Numerical Methods in Economics MIT Press, 1998

Notes for Chapter 8: Monte Carlo and Simulation Methods

November 22, 2006

Monte Carlo and Simulation Methods

- Gaussian, monomial, and Newton-Cotes formulas
 - use predetermined nodes
 - aim at high accuracy
 - need many nodes
- Sampling methods
 - Generate a sequence of points
 - Short sequence produces rough approximation
 - Longer sequences produce better approximations
- Monte Carlo sampling methods
 - Use law of large numbers "intuition"
 - Order $N^{-1/2}$ convergence
 - Use probability theory to prove theorems
 - Use number-theoretic methods to generate deterministic sequences which appear random

Monte Carlo Integration

• Probability theory

- If X_i are i.i.d. r.v.'s, density q(x), and support [0, 1], then

$$\bar{X} \equiv \frac{1}{N} \sum_{i=1}^{N} X_i$$
$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} X_i = \int_0^1 xq(x) \, dx, \ a.s.$$
$$\operatorname{var}\left(\frac{1}{N} \sum_{i=1}^{N} X_i\right) = \frac{\sigma_x^2}{N}$$

– If σ_x^2 is not known *a priori*, an unbiased estimator is

$$\hat{\sigma}_x^2 \equiv (N-1)^{-1} \sum_{i=1}^N (X_i - \bar{X})^2$$

- LLN suggests Monte Carlo quadrature:
 - $\text{ If } X \sim U[0, 1], \text{ then}$

$$I = \int_0^1 f(x) \, dx = E \, \{ f(X) \}$$

- The crude Monte Carlo method makes N draws from $U[0,1], \{x_i\}_{i=1}^N$, and defines

$$\hat{I} \equiv \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$
$$\hat{\sigma}^2 = (N-1)^{-1} \sum_{i=1}^{N} \left(f(x_i) - \hat{I} \right)^2$$

- \hat{I} is a statistical estimate of $\int_0^1 f(x) \, dx$
 - $-\hat{I}$ is an unbiased estimate of $\int_0^1 f(x) \, dx$
 - The variance of the \hat{I} estimate is

$$\sigma_{\hat{I}}^2 = N^{-1} \int_0^1 \left(f(x) - I \right)^2 \, dx = N^{-1} \sigma^2$$

Variance Reduction Techniques

- Monte Carlo estimates have high variance; need to reduce variance
- Antithetic Variates
 - Induce negative correlation in f(x) values
 - Form the estimate

$$\hat{I} = \frac{1}{2N} \sum_{i=1}^{N} (f(x_i) + f(1-x_i)).$$

- If f is monotone, I, has smaller variance than crude estimate

- Control Variates
 - Suppose φ is similar to f but easily integrated.
 - The identity $\int f = \int \varphi + \int (f \varphi)$ reduces the problem to

* a Monte Carlo integration of $\int (f-\varphi)$

* plus the known integral $\int \varphi$.

– If $cov\left(f,\varphi\right)$ is large, variance is reduced

- Importance Sampling
 - Sample f(x) where its value is most important
 - If p(x) > 0, and $\int_0^1 p(x) \, dx = 1$, then

$$I = \int_0^1 f(x) \, dx = \int_0^1 \frac{f(x)}{p(x)} \, p(x) \, dx$$

- If x_i is drawn with density p(x), then

$$\hat{I} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}$$

is an unbiased estimate of I, and variance of \hat{I} is

$$\sigma_{\hat{I}}^2 = \frac{1}{N} \left(\int_0^1 \frac{f(x)^2}{p(x)} \, dx - \left(\int_0^1 f(x) \, dx \right)^2 \right).$$

- If f(x) > 0 and $p(x) = f(x) / \int_0^1 f(x)$, then f(x) = I p(x) and $\sigma_{\hat{I}}^2 = 0$.
- Add constant B to make f(x) positive
- Aim: find a p(x) similar to f(x)
- Thin tails problem
 - * In $\sigma_{\hat{I}}^2$ formula, key term is $f(x)^2/p(x)$
 - * if $f(x)^2/p(x)$ is large when p(x) is small, variance is large.
 - * Normal density often has thin tails problem

Pseudorandom Number Generation

- Random numbers are seldom used
 - Possible methods
 - * Flipping coins
 - * Geiger counters measuring radioactivity
 - Disadvantages
 - \ast Expensive given RA salaries
 - \ast RA's complain about radiation risk; now have legal rights
- Monte Carlo propagandists
 - Use deterministic sequences
 - Act as if they are random sequences

- Pseudorandom numbers are used instead
 - They are deterministic sequences, $X_{k+1} = f(X_k, X_{k-1}, X_{k-2}, ...)$
 - They pass some randomness tests, such as
 - * Unbiasedness

$$\frac{1}{N}\sum_{k=1}^{N}X_{k} = \mu \equiv E\{X\}$$

 \ast Zero serial correlation

$$0 = \sum_{k=1}^{N} (X_k - \mu) X_{k+1}$$

- \ast Runs tests
- * Lehmer: "each term is unpredictable to the *uninitiated* and .. digits pass a *certain number* of tests traditional with *statisticians*."
- They fail Brock-Dechert-Scheinkman tests for randomness

Uniform Random Number Generation

• Linear congruential method (LCM):

$$X_{k+1} = (aX_k + c) \mod m$$
(8.1.1)

- Will generate pseudorandom sequence if parameters chosen well
- Will eventually cycle; chose parameters to get long cycle
- $-Y_n \equiv (X_{2n+1}, X_{2n+2})$ is a pseudorandom two-dimensional set of points. Similar for \mathbb{R}^d
- LCM generators have fallen into disfavor since they lie on a finite set of hyperplanes.

Linear congruential method function

1500 Points generated by LCM

• Nonlinear schemes:

- MPRNG: an example of LCM plus "random" shifts.
- $-X_{k+1} = f(X_k) \mod m$
- Fibonacci generator $X_k = (X_{k-1} + X_{k-2}) \mod m$. This sequence has a number of poor properties. In particular, if X_{k-1} and X_{k-2} are small relative to m, so will be X_k .
- The Fibonacci-like scheme

$$X_k = (X_{k-24} \cdot X_{k-55}) \ mod2^{32} \tag{8.1.2}$$

has a period ~ 10^{25} and passes many randomness tests.

Nonuniform Random Number Generation

- Need to generate nonuniform random numbers
- Inversion:
 - Suppose X has distribution F(x)
 - Then $F^{-1}(U)$ has distribution F(x)
 - To approximate X, we compute $y_k = F^{-1}(x_k)$ where x_k is a uniform pseudorandom sequence
- Normal random variables: A special method
 - Suppose U_1 and $U_2 \sim U[0, 1]$
 - Then $X_1, X_2 \sim N(0, 1)$ are independent where

$$X_1 = \cos(2\pi U_1)\sqrt{-2\ln U_2}, X_2 = \sin(2\pi U_1)\sqrt{-2\ln U_2},$$
(8.1.3)

Stochastic Approximation

• Consider

$$\min_{x} E_Z\{g(x,Z)\},\tag{8.4.1}$$

where Z is a random variable.

• Conventional methods are impractical for empirical problems, such as

$$\min_{\beta} E_Z\{g(\beta, X, Z)\}$$

where β are parameters, X is data, and Z is random

- Too costly curse of dimensionality
- High-accuracy methods are not necessary in empirical problems since X data is noisy.
- Econometricians frequently fix S, and minimize $\sum_{z \in S} g(\beta, X, z)$.
- Stochastic approximation is designed to deal with such problems.
 - Begin with initial guess x^1 .
 - Draw z^1
 - $-g_x(x^1, z^1)$ is an unbiased estimate of the gradient $f_x(x^1)$
 - Steepest descent method would change guess by $-\lambda_1 f_x(x^1)$ for some $\lambda_1 > 0$.
 - The stochastic gradient method executes the iteration

$$x^{k+1} = x^k - \lambda_k g_x(x^k, \ z^k), \tag{8.4.2}$$

where $\{z^k\}$ is a sequence of i.i.d. draws from Z and λ_k is a changing step size.

Theorem 1 Suppose that f is C^2 . If $\lambda_k \to 0$, $\sum_{k=1}^{\infty} \lambda_k = \infty$, and $\sum_{k=1}^{\infty} \lambda_k^2 < \infty$, then the sequence x^k generated by the stochastic gradient method, (8.4.2), confinded to U will almost surely have a subsequence that converges to a point either on ∂U or at a (possibly local) minimum of f.

• Example:

 $-\min_{x \in [0,1]} E\{(Z-x)^2\}, Z \sim U[0,1], \text{ with solution } x = 0.5$ - Let $\lambda_k = 1/k$

-(8.4.2) becomes

$$x_{k+1} = x_k + \frac{2}{k}(z_k - x_k), \tag{8.4.3}$$

Table 8	.1: Statistics	of (4.3) for 25 Runs
Iterate	Average x_k	Standard Deviation
1	.375	.298
10	.508	.143
100	.487	.029
200	.499	.026
500	.496	.144
1000	.501	.010

Standard Optimization Methods with Simulated Objectives

• Consider optimization problem:

$$\min_{x \in U} E\{g(x, Z)\} = f(x)$$
(8.5.1)

for some random variable Z.

- For many problems of the form in (5.1), the objective f(x) and its derivatives can be computed only with nontrivial error.
- When solving problems of the form (8.5.1) we need to determine how well we need to approximate the integral.
- Stochastic approximation was one way to solve (8.5.1). We will now consider standard optimization approaches that use simulation ideas.
- Idea: take a sample of Z of size N, and replace $E\{g(x, Z)\}$ in (8.5.1) with its sample mean $\frac{1}{N}\sum_{i=1}^{N} g(x, Z_i)$.
- For example, suppose that we want to solve

$$\min_{x \in [0,1]} E\{(Z-x)^2\},\tag{8.5.2}$$

where $Z \sim U[0, 1]$.

• To solve (8.5.2), we take, say, three draws from U[0, 1]; suppose they are 0.10, 0.73, and 0.49. We then minimize the sample average of $(Z - x)^2$,

$$\min_{x \in [0,1]} \frac{1}{3} ((0.10 - x)^2 + (0.73 - x)^2 + (0.49 - x)^2).$$
(8.5.3)

The solution to (8.5.3) is 0.43, a rough approximation of the true solution to (8.5.2) of 0.5.

• Simple portfolio problem. $u(c) = -e^{-c}$. safe asset has total return R = 1.01, and the risky asset has return $Z \sim N(\mu, \sigma^2)$ with $\mu = 1.06$ and $\sigma^2 = 0.04$. The portfolio problem reduces to

$$\max_{\omega} -E\{e^{-((1-\omega)R+\omega Z)}\}.$$
(8.5.4)

- Optimal ω , denoted ω^* , and equals 1.25.
- The Monte Carlo approach to solve (8.5.4) is to use Monte Carlo integration to evaluate the integral objective.
 - Take N draws of $Z \sim N(\mu, \sigma^2)$, and replace (8.5.4) by

$$\max_{\omega} -\frac{1}{N} \sum_{i=1}^{N} e^{-((1-\omega)R + \omega Z_i)}.$$
(8.5.5)

- Solution to (8.5.5) is $\hat{\omega}^*$; hopefully approximates ω^* .
- Quality of this procedure depends on N

Table 8.2: Portfolio Choice via Monte Carlo						
	$N^{-1}\sum_{i=1}^N u(c_i)$		$\widehat{\omega}^*$			
		Standard		Standard		
N	mean	deviation	mean	deviation		
100	-1.039440	.021362	1.2496	.4885		
1000	-1.042647	.007995	1.2870	.1714		
10,000	-1.041274	.002582	1.2505	.0536		

• Note: error in computing ω^* is much larger, ten to twenty times larger, than the error in computing an expectation.