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Monte Carlo and Simulation Methods

• Gaussian, monomial, and Newton-Cotes formulas
— use predetermined nodes

— aim at high accuracy

— need many nodes

• Sampling methods
— Generate a sequence of points

— Short sequence produces rough approximation

— Longer sequences produce better approximations

• Monte Carlo sampling methods
— Use law of large numbers “intuition”

— Order N−1/2 convergence

— Use probability theory to prove theorems

— Use number-theoretic methods to generate deterministic sequences which appear random
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Monte Carlo Integration

• Probability theory
— If Xi are i.i.d. r.v.’s, density q(x), and support [0, 1], then

X̄≡ 1
N

NX
i=1

Xi

lim
N→∞

1

N

NX
i=1

Xi=

Z 1

0

xq(x) dx, a.s.

var

Ã
1

N

NX
i=1

Xi

!
=
σ2x
N

— If σ2x is not known a priori, an unbiased estimator is

σ̂2x ≡ (N − 1)−1
NX
i=1

(Xi − X̄)2
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• LLN suggests Monte Carlo quadrature:
— If X ∼ U [0, 1], then

I =

Z 1

0

f(x) dx = E {f(X)}

— The crude Monte Carlo method makes N draws from U [0, 1], {xi}Ni=1, and defines

Î≡ 1

N

NX
i=1

f(xi)

σ̂2=(N − 1)−1
NX
i=1

³
f(xi)− Î

´2
• Î is a statistical estimate of R 10 f(x) dx
— Î is an unbiased estimate of

R 1
0 f(x) dx

— The variance of the Î estimate is

σ2
Î
= N−1

Z 1

0

(f(x)− I)2 dx = N−1σ2
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Variance Reduction Techniques

• Monte Carlo estimates have high variance; need to reduce variance
• Antithetic Variates
— Induce negative correlation in f(x) values

— Form the estimate

Î =
1

2N

NX
i=1

(f(xi) + f(1− xi)) .

— If f is monotone, I, has smaller variance than crude estimate

• Control Variates
— Suppose ϕ is similar to f but easily integrated.

— The identity
R
f =

R
ϕ+

R
(f − ϕ) reduces the problem to

∗ a Monte Carlo integration of R (f − ϕ)

∗ plus the known integral R ϕ.

— If cov (f,ϕ) is large, variance is reduced
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• Importance Sampling
— Sample f(x) where its value is most important

— If p(x) > 0, and
R 1
0 p(x) dx = 1, then

I =

Z 1

0

f(x) dx =

Z 1

0

f(x)

p(x)
p(x) dx

— If xi is drawn with density p(x), then

Î =
1

N

NX
i=1

f(xi)

p(xi)

is an unbiased estimate of I, and variance of Î is

σ2
Î
=
1

N

ÃZ 1

0

f(x)2

p(x)
dx−

µZ 1

0

f(x) dx

¶2!
.

— If f(x) > 0 and p(x) = f(x)/
R 1
0 f(x), then f(x) = I p(x) and σ2

Î
= 0.

— Add constant B to make f(x) positive

— Aim: find a p(x) similar to f(x)

— Thin tails problem

∗ In σ2
Î
formula, key term is f(x)2/p(x)

∗ if f(x)2/p(x) is large when p(x) is small, variance is large.
∗ Normal density often has thin tails problem
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Pseudorandom Number Generation

• Random numbers are seldom used
— Possible methods

∗ Flipping coins
∗ Geiger counters measuring radioactivity

— Disadvantages

∗ Expensive given RA salaries
∗ RA’s complain about radiation risk; now have legal rights

• Monte Carlo propagandists
— Use deterministic sequences

— Act as if they are random sequences
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• Pseudorandom numbers are used instead
— They are deterministic sequences, Xk+1 = f(Xk,Xk−1,Xk−2, ...)

— They pass some randomness tests, such as

∗ Unbiasedness
1

N

NX
k=1

Xk = μ ≡ E{X}

∗ Zero serial correlation
0 =

NX
k=1

(Xk − μ)Xk+1

∗ Runs tests
∗ Lehmer: “each term is unpredictable to the uninitiated and .. digits pass a certain number
of tests traditional with statisticians.”

— They fail Brock-Dechert-Scheinkman tests for randomness
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Uniform Random Number Generation

• Linear congruential method (LCM):
Xk+1 = (aXk + c) modm (8.1.1)

— Will generate pseudorandom sequence if parameters chosen well

— Will eventually cycle; chose parameters to get long cycle

— Yn ≡ (X2n+1,X2n+2) is a pseudorandom two-dimensional set of points. Similar for Rd
— LCM generators have fallen into disfavor since they lie on a finite set of hyperplanes.

Linear congruential method function
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1500 Points generated by LCM
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• Nonlinear schemes:
— MPRNG: an example of LCM plus “random” shifts.

— Xk+1 = f(Xk) modm

— Fibonacci generator Xk = (Xk−1 +Xk−2) mod.m. This sequence has a number of poor prop-
erties. In particular, if Xk−1 and Xk−2 are small relative to m, so will be Xk.

— The Fibonacci-like scheme
Xk = (Xk−24 ·Xk−55) mod232 (8.1.2)

has a period ∼ 1025 and passes many randomness tests.
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Nonuniform Random Number Generation

• Need to generate nonuniform random numbers
• Inversion:
— Suppose X has distribution F (x)

— Then F−1(U) has distribution F (x)

— To approximate X, we compute yk = F−1(xk) where xk is a uniform pseudorandom sequence

• Normal random variables: A special method
— Suppose U1 and U2 ∼ U [0, 1]
— Then X1, X2 ∼ N(0, 1) are independent where

X1 = cos(2πU1)
√−2 lnU2 ,

X2 = sin(2πU1)
√−2 lnU2 ,

(8.1.3)
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Stochastic Approximation

• Consider
min
x
EZ{g(x, Z)}, (8.4.1)

where Z is a random variable.

• Conventional methods are impractical for empirical problems, such as
min
β
EZ{g(β,X, Z)}

where β are parameters, X is data, and Z is random

— Too costly - curse of dimensionality

— High-accuracy methods are not necessary in empirical problems since X data is noisy.

• Econometricians frequently fix S, and minimizePz∈S g(β,X, z).

• Stochastic approximation is designed to deal with such problems.
— Begin with initial guess x1.

— Draw z1

— gx(x1, z1) is an unbiased estimate of the gradient fx(x1)

— Steepest descent method would change guess by −λ1fx(x1) for some λ1 > 0.
— The stochastic gradient method executes the iteration

xk+1 = xk − λkgx(x
k, zk), (8.4.2)

where {zk} is a sequence of i.i.d. draws from Z and λk is a changing step size.
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Theorem 1 Suppose that f is C2. If λk → 0,
P∞

k=1 λk = ∞, and
P∞

k=1 λ
2
k < ∞, then the se-

quence xk generated by the stochastic gradient method, (8.4.2), confinded to U will almost surely have
a subsequence that converges to a point either on ∂U or at a (possibly local) minimum of f .

• Example:
— minx∈[0,1]E{(Z − x)2}, Z ∼ U [0, 1], with solution x = 0.5
— Let λk = 1/k

— (8.4.2) becomes

xk+1 = xk +
2

k
(zk − xk), (8.4.3)

Table 8.1: Statistics of (4.3) for 25 Runs
Iterate Average xk Standard Deviation

1 .375 .298
10 .508 .143
100 .487 .029
200 .499 .026
500 .496 .144
1000 .501 .010
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Standard Optimization Methods with Simulated Objectives

• Consider optimization problem:
min
x∈U

E{g(x, Z)} = f(x) (8.5.1)

for some random variable Z.

— For many problems of the form in (5.1), the objective f(x) and its derivatives can be computed
only with nontrivial error.

— When solving problems of the form (8.5.1) we need to determine how well we need to approxi-
mate the integral.

— Stochastic approximation was one way to solve (8.5.1). We will now consider standard opti-
mization approaches that use simulation ideas.

• Idea: take a sample of Z of size N , and replace E{g(x, Z)} in (8.5.1) with its sample mean
1
N

PN
i=1 g(x, Zi).

• For example, suppose that we want to solve
min
x∈[0,1]

E{(Z − x)2}, (8.5.2)

where Z ∼ U [0, 1].
• To solve (8.5.2), we take, say, three draws from U [0, 1]; suppose they are 0.10, 0.73, and 0.49. We
then minimize the sample average of (Z − x)2,

min
x∈[0,1]

1

3
((0.10− x)2 + (0.73− x)2 + (0.49− x)2). (8.5.3)

The solution to (8.5.3) is 0.43, a rough approximation of the true solution to (8.5.2) of 0.5.
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• Simple portfolio problem. u(c) = −e−c. safe asset has total return R = 1.01, and the risky asset
has return Z ∼ N(μ,σ2) with μ = 1.06 and σ2 = 0.04. The portfolio problem reduces to

max
ω
−E{e−((1−ω)R+ωZ)}. (8.5.4)

• Optimal ω, denoted ω∗, and equals 1.25.

• TheMonte Carlo approach to solve (8.5.4) is to useMonte Carlo integration to evaluate the integral
objective.

— Take N draws of Z ∼ N(μ,σ2), and replace (8.5.4) by

max
ω
− 1
N

NX
i=1

e−((1−ω)R+ωZi). (8.5.5)

— Solution to (8.5.5) is ω̂∗; hopefully approximates ω∗.

— Quality of this procedure depends on N

Table 8.2: Portfolio Choice via Monte Carlo
N−1

PN
i=1 u(ci) bω∗
Standard Standard

N mean deviation mean deviation
100 -1.039440 .021362 1.2496 .4885
1000 -1.042647 .007995 1.2870 .1714
10,000 -1.041274 .002582 1.2505 .0536

• Note: error in computing ω∗ is much larger, ten to twenty times larger, than the error in computing
an expectation.
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