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MOTIVATION

Derivatives are omnipresent in numerical algorithms

1st order derivatives 

 Solving non-linear equations 

 E.g., by Newton’s method

 (Un-)constrained optimization

 Gradient-Based optimization algorithms

 Especially difficult for high dimensional variables, i.e.,  objective function 𝑓: 𝑅𝑛 → 𝑅

 Structural sparsity can be key

2nd order derivatives

 (Un-)constrained optimization

Higher order derivatives

 Higher-order differential equations



MOTIVATION

Suppose we want to solve the unconstrained optimization problem

min
𝑥

𝑓(𝑥)

with 𝑓: 𝑅 → 𝑅 and 𝑥 ∈ 𝑅.

Gradient-based optimization requires the gradient 

𝜕𝑓

𝜕𝑥



FINITE DIFFERENCES

Recall: The Taylor series expansion of a real-valued function 𝑓 ∈ 𝒞𝑛, 𝑛 ≥ 2, around 𝑥 and evaluated at 𝑎 reads

𝑓 𝑎 = ෍

𝛼 ≤𝑛

1

𝛼!
𝜕𝛼𝑓 𝑥 𝑎 − 𝑥 𝛼 + 𝑅

= 𝑓 𝑥 +
𝜕𝑓

𝜕𝑥
𝑥 𝑎 − 𝑥 +

1

2!

𝜕2𝑓

𝜕𝑥2
𝑥 𝑎 − 𝑥 2

+ O( a − x 3)



TAYLOR APPROXIMATION OF 𝑒𝑥 AROUND 0

𝑓 𝑥 = 𝑒𝑥



TAYLOR APPROXIMATION OF 𝑒𝑥 AROUND 0

𝒯𝑓 𝑥 = 1 + 𝑥 +
𝑥2

2
+
𝑥3

6
+
𝑥4

24
+ ⋯



TAYLOR APPROXIMATION OF 𝑒𝑥 AROUND 0

𝒯𝑓 𝑥 = 1 + 𝑥 +
𝑥2

2
+
𝑥3

6
+
𝑥4

24
+ …



FINITE DIFFERENCES

Recall (Taylor Series):

𝑓 𝑎 ≈ 𝑓 𝑥 +
𝜕𝑓

𝜕𝑥
𝑥 𝑎 − 𝑥 +

1

2!

𝜕2𝑓

𝜕𝑥2
𝑥 𝑎 − 𝑥 2

Truncate the Taylor series and set a = 𝑥 + ℎ with a small ℎ yields:

𝑓 𝑥 + ℎ = 𝑓 𝑥 +
𝜕𝑓

𝜕𝑥
𝑥 𝑥 + ℎ − 𝑥 + 𝑂 ℎ2

This results in the well-known forward difference equation:

𝜕𝑓

𝜕𝑥
𝑥 ≈

𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ

֞
𝜕𝑓

𝜕𝑥
𝑥 =

𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ
+ 𝑂(ℎ)



WHY WOULD WE NEED ANYTHING ELSE?

We derived 
𝜕𝑓

𝜕𝑥
by truncating the Taylor series resulting in the error 𝑂 ℎ . This truncation error decreases in the 

step size.

Accurate and efficient approximation of 
𝜕𝑓

𝜕𝑥
by choosing a very small h, i.e.,  lim

ℎ→0

𝑓 𝑥+ℎ −𝑓 𝑥

ℎ
?



PROBLEM SOLVED?

Apply forward differences to

𝑓 𝑥 = 𝑥3

and increase the step size from 10−16 to 0.1. 

𝜕𝑓

𝜕𝑥𝐹𝐷
− 3𝑥2

ℎ



PROBLEM SOLVED?

CD:   
𝜕𝑓

𝜕𝑥
=

𝑓 𝑥+
1

2
ℎ −𝑓 𝑥−

1

2
ℎ

ℎ

Apply forward differences to 

𝑓 𝑥 = 𝑥3

and increase the step size from 10−16 to 0.1. 

𝜕𝑓

𝜕𝑥𝐹𝐷
− 3𝑥2

ℎ



NUMERICAL ERRORS IN FINITE PRECISION ARITHMETIC

Rounding error

 Intermediate results are rounded

 Any rounding error propagates and amplifies

Truncation error

 Even if an algorithm is converging to the true solution, we are stopping it after some finite time.

 Mitigated by the appropriate convergence criteria as introduced by Ken.

Cancellation error



CANCELLATION ERROR

h = 1E-12

a = 1 

b = a + h      # add h to a

c = b – a       # c should be equal to h

d = c/h         # c = h, thus d should = 1 

d = 0.999200722162641

- = / h =

True value

Noise

𝑎 + ℎ + 𝑛𝑜𝑖𝑠𝑒 𝑎 ℎ + 𝑛𝑜𝑖𝑠𝑒 1 +
𝑛𝑜𝑖𝑠𝑒

ℎ



FINITE DIFFERENCES FOR 𝑓: 𝑅𝑛 → 𝑅

Let’s consider a n-dimensional unconstrained optimization problem

min
𝑥

𝑓(𝑥)

with 𝑓: 𝑅𝑛 → 𝑅 and 𝑥 ∈ 𝑅𝑛.  

The finite difference quotients resemble directional derivatives for 𝑓: 𝑅𝑛 → 𝑅𝑚 and n > 1 :

𝜕𝑓

𝜕𝑥𝑖
𝑥 =

𝑓 𝑥 + ℎ𝒆𝒊 − 𝑓 𝑥

ℎ
.

The cost of FD scales with n ->  O(n) * cost(f).



SCALING

 Let’s consider the Rosenbrock function 𝑓: 𝑅𝑛 → 𝑅 as 
benchmark 

𝑓 𝑥 = ෍

𝑖=1

𝑛−1

10 ∗ 𝑥𝑖+1 − 𝑥𝑖
2 2

+ 1 − 𝑥𝑖
2 .

 The runtimes are averaged across 1000 runs. 

𝑛 𝑱𝑭𝑫 [s] 𝒇 [s]

10 6.7931e-05 (54x) 1.2472e-06

100 6.0959e-04 (332x) 1.8355e-06

1000 1.4839e-02 (1500x) 9.9629e-06

10000 1.3282 (20000x) 6.6663e-05

100000 ? 9.0872e-04



AUTOMATIC DIFFERENTIATION

Basic Idea: Every computer program is a composition of differentiable elementary operations as,

 basic arithmetic operations as, e.g., +, -, and *,

 and basic functions as, e.g.,  sin, cos and tan.

Automatic differentiation can transform the source code of your function into the source code of the gradient.



TOY EXAMPLE

Consider the function 𝑓: 𝑅2 → 𝑅

𝑓 𝑥1, 𝑥2 = 𝑥1𝑥2 + sin 𝑥1

This function can be discomposed 
in differentiable elementary 
operations:

𝑤1

𝑤2

sin

𝑤5+

𝑤4

× 𝑤3

𝑥1

𝑓

𝑤3 = 𝑤1𝑤2

𝑤4 = sin(𝑤1)

𝑤5 = 𝑤3 + 𝑤4

𝑓 = 𝑤5

𝑤1 = 𝑥1
𝑤2 = 𝑥2 𝑥2



FORWARD MODE

Consider the function 𝑓: 𝑅2 → 𝑅
𝑓 𝑥1, 𝑥2 = 𝑥1𝑥2 + sin 𝑥1

To calculate the Gradient, calculate
𝜕𝑓 𝑥1, 𝑥2

𝜕𝑥1

Choose input variable 𝑥1 and 
calculate the sensitivity of each
intermediate value as

ሶ𝑤𝑖 =
𝜕𝑤𝑖

𝜕𝑥𝑗

ሶ𝑤1 =
𝜕𝑤1

𝜕𝑥𝑗

ሶ𝑤2 =
𝜕𝑤2

𝜕𝑥𝑗

ሶ𝑤4 =
𝜕𝑤4

𝜕𝑤1

𝜕𝑤1

𝜕𝑥𝑗
= cos(𝑤1) ሶ𝑤1

ሶ𝑤3 = ሶ𝑤1𝑤2 + 𝑤1 ሶ𝑤2

ሶ𝑤5 = ሶ𝑤3 + ሶ𝑤4
𝑤1

𝑤2

sin

𝑤5+

𝑤4

× 𝑤3

𝑥1

𝑥2

𝑓

𝑓𝑥𝑗 = ሶ𝑤3 + ሶ𝑤4



FORWARD MODE: EVALUATION

Consider the function 𝑓: 𝑅2 → 𝑅
𝑓 𝑥1, 𝑥2 = 𝑥1𝑥2 + sin 𝑥1

To calculate the Gradient, calculate
𝜕𝑓 𝑥1, 𝑥2

𝜕𝑥1

Choose input variable 𝑥1 and 
calculate the sensitivity of each
intermediate value as

ሶ𝑤𝑖 =
𝜕𝑤𝑖

𝜕𝑥1

ሶ𝑤1 =
𝜕𝑤1

𝜕𝑥1
= 1

ሶ𝑤2 =
𝜕𝑤2

𝜕𝑥1
= 0

ሶ𝑤4 = cos 𝑤1 ሶ𝑤1 = cos(1)

ሶ𝑤3 = ሶ𝑤1𝑤2 + 𝑤1 ሶ𝑤2 = 2

ሶ𝑤5 = ሶ𝑤3 + ሶ𝑤4 = 2 + cos(1)𝑤1

𝑤2

sin

𝑤5+

𝑤4

× 𝑤3

𝑥1

𝑥2

𝑓

Accurate up to working precision, but still scales linearly in n.   𝐶𝑜𝑠𝑡 𝐽𝑓 = 𝑛 𝑐 𝐶𝑜𝑠𝑡(𝑓)

𝑓𝑥1 = 2 + cos(1)

Suppose: 𝑗 = 1, 𝑥1 = 1, 𝑥2 = 2



REVERSE MODE (ADJOINT MODE) – PRIMAL TRACE

𝑤1

𝑤2

sin

𝑤5+

𝑤4

× 𝑤3

𝑥1

𝑥2

𝑓

Consider the function 𝑓: 𝑅2 → 𝑅
𝑓 𝑥1, 𝑥2 = 𝑥1𝑥2 + sin 𝑥1

Calculate the sensitivity of the output 
w.r.t. each intermediate value

ഥ𝑤𝑖 =
𝜕𝑓

𝜕𝑤𝑗

All intermediate values are stored. This 
leads to a high memory consumption, 
mitigated by good AD software

𝑤4 = sin 1 = 0.175

𝑤5 = 2.175

𝑤3 = 2

𝑤1 = 1

𝑤2 = 2

Suppose: 𝑥1 = 1, 𝑥2 = 2



REVERSE MODE (ADJOINT MODE)

𝑤1

𝑤2

sin

𝑤5+

𝑤4

× 𝑤3

𝑥1

𝑥2

𝑓

Consider the function 𝑓: 𝑅2 → 𝑅
𝑓 𝑥1, 𝑥2 = 𝑥1𝑥2 + sin 𝑥1

Calculate the sensitivity of the output
w.r.t. each intermediate value

ഥ𝑤𝑖 =
𝜕𝑓

𝜕𝑤𝑗

ഥ𝑤4 =
𝜕𝑓

𝜕𝑤4
=

𝜕𝑓

𝜕𝑤5

𝜕𝑤5

𝜕𝑤4
= ഥ𝑤5 ⋅ 1

ഥ𝑤5 =
𝜕𝑓

𝜕𝑤5

ഥ𝑤3 =
𝜕𝑓

𝜕𝑤5

𝜕𝑤5

𝜕𝑤3
= ഥ𝑤5 ⋅ 1

ഥ𝑤1 =
𝜕𝑓

𝜕𝑤4

𝜕𝑤4

𝜕𝑤1
+

𝜕𝑓

𝜕𝑤3

𝜕𝑤3

𝜕𝑤1

= ഥ𝑤4 cos𝑤1 + ഥ𝑤3𝑤2

ഥ𝑤2 =
𝜕𝑓

𝜕𝑤3

𝜕𝑤3

𝜕𝑤2
= ഥ𝑤3𝑤1



REVERSE MODE (ADJOINT MODE) – DUAL TRACE

𝑤1

𝑤2

sin

𝑤5+

𝑤4

× 𝑤3

𝑥1

𝑥2

𝑓

Consider the function 𝑓: 𝑅2 → 𝑅
𝑓 𝑥1, 𝑥2 = 𝑥1𝑥2 + sin 𝑥1

Calculate the sensitivity of the output 
w.r.t. each intermediate value

ഥ𝑤𝑖 =
𝜕𝑓

𝜕𝑤𝑗

ഥ𝑤4 = ഥ𝑤5 = 1

ഥ𝑤5 =
𝜕𝑓

𝜕𝑤5
= 1

Accurate up to working precision, scales linearly in m.   𝐶𝑜𝑠𝑡 𝐽𝑓 = 𝑚 𝑐2 𝐶𝑜𝑠𝑡(𝑓)

ഥ𝑤3 = ഥ𝑤5 = 1

ഥ𝑤1 = ഥ𝑤4 cos𝑤1 + ഥ𝑤3𝑤2 = cos 1 + 2

ഥ𝑤2 = 1

Suppose: 𝑥1 = 1, 𝑥2 = 2

𝑤4 = sin 1 = 0.175

𝑤5 = 2.175

𝑤3 = 2

𝑤1 = 1

𝑤2 = 2



SUMMARY

Finite differences

 The approximation error decreases as 𝑂 ℎ for forward finite differences. BUT, the error due to the finite precision arithmetic can 
not be neglected.

 The time required to compute the Jacobian of 𝑓: 𝑅𝑛 → 𝑅𝑚 scales with 𝑂 𝑛 ∗ 𝑐𝑜𝑠𝑡 𝑓 .

AD - Forward mode

 The gradients are accurate up to machine precision.

 The time required to compute the Jacobian of 𝑓: 𝑅𝑛 → 𝑅𝑚 scales with 𝑂 𝑛 ∗ 𝑐𝑜𝑠𝑡 𝑓

AD - Reverse mode

 The gradients are accurate up to machine precision. The memory requirement may be huge depending on the underlying 
implementation.

 The time required to compute the Jacobian of 𝑓: 𝑅𝑛 → 𝑅𝑚 scales with 𝑂 𝑚 ∗ 𝑐𝑜𝑠𝑡 𝑓



AD TOOLS

CasADi

 Available for Python, Matlab, Octave and C++

 Includes interfaces to a lot of free as well as commercial optimizers (as e.g., IPOPT (IP), KNITRO (IP & SQP), WORHP (SQP), 
SNOPT (SQP))

 Structural sparsity detection

ADiMat

 Available for Matlab

PyTorch / Tensorflow



TUTORIAL SESSION

1. Implementation of the Rosenbrock function

𝑓 𝑥 = ෍

𝑖=1

𝑛−1

10 ∗ 𝑥𝑖+1 − 𝑥𝑖
2 2

+ 1 − 𝑥𝑖
2 ,

2. Implementation of the finite difference approximation and reverse mode AD of f(x). Comparison of their 
runtimes for 𝑛 = 10𝑖, i = 1, 2, 3, 4, … 

3. Optimization of the Rosenbrock function using fminunc using

1. the finite difference approximation of f(x), and 

2. the reverse mode approximation of f(x).



CASADI

 Include the casadi directory in the Matlab path

import casadi.*

x_MX = MX.sym(‘some_name’, size_rows, size_columns) % create symbolic variable

d_rosenbrock_ = jacobian(rosenbrock(x_MX), x_MX) % differentiate rosenbrock

d_rosenbrock = Function(‘some_name’, {x_MX}, {d_rosenbrock_}) % create callable function

d_rosenbrock(x)


