not favor this approach, but recent work by Daniela Pucci de Farias and Ben van Roy has revived interest.