Numerical Methods in Economics
 MIT Press, 1998

Notes for Chapter 8: Monte Carlo and Simulation Methods

November 22, 2006

Monte Carlo and Simulation Methods

- Gaussian, monomial, and Newton-Cotes formulas
- use predetermined nodes
- aim at high accuracy
- need many nodes
- Sampling methods
- Generate a sequence of points
- Short sequence produces rough approximation
- Longer sequences produce better approximations
- Monte Carlo sampling methods
- Use law of large numbers "intuition"
- Order $N^{-1 / 2}$ convergence
- Use probability theory to prove theorems
- Use number-theoretic methods to generate deterministic sequences which appear random

Monte Carlo Integration

- Probability theory
- If X_{i} are i.i.d. r.v.'s, density $q(x)$, and support [0,1], then

$$
\begin{aligned}
\bar{X} & \equiv \frac{1}{N} \sum_{i=1}^{N} X_{i} \\
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} X_{i} & =\int_{0}^{1} x q(x) d x, \text { a.s. } \\
\operatorname{var}\left(\frac{1}{N} \sum_{i=1}^{N} X_{i}\right) & =\frac{\sigma_{x}^{2}}{N}
\end{aligned}
$$

- If σ_{x}^{2} is not known a priori, an unbiased estimator is

$$
\hat{\sigma}_{x}^{2} \equiv(N-1)^{-1} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}
$$

- LLN suggests Monte Carlo quadrature:
- If $X \sim U[0,1]$, then

$$
I=\int_{0}^{1} f(x) d x=E\{f(X)\}
$$

- The crude Monte Carlo method makes N draws from $U[0,1],\left\{x_{i}\right\}_{i=1}^{N}$, and defines

$$
\begin{aligned}
\hat{I} & \equiv \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right) \\
\hat{\sigma}^{2} & =(N-1)^{-1} \sum_{i=1}^{N}\left(f\left(x_{i}\right)-\hat{I}\right)^{2}
\end{aligned}
$$

- \hat{I} is a statistical estimate of $\int_{0}^{1} f(x) d x$
- \hat{I} is an unbiased estimate of $\int_{0}^{1} f(x) d x$
- The variance of the \hat{I} estimate is

$$
\sigma_{\hat{I}}^{2}=N^{-1} \int_{0}^{1}(f(x)-I)^{2} d x=N^{-1} \sigma^{2}
$$

Variance Reduction Techniques

- Monte Carlo estimates have high variance; need to reduce variance
- Antithetic Variates
- Induce negative correlation in $f(x)$ values
- Form the estimate

$$
\hat{I}=\frac{1}{2 N} \sum_{i=1}^{N}\left(f\left(x_{i}\right)+f\left(1-x_{i}\right)\right) .
$$

- If f is monotone, I, has smaller variance than crude estimate
- Control Variates
- Suppose φ is similar to f but easily integrated.
- The identity $\int f=\int \varphi+\int(f-\varphi)$ reduces the problem to
* a Monte Carlo integration of $\int(f-\varphi)$
* plus the known integral $\int \varphi$.
- If $\operatorname{cov}(f, \varphi)$ is large, variance is reduced
- Importance Sampling
- Sample $f(x)$ where its value is most important
- If $p(x)>0$, and $\int_{0}^{1} p(x) d x=1$, then

$$
I=\int_{0}^{1} f(x) d x=\int_{0}^{1} \frac{f(x)}{p(x)} p(x) d x
$$

- If x_{i} is drawn with density $p(x)$, then

$$
\hat{I}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

is an unbiased estimate of I, and variance of \hat{I} is

$$
\sigma_{\hat{I}}^{2}=\frac{1}{N}\left(\int_{0}^{1} \frac{f(x)^{2}}{p(x)} d x-\left(\int_{0}^{1} f(x) d x\right)^{2}\right)
$$

- If $f(x)>0$ and $p(x)=f(x) / \int_{0}^{1} f(x)$, then $f(x)=I p(x)$ and $\sigma_{\hat{I}}^{2}=0$.
- Add constant B to make $f(x)$ positive
- Aim: find a $p(x)$ similar to $f(x)$
- Thin tails problem
* In $\sigma_{\hat{I}}^{2}$ formula, key term is $f(x)^{2} / p(x)$
* if $f(x)^{2} / p(x)$ is large when $p(x)$ is small, variance is large.
* Normal density often has thin tails problem

Pseudorandom Number Generation

- Random numbers are seldom used
- Possible methods
* Flipping coins
* Geiger counters measuring radioactivity
- Disadvantages
* Expensive given RA salaries
* RA's complain about radiation risk; now have legal rights
- Monte Carlo propagandists
- Use deterministic sequences
- Act as if they are random sequences
- Pseudorandom numbers are used instead
- They are deterministic sequences, $X_{k+1}=f\left(X_{k}, X_{k-1}, X_{k-2}, \ldots\right)$
- They pass some randomness tests, such as
* Unbiasedness

$$
\frac{1}{N} \sum_{k=1}^{N} X_{k}=\mu \equiv E\{X\}
$$

* Zero serial correlation

$$
0=\sum_{k=1}^{N}\left(X_{k}-\mu\right) X_{k+1}
$$

* Runs tests
* Lehmer: "each term is unpredictable to the uninitiated and .. digits pass a certain number of tests traditional with statisticians."
- They fail Brock-Dechert-Scheinkman tests for randomness

Uniform Random Number Generation

- Linear congruential method (LCM):

$$
\begin{equation*}
X_{k+1}=\left(a X_{k}+c\right) \bmod m \tag{8.1.1}
\end{equation*}
$$

- Will generate pseudorandom sequence if parameters chosen well
- Will eventually cycle; chose parameters to get long cycle
- $Y_{n} \equiv\left(X_{2 n+1}, X_{2 n+2}\right)$ is a pseudorandom two-dimensional set of points. Similar for R^{d}
- LCM generators have fallen into disfavor since they lie on a finite set of hyperplanes.

Linear congruential method function

- Nonlinear schemes:
- MPRNG: an example of LCM plus "random" shifts.
$-X_{k+1}=f\left(X_{k}\right) \bmod m$
- Fibonacci generator $X_{k}=\left(X_{k-1}+X_{k-2}\right)$ mod.m. This sequence has a number of poor properties. In particular, if X_{k-1} and X_{k-2} are small relative to m, so will be X_{k}.
- The Fibonacci-like scheme

$$
\begin{equation*}
X_{k}=\left(X_{k-24} \cdot X_{k-55}\right) \bmod 2^{32} \tag{8.1.2}
\end{equation*}
$$

has a period $\sim 10^{25}$ and passes many randomness tests.

Nonuniform Random Number Generation

- Need to generate nonuniform random numbers
- Inversion:
- Suppose X has distribution $F(x)$
- Then $F^{-1}(U)$ has distribution $F(x)$
- To approximate X, we compute $y_{k}=F^{-1}\left(x_{k}\right)$ where x_{k} is a uniform pseudorandom sequence
- Normal random variables: A special method
- Suppose U_{1} and $U_{2} \sim U[0,1]$
- Then $X_{1}, X_{2} \sim N(0,1)$ are independent where

$$
\begin{align*}
& X_{1}=\cos \left(2 \pi U_{1}\right) \sqrt{-2 \ln U_{2}}, \tag{8.1.3}\\
& X_{2}=\sin \left(2 \pi U_{1}\right) \sqrt{-2 \ln U_{2}}
\end{align*}
$$

Stochastic Approximation

- Consider

$$
\begin{equation*}
\min _{x} E_{Z}\{g(x, Z)\}, \tag{8.4.1}
\end{equation*}
$$

where Z is a random variable.

- Conventional methods are impractical for empirical problems, such as

$$
\min _{\beta} E_{Z}\{g(\beta, X, Z)\}
$$

where β are parameters, X is data, and Z is random

- Too costly - curse of dimensionality
- High-accuracy methods are not necessary in empirical problems since X data is noisy.
- Econometricians frequently fix S, and minimize $\sum_{z \in S} g(\beta, X, z)$.
- Stochastic approximation is designed to deal with such problems.
- Begin with initial guess x^{1}.
- Draw z^{1}
- $g_{x}\left(x^{1}, z^{1}\right)$ is an unbiased estimate of the gradient $f_{x}\left(x^{1}\right)$
- Steepest descent method would change guess by $-\lambda_{1} f_{x}\left(x^{1}\right)$ for some $\lambda_{1}>0$.
- The stochastic gradient method executes the iteration

$$
\begin{equation*}
x^{k+1}=x^{k}-\lambda_{k} g_{x}\left(x^{k}, z^{k}\right), \tag{8.4.2}
\end{equation*}
$$

where $\left\{z^{k}\right\}$ is a sequence of i.i.d. draws from Z and λ_{k} is a changing step size.

Theorem 1 Suppose that f is C^{2}. If $\lambda_{k} \rightarrow 0, \sum_{k=1}^{\infty} \lambda_{k}=\infty$, and $\sum_{k=1}^{\infty} \lambda_{k}^{2}<\infty$, then the sequence x^{k} generated by the stochastic gradient method, (8.4.2), confinded to U will almost surely have a subsequence that converges to a point either on ∂U or at a (possibly local) minimum of f.

- Example:
$-\min _{x \in[0,1]} E\left\{(Z-x)^{2}\right\}, Z \sim U[0,1]$, with solution $x=0.5$
- Let $\lambda_{k}=1 / k$
- (8.4.2) becomes

$$
\begin{equation*}
x_{k+1}=x_{k}+\frac{2}{k}\left(z_{k}-x_{k}\right), \tag{8.4.3}
\end{equation*}
$$

Table 8.1: Statistics of (4.3) for 25 Runs Iterate Average x_{k} Standard Deviation

1	.375	.298
10	.508	.143
100	.487	.029
200	.499	.026
500	.496	.144
1000	.501	.010

Standard Optimization Methods with Simulated Objectives

- Consider optimization problem:

$$
\begin{equation*}
\min _{x \in U} E\{g(x, Z)\}=f(x) \tag{8.5.1}
\end{equation*}
$$

for some random variable Z.

- For many problems of the form in (5.1), the objective $f(x)$ and its derivatives can be computed only with nontrivial error.
- When solving problems of the form (8.5.1) we need to determine how well we need to approximate the integral.
- Stochastic approximation was one way to solve (8.5.1). We will now consider standard optimization approaches that use simulation ideas.
- Idea: take a sample of Z of size N, and replace $E\{g(x, Z)\}$ in (8.5.1) with its sample mean $\frac{1}{N} \sum_{i=1}^{N} g\left(x, Z_{i}\right)$.
- For example, suppose that we want to solve

$$
\begin{equation*}
\min _{x \in[0,1]} E\left\{(Z-x)^{2}\right\} \tag{8.5.2}
\end{equation*}
$$

where $Z \sim U[0,1]$.

- To solve (8.5.2), we take, say, three draws from $U[0,1]$; suppose they are $0.10,0.73$, and 0.49 . We then minimize the sample average of $(Z-x)^{2}$,

$$
\begin{equation*}
\min _{x \in[0,1]} \frac{1}{3}\left((0.10-x)^{2}+(0.73-x)^{2}+(0.49-x)^{2}\right) \tag{8.5.3}
\end{equation*}
$$

The solution to (8.5.3) is 0.43 , a rough approximation of the true solution to (8.5.2) of 0.5 .

- Simple portfolio problem. $u(c)=-e^{-c}$. safe asset has total return $R=1.01$, and the risky asset has return $Z \sim N\left(\mu, \sigma^{2}\right)$ with $\mu=1.06$ and $\sigma^{2}=0.04$. The portfolio problem reduces to

$$
\begin{equation*}
\max _{\omega}-E\left\{e^{-((1-\omega) R+\omega Z)}\right\} . \tag{8.5.4}
\end{equation*}
$$

- Optimal ω, denoted ω^{*}, and equals 1.25.
- The Monte Carlo approach to solve (8.5.4) is to use Monte Carlo integration to evaluate the integral objective.
- Take N draws of $Z \sim N\left(\mu, \sigma^{2}\right)$, and replace (8.5.4) by

$$
\begin{equation*}
\max _{\omega}-\frac{1}{N} \sum_{i=1}^{N} e^{-\left((1-\omega) R+\omega Z_{i}\right)} . \tag{8.5.5}
\end{equation*}
$$

- Solution to (8.5.5) is $\hat{\omega}^{*}$; hopefully approximates ω^{*}.
- Quality of this procedure depends on N

Table 8.2: Portfolio Choice via Monte Carlo				
	$N^{-1} \sum_{i=1}^{N} u\left(c_{i}\right)$	$\widehat{\omega}^{*}$		
		Standard		Standard
N	mean	deviation	mean	deviation
100	-1.039440	.021362	1.2496	.4885
1000	-1.042647	.007995	1.2870	.1714
10,000	-1.041274	.002582	1.2505	.0536

- Note: error in computing ω^{*} is much larger, ten to twenty times larger, than the error in computing an expectation.

