Numerical Optimization for Economists

Todd Munson
Mathematics and Computer Science Division
Argonne National Laboratory

July 18-21, 2011

Part I

Numerical Optimization I: Static Models

Model Formulation

- Classify m people into two groups using v variables
- $c \in\{0,1\}^{m}$ is the known classification
- $d \in \Re^{m \times v}$ are the observations
- $\beta \in \Re^{v+1}$ defines the separator
- logit distribution function
- Maximum likelihood problem

$$
\max _{\beta} \sum_{i=1}^{m} c_{i} \log \left(f\left(\beta, d_{i,}\right)\right)+\left(1-c_{i}\right) \log \left(1-f\left(\beta, d_{i,}\right)\right)
$$

where

$$
f(\beta, x)=\frac{\exp \left(\beta_{0}+\sum_{j=1}^{v} \beta_{j} x_{j}\right)}{1+\exp \left(\beta_{0}+\sum_{j=1}^{v} \beta_{j} x_{j}\right)}
$$

Solution Techniques

$$
\min _{x} f(x)
$$

Main ingredients of solution approaches:

- Local method: given x_{k} (solution guess) compute a step s.
- Gradient Descent
- Quasi-Newton Approximation
- Sequential Quadratic Programming
- Globalization strategy: converge from any starting point.
- Trust region
- Line search

Trust-Region Method

$$
\begin{array}{ll}
\min _{s} & f\left(x_{k}\right)+s^{7} \\
\text { subject to }\|s\| \leq \Delta_{k}
\end{array}
$$

Trust-Region Method

(1) Initialize trust-region radius

- Constant
- Direction
- Interpolation

Trust-Region Method

(1) Initialize trust-region radius

- Constant
- Direction
- Interpolation
(2) Compute a new iterate
(1) Solve trust-region subproblem

$$
\begin{aligned}
& \min _{s} \quad f\left(x_{k}\right)+s^{T} \nabla f\left(x_{k}\right)+\frac{1}{2} s^{T} H\left(x_{k}\right) s \\
& \text { subject to }\|s\| \leq \Delta_{k}
\end{aligned}
$$

Trust-Region Method

(1) Initialize trust-region radius

- Constant
- Direction
- Interpolation
(2) Compute a new iterate
(1) Solve trust-region subproblem

$$
\begin{aligned}
& \min _{s} \quad f\left(x_{k}\right)+s^{T} \nabla f\left(x_{k}\right)+\frac{1}{2} s^{T} H\left(x_{k}\right) s \\
& \text { subject to }\|s\| \leq \Delta_{k}
\end{aligned}
$$

(2) Accept or reject iterate
(3) Update trust-region radius

- Reduction
- Interpolation
(3) Check convergence

Solving the Subproblem

- Moré-Sorensen method
- Computes global solution to subproblem
- Conjugate gradient method with trust region
- Objective function decreases monotonically
- Some choices need to be made
- Preconditioner
- Norm of direction and residual
- Dealing with negative curvature

Line-Search Method

$$
\min _{s} f\left(x_{k}\right)+s^{T} \nabla f\left(x_{k}\right)+\frac{1}{2} s^{T}\left(H\left(x_{k}\right)+\lambda_{k} l\right) s
$$

Line-Search Method

(1) Initialize perturbation to zero
(2) Solve perturbed quadratic model

$$
\min _{s} f\left(x_{k}\right)+s^{T} \nabla f\left(x_{k}\right)+\frac{1}{2} s^{T}\left(H\left(x_{k}\right)+\lambda_{k} l\right) s
$$

Line-Search Method

(1) Initialize perturbation to zero
(2) Solve perturbed quadratic model

$$
\min _{s} f\left(x_{k}\right)+s^{T} \nabla f\left(x_{k}\right)+\frac{1}{2} s^{T}\left(H\left(x_{k}\right)+\lambda_{k} l\right) s
$$

(3) Find new iterate
(1) Search along Newton direction
(2) Search along gradient-based direction

Line-Search Method

(1) Initialize perturbation to zero
(2) Solve perturbed quadratic model

$$
\min _{s} f\left(x_{k}\right)+s^{T} \nabla f\left(x_{k}\right)+\frac{1}{2} s^{T}\left(H\left(x_{k}\right)+\lambda_{k} l\right) s
$$

(3) Find new iterate
(1) Search along Newton direction
(2) Search along gradient-based direction
(9) Update perturbation

- Decrease perturbation if the following hold
- Iterative method succeeds
- Search along Newton direction succeeds
- Otherwise increase perturbation
(6) Check convergence

Solving the Subproblem

- Conjugate gradient method

Solving the Subproblem

- Conjugate gradient method
- Conjugate gradient method with trust region
- Initialize radius
- Constant
- Direction
- Interpolation
- Update radius
- Reduction
- Step length
- Interpolation
- Some choices need to be made
- Preconditioner
- Norm of direction and residual
- Dealing with negative curvature

Performing the Line Search

- Backtracking Armijo Line search
- Find t such that

$$
f\left(x_{k}+t s\right) \leq f\left(x_{k}\right)+\sigma t \nabla f\left(x_{k}\right)^{T} s
$$

- Try $t=1, \beta, \beta^{2}, \ldots$ for $0<\beta<1$
- More-Thuente Line search
- Find t such that

$$
\begin{aligned}
f\left(x_{k}+t s\right) & \leq f\left(x_{k}\right)+\sigma t \nabla f\left(x_{k}\right)^{T} s \\
\left|\nabla f\left(x_{k}+t s\right)^{T} s\right| & \leq \delta\left|\nabla f\left(x_{k}\right)^{T} s\right|
\end{aligned}
$$

- Construct cubic interpolant
- Compute t to minimize interpolant
- Refine interpolant

Updating the Perturbation

(1) If increasing and $\Delta^{k}=0$

$$
\Delta^{k+1}=\operatorname{Proj}_{\left[\ell_{0}, u_{0}\right]}\left(\alpha_{0}\left\|g\left(x^{k}\right)\right\|\right)
$$

(2) If increasing and $\Delta^{k}>0$

$$
\Delta^{k+1}=\operatorname{Proj}_{\left[\ell_{i}, u_{i}\right]}\left(\max \left(\alpha_{i}\left\|g\left(x^{k}\right)\right\|, \beta_{i} \Delta^{k}\right)\right)
$$

(3) If decreasing

$$
\Delta^{k+1}=\min \left(\alpha_{d}\left\|g\left(x^{k}\right)\right\|, \beta_{d} \Delta^{k}\right)
$$

(9) If $\Delta^{k+1}<\ell_{d}$, then $\Delta^{k+1}=0$

Trust-Region Line-Search Method

(1) Initialize trust-region radius

- Constant
- Direction
- Interpolation
(2) Compute a new iterate
(1) Solve trust-region subproblem

$$
\begin{array}{ll}
\min _{s} & f\left(x_{k}\right)+s^{T} \nabla f\left(x_{k}\right)+\frac{1}{2} s^{T} H\left(x_{k}\right) s \\
\text { subject to }\|s\| \leq \Delta_{k}
\end{array}
$$

(2) Search along direction
(3) Update trust-region radius

- Reduction
- Step length
- Interpolation
(3) Check convergence

Iterative Methods

- Conjugate gradient method
- Stop if negative curvature encountered
- Stop if residual norm is small

Iterative Methods

- Conjugate gradient method
- Stop if negative curvature encountered
- Stop if residual norm is small
- Conjugate gradient method with trust region
- Nash
- Follow direction to boundary if first iteration
- Stop at base of direction otherwise
- Steihaug-Toint
- Follow direction to boundary
- Generalized Lanczos
- Compute tridiagonal approximation
- Find global solution to approximate problem on boundary
- Initialize perturbation with approximate minimum eigenvalue

Preconditioners

- No preconditioner
- Absolute value of Hessian diagonal
- Absolute value of perturbed Hessian diagonal
- Incomplete Cholesky factorization of Hessian
- Block Jacobi with Cholesky factorization of blocks
- Scaled BFGS approximation to Hessian matrix
- None
- Scalar
- Diagonal of Broyden update
- Rescaled diagonal of Broyden update
- Absolute value of Hessian diagonal
- Absolute value of perturbed Hessian diagonal

Norms

- Residual
- Preconditioned - $\|r\|_{M^{-T} M^{-1}}$
- Unpreconditioned - $\|r\|_{2}$
- Natural - $\|r\|_{M^{-1}}$
- Direction
- Preconditioned - $\|s\|_{M} \leq \Delta$
- Monotonically increasing $\left\|s_{k+1}\right\|_{M}>\left\|s_{k}\right\|_{M}$.

Norms

- Residual
- Preconditioned - $\|r\|_{M^{-T} M^{-1}}$
- Unpreconditioned - $\|r\|_{2}$
- Natural - $\|r\|_{M^{-1}}$
- Direction
- Preconditioned - $\|s\|_{M} \leq \Delta$
- Monotonically increasing $\left\|s_{k+1}\right\|_{M}>\left\|s_{k}\right\|_{M}$.
- Unpreconditioned - $\|s\|_{2} \leq \Delta$

Termination

- Typical convergence criteria
- Absolute residual $\left\|\nabla f\left(x_{k}\right)\right\|<\tau_{a}$
- Relative residual $\frac{\left\|\nabla f\left(x_{k}\right)\right\|}{\left\|\nabla f\left(x_{k}\right)\right\|}<\tau_{r}$
- Unbounded objective $f\left(x_{k}\right)<\kappa$
- Slow progress $\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|<\epsilon$
- Iteration limit
- Time limit
- Solver status

Convergence Issues

- Quadratic convergence - best outcome
- Linear convergence
- Far from a solution $-\left\|\nabla f\left(x_{k}\right)\right\|$ is large
- Hessian is incorrect - disrupts quadratic convergence
- Hessian is rank deficient $-\left\|\nabla f\left(x_{k}\right)\right\|$ is small
- Limits of finite precision arithmetic
(1) $\left\|\nabla f\left(x_{k}\right)\right\|$ converges quadratically to small number
(2) $\left\|\nabla f\left(x_{k}\right)\right\|$ hovers around that number with no progress
- Domain violations such as $\frac{1}{x}$ when $x=0$
- Make implicit constraints explicit
- Nonglobal solution
- Apply a multistart heuristic
- Use global optimization solver

Some Available Software

- TRON - Newton method with trust-region
- LBFGS - Limited-memory quasi-Newton method with line search
- TAO - Toolkit for Advanced Optimization
- NLS - Newton line-search method
- NTR - Newton trust-region method
- NTL - Newton line-search/trust-region method
- LMVM - Limited-memory quasi-Newton method
- CG - Nonlinear conjugate gradient methods

Model Formulation

- Economy with n agents and m commodities
- $e \in \Re^{n \times m}$ are the endowments
- $\alpha \in \Re^{n \times m}$ and $\beta \in \Re^{n \times m}$ are the utility parameters
- $\lambda \in \Re^{n}$ are the social weights
- Social planning problem
$\begin{array}{ll}\max _{x \geq 0} & \sum_{i=1}^{n} \lambda_{i}\left(\sum_{k=1}^{m} \frac{\alpha_{i, k}\left(1+x_{i, k}\right)^{1-\beta_{i, k}}}{1-\beta_{i, k}}\right) \\ \text { subject to } & \sum_{i=1}^{n} x_{i, k} \leq \sum_{i=1}^{n} e_{i, k}\end{array} \forall k=1, \ldots, m$

Solving Constrained Optimization Problems

$\min _{x}^{x}$	
subject to	$f(x) \geq 0$

Main ingredients of solution approaches:

- Local method: given x_{k} (solution guess) find a step s.
- Sequential Quadratic Programming (SQP)
- Sequential Linear/Quadratic Programming (SLQP)
- Interior-Point Method (IPM)
- Globalization strategy: converge from any starting point.
- Trust region
- Line search
- Acceptance criteria: filter or penalty function.

Sequential Linear Programming

(1) Initialize trust-region radius
(2) Compute a new iterate

Sequential Linear Programming

(1) Initialize trust-region radius
(2) Compute a new iterate
(1) Solve linear program

$$
\begin{array}{ll}
\min _{s} & f\left(x_{k}\right)+s^{T} \nabla f\left(x_{k}\right) \\
\text { subject to } & c\left(x_{k}\right)+\nabla c\left(x_{k}\right)^{T} s \geq 0 \\
& \|s\| \leq \Delta_{k}
\end{array}
$$

Sequential Linear Programming

© Initialize trust-region radius
(2) Compute a new iterate
(1) Solve linear program

$$
\begin{array}{ll}
\min _{s} & f\left(x_{k}\right)+s^{T} \nabla f\left(x_{k}\right) \\
\text { subject to } & c\left(x_{k}\right)+\nabla c\left(x_{k}\right)^{T} s \geq 0 \\
& \|s\| \leq \Delta_{k}
\end{array}
$$

(2) Accept or reject iterate
© Update trust-region radius
(3) Check convergence

Sequential Quadratic Programming

(1) Initialize trust-region radius
(2) Compute a new iterate

Sequential Quadratic Programming

(1) Initialize trust-region radius
(2) Compute a new iterate
(1) Solve quadratic program

$$
\begin{array}{ll}
\min _{s} & f\left(x_{k}\right)+s^{T} \nabla f\left(x_{k}\right)+\frac{1}{2} s^{T} W\left(x_{k}\right) s \\
\text { subject to } c\left(x_{k}\right)+\nabla c\left(x_{k}\right)^{T} s \geq 0 \\
& \|s\| \leq \Delta_{k}
\end{array}
$$

Sequential Quadratic Programming

(1) Initialize trust-region radius
(2) Compute a new iterate
(1) Solve quadratic program

$$
\begin{array}{ll}
\min _{s} & f\left(x_{k}\right)+s^{T} \nabla f\left(x_{k}\right)+\frac{1}{2} s^{T} W\left(x_{k}\right) s \\
\text { subject to } c\left(x_{k}\right)+\nabla c\left(x_{k}\right)^{T} s \geq 0 \\
& \|s\| \leq \Delta_{k}
\end{array}
$$

(2) Accept or reject iterate
(3) Update trust-region radius
(3) Check convergence

Sequential Linear Quadratic Programming

(1) Initialize trust-region radius
(2) Compute a new iterate

Sequential Linear Quadratic Programming

(1) Initialize trust-region radius
(2) Compute a new iterate
(1) Solve linear program to predict active set

$$
\begin{array}{ll}
\min _{d} & f\left(x_{k}\right)+d^{T} \nabla f\left(x_{k}\right) \\
\text { subject to } & c\left(x_{k}\right)+\nabla c\left(x_{k}\right)^{T} d \geq 0 \\
& \|d\| \leq \Delta_{k}
\end{array}
$$

Sequential Linear Quadratic Programming

(1) Initialize trust-region radius
(2) Compute a new iterate
(1) Solve linear program to predict active set

$$
\begin{array}{ll}
\min _{d} & f\left(x_{k}\right)+d^{T} \nabla f\left(x_{k}\right) \\
\text { subject to } c\left(x_{k}\right)+\nabla c\left(x_{k}\right)^{T} d \geq 0 \\
& \|d\| \leq \Delta_{k}
\end{array}
$$

(2) Solve equality constrained quadratic program

$$
\begin{aligned}
& \min _{s} \quad f\left(x_{k}\right)+s^{T} \nabla f\left(x_{k}\right)+\frac{1}{2} s^{T} W\left(x_{k}\right) s \\
& \text { subject to } c_{\mathcal{A}}\left(x_{k}\right)+\nabla c_{\mathcal{A}}\left(x_{k}\right)^{T} s=0
\end{aligned}
$$

(3) Accept or reject iterate

- Update trust-region radius
(3) Check convergence

Acceptance Criteria

- Decrease objective function value: $f\left(x_{k}+s\right) \leq f\left(x_{k}\right)$
- Decrease constraint violation: $\left\|c_{-}\left(x_{k}+s\right)\right\| \leq\left\|c_{-}\left(x_{k}\right)\right\|$

Acceptance Criteria

- Decrease objective function value: $f\left(x_{k}+s\right) \leq f\left(x_{k}\right)$
- Decrease constraint violation: $\left\|c_{-}\left(x_{k}+s\right)\right\| \leq\left\|c_{-}\left(x_{k}\right)\right\|$
- Four possibilities
(1) step can decrease both $f(x)$ and $\left\|c_{-}(x)\right\|$
(2) step can decrease $f(x)$ and increase $\left\|c_{-}(x)\right\|$
(3) step can increase $f(x)$ and decrease $\left\|c_{-}(x)\right\|$
(9) step can increase both $f(x)$ and $\left\|c_{-}(x)\right\|$

Acceptance Criteria

- Decrease objective function value: $f\left(x_{k}+s\right) \leq f\left(x_{k}\right)$
- Decrease constraint violation: $\left\|c_{-}\left(x_{k}+s\right)\right\| \leq\left\|c_{-}\left(x_{k}\right)\right\|$
- Four possibilities
(1) step can decrease both $f(x)$ and $\left\|c_{-}(x)\right\|$
(2) step can decrease $f(x)$ and increase $\left\|c_{-}(x)\right\|$
(3) step can increase $f(x)$ and decrease $\left\|c_{-}(x)\right\|$
(9) step can increase both $f(x)$ and $\left\|c_{-}(x)\right\|$
- Filter uses concept from multi-objective optimization
$\left(h_{k+1}, f_{k+1}\right)$ dominates $\left(h_{\ell}, f_{\ell}\right)$ iff $h_{k+1} \leq h_{\ell}$ and $f_{k+1} \leq f_{\ell}$

Filter Framework

Filter \mathcal{F} : list of non-dominated pairs $\left(h_{\ell}, f_{\ell}\right)$

- new x_{k+1} is acceptable to filter \mathcal{F} iff
(1) $h_{k+1} \leq h_{\ell}$ for all $\ell \in \mathcal{F}$ or
(2) $f_{k+1} \leq f_{\ell}$ for all $\ell \in \mathcal{F}$

Filter Framework

Filter \mathcal{F} : list of non-dominated pairs $\left(h_{\ell}, f_{\ell}\right)$

- new x_{k+1} is acceptable to filter \mathcal{F} iff
(1) $h_{k+1} \leq h_{\ell}$ for all $\ell \in \mathcal{F}$ or
(2) $f_{k+1} \leq f_{\ell}$ for all $\ell \in \mathcal{F}$
- remove redundant filter entries

Filter Framework

Filter \mathcal{F} : list of non-dominated pairs $\left(h_{\ell}, f_{\ell}\right)$

- new x_{k+1} is acceptable to filter \mathcal{F} iff
(1) $h_{k+1} \leq h_{\ell}$ for all $\ell \in \mathcal{F}$ or
(2) $f_{k+1} \leq f_{\ell}$ for all $\ell \in \mathcal{F}$
- remove redundant filter entries
- new x_{k+1} is rejected if for some $\ell \in \mathcal{F}$
(1) $h_{k+1}>h_{\ell}$ and
(2) $f_{k+1}>f_{\ell}$
$f(x)$

Convergence Criteria

- Feasible and no descent directions
- Constraint qualification - LICQ, MFCQ
- Linearized active constraints characterize directions
- Objective gradient is a linear combination of constraint gradients

Optimality Conditions

- If x^{*} is a local minimizer and a constraint qualification holds, then there exist multipliers $\lambda^{*} \geq 0$ such that

$$
\nabla f\left(x^{*}\right)-\nabla c_{\mathcal{A}}\left(x^{*}\right)^{T} \lambda_{\mathcal{A}}^{*}=0
$$

- Lagrangian function $\mathcal{L}(x, \lambda):=f(x)-\lambda^{T} c(x)$
- Optimality conditions can be written as

$$
\begin{aligned}
& \nabla f(x)-\nabla c(x)^{T} \lambda=0 \\
& 0 \leq \lambda \perp c(x) \geq 0
\end{aligned}
$$

- Complementarity problem

Termination

- Feasible and complementary $\left\|\min \left(c\left(x_{k}\right), \lambda_{k}\right)\right\| \leq \tau_{f}$
- Optimal $\left\|\nabla_{x} \mathcal{L}\left(x_{k}, \lambda_{k}\right)\right\| \leq \tau_{o}$
- Other possible conditions
- Slow progress
- Iteration limit
- Time limit
- Multipliers and reduced costs

```
display consumption.slack;
display consumption.dual;
display x.rc;
# Constraint violation
# Lagrange multipliers
# Gradient of Lagrangian
```


Convergence Issues

- Quadratic convergence - best outcome
- Globally infeasible - linear constraints infeasible
- Locally infeasible - nonlinear constraints locally infeasible
- Unbounded objective - hard to detect
- Unbounded multipliers - constraint qualification not satisfied
- Linear convergence rate
- Far from a solution - \| $\nabla f\left(x_{k}\right) \|$ is large
- Hessian is incorrect - disrupts quadratic convergence
- Hessian is rank deficient $-\left\|\nabla f\left(x_{k}\right)\right\|$ is small
- Limits of finite precision arithmetic
- Domain violations such as $\frac{1}{x}$ when $x=0$
- Make implicit constraints explicit
- Nonglobal solutions
- Apply a multistart heuristic
- Use global optimization solver

Some Available Software

- ASTROS - Active-Set Trust-Region Optimization Solvers
- filterSQP
- trust-region SQP; robust QP solver
- filter to promote global convergence
- SNOPT
- line-search SQP; null-space CG option
- ℓ_{1} exact penalty function
- SLIQUE - part of KNITRO
- SLP-EQP
- trust-region with ℓ_{1} penalty
- use with knitro_options = "algorithm=3";

Part II

Numerical Optimization II: Optimal Control

Model Formulation

- Maximize discounted utility
- $u(\cdot)$ is the utility function
- R is the retirement age
- T is the terminal age
- w is the wage
- β is the discount factor
- r is the interest rate
- Optimization problem

$\max _{s, c}$	$\sum_{t=0}^{T} \beta^{t} u\left(c_{t}\right)$	
subject to	$s_{t+1}=(1+r) s_{t}+w-c_{t} t$	$=0, \ldots, R-1$
	$s_{t+1}=(1+r) s_{t}-c_{t} \quad t$	$=R, \ldots, T$
	$s_{0}=s_{T+1}=0$	

Model: life1.mod

```
param R > 0, integer;
param T > R, integer;
param beta >= 0, < 1;
param rate >= 0, < 1;
param wage >= 0;
```

\# Retirement age
\# Terminal age
\# Discount factor
\# Interest rate
\# Wage rate

Model: life1.mod

```
param R > 0, integer;
param T > R, integer;
param beta >= 0, < 1;
param rate >= 0, < 1;
param wage >= 0;
var c{0..T}; # Consumption
var s{0..T+1};
# Savings
var u{t in 0..T} = - exp (-c[t]);
```

\# Retirement age
\# Terminal age
\# Discount factor
\# Interest rate
\# Wage rate
\# Consumption
\# Savings
\# Utility

Model: life1.mod

```
param R > 0, integer; # Retirement age
param T > R, integer;
param beta >= 0, < 1;
param rate >= 0, < 1;
param wage >= 0;
var c{0..T}; # Consumption
var s{0..T+1}; # Savings
var u{t in 0..T} = - exp (-c[t]);
# Utility
maximize utility:
    sum {t in 0..T} beta^t * u[t];
subject to
    working {t in 0..R-1}:
        s[t+1] = (1+rate)*s[t] + wage - c[t];
    retired {t in R..T}:
        s[t+1] = (1+rate)*s[t] - c[t];
    initial:
        s[0] = 0;
    terminal:
        s[T+1] = 0;
```


Data: life.dat

```
param R := 75;
param T := 100;
param beta := 0.9;
param rate := 0.2;
param wage := 1.0;
```

\# Retirement age
\# Terminal age
\# Discount factor
\# Interest rate
\# Wage rate

Commands: life1.cmd

```
# Load model and data
model life1.mod;
data life.dat;
# Specify solver and options
option solver mpec;
# Solve the instance
solve;
# Output results
printf {t in 0..T} "%2d %5.4e %5.4e\n", t, s[t], c[t] > out1.dat;
```


Output

ampl: include life1.cmd
AMPL interface to filter-MPEC: 20040408
: filter objective function $=-3.24322$
constraint violation $=1.01433 \mathrm{e}-11$
Optimal solution found
14 iterations (0 for feasibility)
Evals: obj $=15$, constr $=16, \operatorname{grad}=16, \mathrm{Hes}=15$ ampl: quit;

Plot of Output

Model: life2.mod

```
param R > 0, integer; # Retirement age
param T > R, integer;
param beta >= 0, < 1; # Discount factor
param rate >= 0, < 1; # Interest rate
param wage >= 0; # Wage rate
var cbar{0..T}; # Scaled consumption
var c{t in 0..T} = cbar[t] / beta^t; # Actual consumption
var s{0..T+1};
    # Savings
var u{t in 0..T} = - exp(-cbar[t] / beta^t);
maximize utility:
    sum {t in 0..T} beta^t * u[t];
subject to
    working {t in 0..R-1}:
        s[t+1] = (1+rate)*s[t] + wage - cbar[t] / beta^t;
    retired {t in R..T}:
        s[t+1] = (1+rate)*s[t] - cbar[t] / beta^t;
    initial:
        s[0] = 0;
    terminal:
        s[T+1] = 0;
```


Plot of Output

Model: life3.mod

```
param R > 0, integer; # Retirement age
param T > R, integer;
param beta >= 0,< 1; # Discount factor
param rate >= 0, < 1; # Interest rate
param wage >= 0; # Wage rate
var cbar{0..T}; # Scaled consumption
var c{t in 0..T} = cbar[t] / beta^t; # Actual consumption
var s{0..T+1};
    # Savings
var u{t in 0..T} = - exp (-cbar[t] / beta^t);
maximize utility:
    sum {t in 0..T} beta^t * u[t];
subject to
    working {t in 0..R-1}:
        beta^t*s[t+1] = beta^t*(1+rate)*s[t] + beta^t*wage - cbar[t];
    retired {t in R..T}:
        beta^t*s[t+1] = beta^t*(1+rate)*s[t] - cbar[t];
    initial:
        s[0] = 0;
    terminal:
        s[T+1] = 0;
```


Plot of Output

Model: life4.mod

```
param R > 0, integer; # Retirement age
param T > R, integer; # Terminal age
param beta >= 0, < 1; # Discount factor
param rate >= 0, < 1; # Interest rate
param wage >= 0;
var cbar{0..T}; # Scaled consumption
var c{t in 0..T} = cbar[t] / beta^t; # Actual consumption
var sbar{0..T+1}; # Scaled savings
var s{t in 0..T+1} = sbar[t] / beta^t; # Actual savings
var u{t in 0..T} = -exp(-cbar[t] / beta^t);
maximize utility:
    sum {t in 0..T} beta^t * u[t];
subject to
    working {t in 0..R-1}:
        sbar[t+1]/beta = (1+rate)*sbar[t] + beta^t*wage - cbar[t];
    retired {t in R..T}:
        sbar[t+1]/beta = (1+rate)*sbar[t] - cbar[t];
    initial:
        sbar[0] = 0;
    terminal:
        sbar[T+1] = 0;
```


Plot of Output

Solving Constrained Optimization Problems

$\min _{x}^{x}$	
subject to	$f(x) \geq 0$

Main ingredients of solution approaches:

- Local method: given x_{k} (solution guess) find a step s.
- Sequential Quadratic Programming (SQP)
- Sequential Linear/Quadratic Programming (SLQP)
- Interior-Point Method (IPM)
- Globalization strategy: converge from any starting point.
- Trust region
- Line search
- Acceptance criteria: filter or penalty function.

Interior-Point Method

- Reformulate optimization problem with slacks

$$
\begin{array}{ll}
\min _{x} & f(x) \\
\text { subject to } & c(x)=0 \\
& x \geq 0
\end{array}
$$

- Construct perturbed optimality conditions

$$
F_{\tau}(x, y, z)=\left[\begin{array}{c}
\nabla f(x)-\nabla c(x)^{T} y-z \\
c(x) \\
x z-\tau e
\end{array}\right]
$$

- Central path $\{x(\tau), y(\tau), z(\tau) \mid \tau>0\}$
- Apply Newton's method for sequence $\tau \searrow 0$

Interior-Point Method

(1) Compute a new iterate
(1) Solve linear system of equations

$$
\left[\begin{array}{ccc}
W_{k} & -\nabla c\left(x_{k}\right)^{T} & -I \\
\nabla c\left(x_{k}\right) & 0 & 0 \\
Z_{k} & 0 & X_{k}
\end{array}\right]\left(\begin{array}{l}
s_{x} \\
s_{y} \\
s_{z}
\end{array}\right)=-F_{\mu}\left(x_{k}, y_{k}, z_{k}\right)
$$

(2) Accept or reject iterate
(3) Update parameters
(2) Check convergence

Convergence Issues

- Quadratic convergence - best outcome
- Globally infeasible - linear constraints infeasible
- Locally infeasible - nonlinear constraints locally infeasible
- Dual infeasible - dual problem is locally infeasible
- Unbounded objective - hard to detect
- Unbounded multipliers - constraint qualification not satisfied
- Duality gap
- Domain violations such as $\frac{1}{x}$ when $x=0$
- Make implicit constraints explicit
- Nonglobal solutions
- Apply a multistart heuristic
- Use global optimization solver

Some Available Software

- IPOPT - open source in COIN-OR
- line-search filter algorithm
- KNITRO
- trust-region Newton to solve barrier problem
- ℓ_{1} penalty barrier function
- Newton system: direct solves or null-space CG
- LOQO
- line-search method
- Newton system: modified Cholesky factorization

Optimal Technology

Optimize energy production schedule and transition between old and new reduced-carbon technology to meet carbon targets

- Maximize social welfare
- Constraints
- Limit total greenhouse gas emissions
- Low-carbon technology less costly as it becomes widespread
- Assumptions on emission rates, economic growth, and energy costs

Model Formulation

- Finite time: $t \in[0, T]$
- Instantaneous energy output: $q^{\circ}(t)$ and $q^{n}(t)$
- Cumulative energy output: $x^{\circ}(t)$ and $x^{n}(t)$

$$
x^{n}(t)=\int_{0}^{t} q^{n}(\tau) d \tau
$$

- Discounted greenhouse gases emissions

$$
\int_{0}^{T} e^{-a t}\left(b_{o} q^{o}(t)+b_{n} q^{n}(t)\right) d t \leq z_{T}
$$

- Consumer surplus $S(Q(t), t)$ derived from utility
- Production costs
- c_{0} per unit cost of old technology
- $c_{n}\left(x^{n}(t)\right)$ per unit cost of new technology (learning by doing)

Continuous-Time Model

$$
\begin{aligned}
\max _{\left\{q^{\circ}, q^{n}, x^{n}, z\right\}(t)} & \int_{0}^{T} e^{-r t}\left[S\left(q^{\circ}(t)+q^{n}(t), t\right)-c_{0} q^{\circ}(t)-c_{n}\left(x^{n}(t)\right) q^{n}(t)\right] d t \\
\text { subject to } \dot{x}^{n}(t) & =q^{n}(t) \quad x(0)=x_{0}=0 \\
\dot{z}(t) & =e^{-a t}\left(b_{0} q^{\circ}(t)+b_{n} q^{n}(t)\right) \quad z(0)=z_{0}=0 \\
z(T) & \leq z_{T} \\
q^{\circ}(t) & \geq 0, \quad q^{n}(t) \geq 0 .
\end{aligned}
$$

Optimal Technology Penetration

Discretization:

- $t \in[0, T]$ replaced by $N+1$ equally spaced points $t_{i}=i h$
- $h:=T / N$ time integration step-length
- approximate $q_{i}^{n} \simeq q^{n}\left(t_{i}\right)$ etc.

Replace differential equation

$$
\dot{x}(t)=q^{n}(t)
$$

by

$$
x_{i+1}=x_{i}+h q_{i}^{n}
$$

Optimal Technology Penetration

Discretization:

- $t \in[0, T]$ replaced by $N+1$ equally spaced points $t_{i}=i h$
- $h:=T / N$ time integration step-length
- approximate $q_{i}^{n} \simeq q^{n}\left(t_{i}\right)$ etc.

Replace differential equation

$$
\dot{x}(t)=q^{n}(t)
$$

by

$$
x_{i+1}=x_{i}+h q_{i}^{n}
$$

Output of new technology between $t=24$ and $t=35$

Solution with Varying h

Output for different discretization schemes and step-sizes

Optimal Technology Penetration

Add adjustment cost to model building of capacity:
Capital and Investment:

- $K^{j}(t)$ amount of capital in technology j at t.
- $I^{j}(t)$ investment to increase $K^{j}(t)$.
- initial capital level as \bar{K}_{0}^{j} :

Notation:

- $Q(t)=q^{\circ}(t)+q^{n}(t)$
- $C(t)=C^{o}\left(q^{o}(t), K^{o}(t)\right)+C^{n}\left(q^{n}(t), K^{n}(t)\right)$
- $I(t)=I^{\circ}(t)+I^{n}(t)$
- $K(t)=K^{o}(t)+K^{n}(t)$

Optimal Technology Penetration

$$
\begin{aligned}
& \underset{\left\{q^{j}, K^{j}, I^{j}, x, z\right\}(t)}{\operatorname{maximize}}\left\{\int_{0}^{T} e^{-r t}[\tilde{S}(Q(t), t)-C(t)-K(t)] d t+e^{-r T} K(T)\right\} \\
& \text { subject to } \dot{x}(t)=q^{n}(t), \quad x(0)=x_{0}=0 \\
& \dot{K}^{j}(t)=-\delta K^{j}(t)+I^{j}(t), \quad K^{j}(0)=\bar{K}_{0}^{j}, \quad j \in\{o, n\} \\
& \dot{z}(t)=e^{-a t}\left[b_{0} q^{o}(t)+b_{n} q^{n}(t)\right], \quad z(0)=z_{0}=0 \\
& z(T) \leq z_{T} \\
& q^{j}(t) \geq 0, j \in\{o, n\} \\
& I^{j}(t) \geq 0, j \in\{o, n\}
\end{aligned}
$$

Optimal Technology Penetration

Optimal output, investment, and capital for 50\% CO2 reduction.

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem
minimize $\frac{1}{2} \int_{0}^{1} u^{2}(t)+2 y^{2}(t) d t$
subject to

$$
\begin{aligned}
& \dot{y}(t)=\frac{1}{2} y(t)+u(t), t \in[0,1] \\
& y(0)=1
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow y^{*}(t) & =\frac{2 e^{3 t}+e^{3}}{e^{3 t / 2}\left(2+e^{3}\right)}, \\
u^{*}(t) & =\frac{2\left(e^{3 t}-e^{3}\right)}{e^{3 t / 2}\left(2+e^{3}\right)} .
\end{aligned}
$$

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem
minimize $\frac{1}{2} \int_{0}^{1} u^{2}(t)+2 y^{2}(t) d t \quad$ minimize $\frac{h}{2} \sum_{k=0}^{K-1} u_{k+1 / 2}^{2}+2 y_{k+1 / 2}^{2}$
subject to

$$
\begin{aligned}
& \dot{y}(t)=\frac{1}{2} y(t)+u(t), t \in[0,1] \\
& y(0)=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { subject to }(k=0, \ldots, K) \\
& \begin{aligned}
y_{k+1 / 2} & =y_{k}+\frac{h}{2}\left(\frac{1}{2} y_{k}+u_{k}\right) \\
y_{k+1} & =y_{k}+h\left(\frac{1}{2} y_{k+1 / 2}+u_{k+1 / 2}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow y^{*}(t) & =\frac{2 e^{3 t}+e^{3}}{e^{3 t / 2}\left(2+e^{3}\right)}, \\
u^{*}(t) & =\frac{2\left(e^{3 t}-e^{3}\right)}{e^{3 t / 2}\left(2+e^{3}\right)} .
\end{aligned}
$$

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem
minimize $\frac{1}{2} \int_{0}^{1} u^{2}(t)+2 y^{2}(t) d t \quad$ minimize $\frac{h}{2} \sum_{k=0}^{K-1} u_{k+1 / 2}^{2}+2 y_{k+1 / 2}^{2}$ subject to

$$
\begin{aligned}
& \dot{y}(t)=\frac{1}{2} y(t)+u(t), t \in[0,1], \\
& y(0)=1 .
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow y^{*}(t) & =\frac{2 e^{3 t}+e^{3}}{e^{3 t / 2}\left(2+e^{3}\right)}, \\
u^{*}(t) & =\frac{2\left(e^{3 t}-e^{3}\right)}{e^{3 t / 2}\left(2+e^{3}\right)} .
\end{aligned}
$$

$$
y_{k}=1, \quad y_{k+1 / 2}=0
$$

$$
u_{k}=-\frac{4+h}{2 h}, \quad u_{k+1 / 2}=0
$$

DOES NOT CONVERGE!

Tips to Solve Continuous-Time Problems

- Use discretize-then-optimize with different schemes
- Refine discretization: $h=1$ discretization is nonsense
- Check implied discretization of adjoints

Tips to Solve Continuous-Time Problems

- Use discretize-then-optimize with different schemes
- Refine discretization: $h=1$ discretization is nonsense
- Check implied discretization of adjoints

Alternative: Optimize-Then-Discretize

- Consistent adjoint/dual discretization
- Discretized gradients can be wrong!
- Harder for inequality constraints

Ordered Sets

```
param V, integer; # Number of vertices
param E, integer;
set VERTICES := {1..V};
set ELEMENTS := {1..E};
set COORDS := {1..3} ordered;
param T{ELEMENTS, 1..4} in VERTICES;
var x{VERTICES, COORDS};
var norm{e in ELEMENTS} = sum{i in COORDS, j in 1..4}
    (x[T[e,j], i] - x[T[e,1], i])~2;
var area{e in ELEMENTS} = sum{i in COORDS}
    (x[T[e,2], i] - x[T[e,1], i]) *
        ((x[T[e,3], nextw(i)] - x[T[e,1], nextw(i)]) *
        (x[T[e,4], prevw(i)] - x[T[e,1], prevw(i)]) -
        (x[T[e,3], prevw(i)] - x[T[e,1], prevw(i)]) *
        (x[T[e,4], nextw(i)] - x[T[e,1], nextw(i)]));
minimize f: sum {e in ELEMENTS} norm[e] / max(area[e], 0) ~ (2 / 3);
```


Circular Sets

```
param V, integer; # Number of vertices
param E, integer;
set VERTICES := {1..V};
set ELEMENTS := {1..E};
set COORDS := {1..3} circular;
param T{ELEMENTS, 1..4} in VERTICES;
var x{VERTICES, COORDS};
var norm{e in ELEMENTS} = sum{i in COORDS, j in 1..4}
    (x[T[e,j], i] - x[T[e,1], i])~2;
var area{e in ELEMENTS} = sum{i in COORDS}
    (x[T[e,2], i] - x[T[e,1], i]) *
        ((x[T[e,3], next(i)] - x[T[e,1], next(i)]) *
        (x[T[e,4], prev(i)] - x[T[e,1], prev(i)]) -
        (x[T[e,3], prev(i)] - x[T[e,1], prev(i)]) *
        (x[T[e,4], next(i)] - x[T[e,1], next(i)]));
minimize f: sum {e in ELEMENTS} norm[e] / max(area[e], 0) ~ (2 / 3);
```


Part III

Numerical Optimization III:
 Complementarity Constraints

Nash Games

- Non-cooperative game played by n individuals
- Each player selects a strategy to optimize their objective
- Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible

Nash Games

- Non-cooperative game played by n individuals
- Each player selects a strategy to optimize their objective
- Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
- Characterization of two player equilibrium $\left(x^{*}, y^{*}\right)$

$$
x^{*} \in\left\{\begin{array} { l l }
{ \operatorname { a r g } \operatorname { m i n } _ { x \geq 0 } } & { f _ { 1 } (x , y ^ { * }) } \\
{ \text { subject to } } & { c _ { 1 } (x) \leq 0 }
\end{array} y ^ { * } \in \left\{\begin{array}{l}
\arg \min _{y \geq 0} f_{2}\left(x^{*}, y\right) \\
\text { subject to } c_{2}(y) \leq 0
\end{array}\right.\right.
$$

Nash Games

- Non-cooperative game played by n individuals
- Each player selects a strategy to optimize their objective
- Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
- Characterization of two player equilibrium $\left(x^{*}, y^{*}\right)$

$$
x^{*} \in\left\{\begin{array} { l l }
{ \operatorname { a r g } \operatorname { m i n } _ { x \geq 0 } } & { f _ { 1 } (x , y ^ { * }) } \\
{ \text { subject to } } & { c _ { 1 } (x) \leq 0 }
\end{array} y ^ { * } \in \left\{\begin{array}{l}
\arg \min _{y \geq 0} f_{2}\left(x^{*}, y\right) \\
\text { subject to } c_{2}(y) \leq 0
\end{array}\right.\right.
$$

- Many applications in economics
- Bimatrix games
- Cournot duopoly models
- General equilibrium models
- Arrow-Debreau models

Complementarity Formulation

- Assume each optimization problem is convex
- $f_{1}(\cdot, y)$ is convex for each y
- $f_{2}(x, \cdot)$ is convex for each x
- $c_{1}(\cdot)$ and $c_{2}(\cdot)$ satisfy constraint qualification
- Then the first-order conditions are necessary and sufficient

$$
\begin{array}{ll}
\min _{x \geq 0} & f_{1}\left(x, y^{*}\right) \\
\text { subject to } & c_{1}(x) \leq 0
\end{array} \Leftrightarrow \begin{aligned}
& 0 \leq x \perp \nabla_{x} f_{1}\left(x, y^{*}\right)+\lambda_{1}^{T} \nabla_{x} c_{1}(x) \geq 0 \\
& 0 \leq \lambda_{1} \perp-c_{1}(x) \geq 0
\end{aligned}
$$

Complementarity Formulation

- Assume each optimization problem is convex
- $f_{1}(\cdot, y)$ is convex for each y
- $f_{2}(x, \cdot)$ is convex for each x
- $c_{1}(\cdot)$ and $c_{2}(\cdot)$ satisfy constraint qualification
- Then the first-order conditions are necessary and sufficient

$$
\begin{array}{ll}
\min _{y \geq 0} & f_{2}\left(x^{*}, y\right) \\
\text { subject to } & c_{2}(y) \leq 0
\end{array} \Leftrightarrow \begin{aligned}
& 0 \leq y \perp \nabla_{y} f_{2}\left(x^{*}, y\right)+\lambda_{2}^{T} \nabla_{y} c_{2}(y) \geq 0 \\
& 0 \leq \lambda_{2} \perp-c_{2}(y) \geq 0
\end{aligned}
$$

Complementarity Formulation

- Assume each optimization problem is convex
- $f_{1}(\cdot, y)$ is convex for each y
- $f_{2}(x, \cdot)$ is convex for each x
- $c_{1}(\cdot)$ and $c_{2}(\cdot)$ satisfy constraint qualification
- Then the first-order conditions are necessary and sufficient

$$
\begin{aligned}
& 0 \leq x \perp \nabla_{x} f_{1}(x, y)+\lambda_{1}^{T} \nabla_{x} c_{1}(x) \geq 0 \\
& 0 \leq y \perp \nabla_{y} f_{2}(x, y)+\lambda_{2}^{T} \nabla_{y} c_{2}(y) \geq 0 \\
& 0 \leq \lambda_{1} \perp-c_{1}(y) \geq 0 \\
& 0 \leq \lambda_{2} \perp-c_{2}(y) \geq 0
\end{aligned}
$$

- Nonlinear complementarity problem
- Square system - number of variables and constraints the same
- Each solution is an equilibrium for the Nash game

Model Formulation

- Economy with n agents and m commodities
- $e \in \Re^{n \times m}$ are the endowments
- $\alpha \in \Re^{n \times m}$ and $\beta \in \Re^{n \times m}$ are the utility parameters
- $p \in \Re^{m}$ are the commodity prices
- Agent i maximizes utility with budget constraint

$$
\begin{array}{ll}
\max _{x_{i, *} \geq 0} & \sum_{k=1}^{m} \frac{\alpha_{i, k}\left(1+x_{i, k}\right)^{1-\beta_{i, k}}}{1-\beta_{i, k}} \\
\text { subject to } & \sum_{k=1}^{m} p_{k}\left(x_{i, k}-e_{i, k}\right) \leq 0
\end{array}
$$

- Market k sets price for the commodity

$$
0 \leq p_{k} \perp \sum_{i=1}^{n}\left(e_{i, k}-x_{i, k}\right) \geq 0
$$

Model: cge.mod

```
set AGENTS; # Agents
set COMMODITIES; # Commodities
param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment
param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters
param beta {AGENTS, COMMODITIES} > 0;
var x {AGENTS, COMMODITIES}; # Consumption (no bounds!)
var l {AGENTS}; # Multipliers (no bounds!)
var p {COMMODITIES}; # Prices (no bounds!)
var du {i in AGENTS, k in COMMODITIES} = # Marginal prices
    alpha[i,k] / (1 + x[i,k])^beta[i,k];
subject to
    optimality {i in AGENTS, k in COMMODITIES}:
        0<= x[i,k] complements -du[i,k] + p[k] * l[i] >= 0;
    budget {i in AGENTS}:
        0<= l[i] complements sum {k in COMMODITIES} p[k]*(e[i,k] - x[i,k]) >= 0;
    market {k in COMMODITIES}:
        0<= p[k] complements sum {i in AGENTS} (e[i,k] - x[i,k]) >= 0;
```


Data: cge.dat

```
set AGENTS := Jorge, Sven, Todd;
set COMMODITIES := Books, Cars, Food, Pens;
param alpha : Books Cars Food Pens :=
\begin{tabular}{lllll} 
Jorge & 1 & 1 & 1 & 1
\end{tabular}
    Sven 1
    Todd 2 1 1 5;
param beta (tr): Jorge Sven Todd :=
    Books 1.5 2 0.6
    Cars 1.6 3 0.7
    Food 1.7 2 2.0
    Pens 1.8 2 2.5;
```


Commands: cge.cmd

```
# Load model and data
model cge.mod;
data cge.dat;
# Specify solver and options
option presolve 0;
option solver "pathampl";
# Solve the instance
solve;
# Output results
printf {i in AGENTS, k in COMMODITIES} "%5s %5s: % 5.4e\n", i, k, x[i,k] > cge.out;
printf "\n" > cge.out;
printf {k in COMMODITIES} "%5s: % 5.4e\n", k, p[k] > cge.out;
```


Results: cge.out

```
Jorge Books: 8.9825e-01
Jorge Cars: 1.4651e+00
Jorge Food: 1.2021e+00
Jorge Pens: 6.8392e-01
    Sven Books: 2.5392e-01
    Sven Cars: 7.2054e-01
    Sven Food: 1.6271e+00
    Sven Pens: 1.4787e+00
    Todd Books: 1.8478e+00
    Todd Cars: 8.1431e-01
    Todd Food: 1.7081e-01
    Todd Pens: 8.3738e-01
```

Books: 1.0825e+01
Cars: 6.6835e+00
Food: 7.3983e+00
Pens: 1.1081e+01

Commands: cgenum.cmd

```
# Load model and data
model cge.mod;
data cge.dat;
# Specify solver and options
option presolve 0;
option solver "pathampl";
# Solve the instance
drop market['Books'];
fix p['Books'] := 1;
solve;
# Output results
printf {i in AGENTS, k in COMMODITIES} "%5s %5s: % 5.4e\n", i, k, x[i,k] > cgenum.out;
printf "\n" > cgenum.out;
printf {k in COMMODITIES} "%5s: % 5.4e\n", k, p[k] > cgenum.out;
```


Results: cgenum.out

```
Jorge Books: 8.9825e-01
Jorge Cars: 1.4651e+00
Jorge Food: 1.2021e+00
Jorge Pens: 6.8392e-01
    Sven Books: 2.5392e-01
    Sven Cars: 7.2054e-01
    Sven Food: 1.6271e+00
    Sven Pens: 1.4787e+00
    Todd Books: 1.8478e+00
    Todd Cars: 8.1431e-01
    Todd Food: 1.7081e-01
    Todd Pens: 8.3738e-01
```

Books: $1.0000 \mathrm{e}+00$
Cars: 6.1742e-01
Food: 6.8345e-01
Pens: 1.0237e+00

Pitfalls

- Nonsquare systems
- Side variables
- Side constraints
- Orientation of equations
- Skew symmetry preferred
- Proximal point perturbation
- AMPL presolve
- option presolve 0;

Newton Method for Nonlinear Equations

Methods for Complementarity Problems

- Sequential linearization methods (PATH)
(1) Solve the linear complementarity problem

$$
0 \leq x \quad \perp \quad F\left(x_{k}\right)+\nabla F\left(x_{k}\right)\left(x-x_{k}\right) \geq 0
$$

(2) Perform a line search along merit function
(3) Repeat until convergence

Methods for Complementarity Problems

- Sequential linearization methods (PATH)
(1) Solve the linear complementarity problem

$$
0 \leq x \quad \perp \quad F\left(x_{k}\right)+\nabla F\left(x_{k}\right)\left(x-x_{k}\right) \geq 0
$$

(2) Perform a line search along merit function
(3) Repeat until convergence

- Semismooth reformulation methods (SEMI)
- Solve linear system of equations to obtain direction
- Globalize with a trust region or line search
- Less robust in general
- Interior-point methods

Semismooth Reformulation

- Define Fischer-Burmeister function

$$
\phi(a, b):=a+b-\sqrt{a^{2}+b^{2}}
$$

- $\phi(a, b)=0$ iff $a \geq 0, b \geq 0$, and $a b=0$
- Define the system

$$
[\Phi(x)]_{i}=\phi\left(x_{i}, F_{i}(x)\right)
$$

- x^{*} solves complementarity problem iff $\Phi\left(x^{*}\right)=0$
- Nonsmooth system of equations

Semismooth Algorithm

(1) Calculate $H^{k} \in \partial_{B} \Phi\left(x^{k}\right)$ and solve the following system for d^{k} :

$$
H^{k} d^{k}=-\Phi\left(x^{k}\right)
$$

If this system either has no solution, or

$$
\nabla \Psi\left(x^{k}\right)^{T} d^{k} \leq-p_{1}\left\|d^{k}\right\|^{p_{2}}
$$

is not satisfied, let $d^{k}=-\nabla \Psi\left(x^{k}\right)$.

Semismooth Algorithm

(1) Calculate $H^{k} \in \partial_{B} \Phi\left(x^{k}\right)$ and solve the following system for d^{k} :

$$
H^{k} d^{k}=-\Phi\left(x^{k}\right)
$$

If this system either has no solution, or

$$
\nabla \Psi\left(x^{k}\right)^{T} d^{k} \leq-p_{1}\left\|d^{k}\right\|^{p_{2}}
$$

is not satisfied, let $d^{k}=-\nabla \Psi\left(x^{k}\right)$.
(2) Compute smallest nonnegative integer i^{k} such that

$$
\Psi\left(x^{k}+\beta^{i^{k}} d^{k}\right) \leq \Psi\left(x^{k}\right)+\sigma \beta^{i^{k}} \nabla \Psi\left(x^{k}\right) d^{k}
$$

(3)Set $x^{k+1}=x^{k}+\beta^{i^{k}} d^{k}, k=k+1$, and go to 1 .

Convergence Issues

- Quadratic convergence - best outcome
- Linear convergence
- Far from a solution - $r\left(x_{k}\right)$ is large
- Jacobian is incorrect - disrupts quadratic convergence
- Jacobian is rank deficient - $\left\|\nabla r\left(x_{k}\right)\right\|$ is small
- Converge to local minimizer - guarantees rank deficiency
- Limits of finite precision arithmetic
(1) $r\left(x_{k}\right)$ converges quadratically to small number
(2) $r\left(x_{k}\right)$ hovers around that number with no progress
- Domain violations such as $\frac{1}{x}$ when $x=0$

Some Available Software

- PATH - sequential linearization method
- MILES - sequential linearization method
- SEMI - semismooth linesearch method
- TAO - Toolkit for Advanced Optimization
- SSLS - full-space semismooth linesearch methods
- ASLS - active-set semismooth linesearch methods
- RSCS - reduced-space method

Definition

- Leader-follower game
- Dominant player (leader) selects a strategy y^{*}
- Then followers respond by playing a Nash game

$$
x_{i}^{*} \in\left\{\begin{array}{l}
\arg \min _{x_{i} \geq 0} f_{i}(x, y) \\
\text { subject to } c_{i}\left(x_{i}\right) \leq 0
\end{array}\right.
$$

- Leader solves optimization problem with equilibrium constraints

$$
\begin{array}{lll}
\min _{y \geq 0, x, \lambda} & g(x, y) \\
\text { subject to } & h(y) \leq 0 \\
& 0 \leq x_{i} & \perp \\
& 0 \leq \nabla_{x_{i}} f_{i}(x, y)+\lambda_{i}^{T} \nabla_{x_{i}} c_{i}\left(x_{i}\right) \geq 0 \\
& \perp & -c_{i}\left(x_{i}\right) \geq 0
\end{array}
$$

- Many applications in economics
- Optimal taxation
- Tolling problems

Model Formulation

- Economy with n agents and m commodities
- $e \in \Re^{n \times m}$ are the endowments
- $\alpha \in \Re^{n \times m}$ and $\beta \in \Re^{n \times m}$ are the utility parameters
- $p \in \Re^{m}$ are the commodity prices
- Agent i maximizes utility with budget constraint

$$
\begin{array}{ll}
\max _{x_{i, *} \geq 0} & \sum_{k=1}^{m} \frac{\alpha_{i, k}\left(1+x_{i, k}\right)^{1-\beta_{i, k}}}{1-\beta_{i, k}} \\
\text { subject to } & \sum_{k=1}^{m} p_{k}\left(x_{i, k}-e_{i, k}\right) \leq 0
\end{array}
$$

- Market k sets price for the commodity

$$
0 \leq p_{k} \perp \sum_{i=1}^{n}\left(e_{i, k}-x_{i, k}\right) \geq 0
$$

Model: cgempec.mod

```
set LEADER; # Leader
set FOLLOWERS;
    # Followers
set AGENTS := LEADER union FOLLOWERS; # All the agents
check: (card(LEADER) == 1 && card(LEADER inter FOLLOWERS) == 0);
set COMMODITIES;
param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment
param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters
param beta {AGENTS, COMMODITIES} > 0;
var x {AGENTS, COMMODITIES}; # Consumption (no bounds!)
var l {FOLLOWERS}; # Multipliers (no bounds!)
var p {COMMODITIES}; # Prices (no bounds!)
var u {i in AGENTS} = # Utility
    sum {k in COMMODITIES} alpha[i,k] * (1 + x[i,k]) ^(1 - beta[i,k]) / (1 - beta[i,k]);
var du {i in AGENTS, k in COMMODITIES} = # Marginal prices
    alpha[i,k] / (1 + x[i,k])^beta[i,k];
```


Model: cgempec.mod

```
maximize
    objective: sum {i in LEADER} u[i];
subject to
    leader_budget {i in LEADER}:
        sum {k in COMMODITIES} p[k]*(e[i,k] - x[i,k]) >= 0;
    optimality {i in FOLLOWERS, k in COMMODITIES}:
        0<= x[i,k] complements -du[i,k] + p[k] * l[i] >= 0;
    budget {i in FOLLOWERS}:
        0<= l[i] complements sum {k in COMMODITIES} p[k]*(e[i,k] - x[i,k]) >= 0;
    market {k in COMMODITIES}:
        0<= p[k] complements sum {i in AGENTS} (e[i,k] - x[i,k]) >= 0;
```


Data: cgempec.dat

```
set LEADER := Jorge;
set FOLLOWERS := Sven, Todd;
set COMMODITIES := Books, Cars, Food, Pens;
param alpha : Books Cars Food Pens :=
    Jorge }\begin{array}{lllll}{1}&{1}&{1}&{1}
    Sven 1
    Todd 2 1 1 5;
param beta (tr): Jorge Sven Todd :=
    Books 1.5 2 0.6
    Cars 1.6 3 0.7
    Food 1.7 2 2.0
    Pens 1.8 2 2.5;
```


Commands: cgempec.cmd

```
# Load model and data
model cgempec.mod;
data cgempec.dat;
# Specify solver and options
option presolve 0;
option solver "loqo";
# Solve the instance
drop market['Books'];
fix p['Books'] := 1;
solve;
# Output results
printf {i in AGENTS, k in COMMODITIES} "%5s %5s: % 5.4e\n", i, k, x[i,k] > cgempec.out;
printf "\n" > cgempec.out;
printf {k in COMMODITIES} "%5s: % 5.4e\n", k, p[k] > cgempec.out;
```


Output: cgempec.out

Stackleberg		
Jorge Books:	$9.2452 \mathrm{e}-01$	
Jorge Cars:	$1.3666 \mathrm{e}+00$	
Jorge Food:	$1.1508 \mathrm{e}+00$	
Jorge Pens:	$7.7259 \mathrm{e}-01$	
Sven Books:	$2.5499 \mathrm{e}-01$	
Sven Cars:	$7.4173 \mathrm{e}-01$	
Sven Food:	$1.6657 \mathrm{e}+00$	
Sven Pens:	$1.4265 \mathrm{e}+00$	
Todd Books:	$1.8205 \mathrm{e}+00$	
Todd Cars:	$8.9169 \mathrm{e}-01$	
Todd Food:	$1.8355 \mathrm{e}-01$	
Todd Pens:	$8.0093 \mathrm{e}-01$	

Books:	$1.0000 \mathrm{e}+00$
Cars:	$5.9617 \mathrm{e}-01$
Food:	$6.6496 \mathrm{e}-01$
Pens:	$1.0700 \mathrm{e}+00$

Nash Game		
Jorge Books:	$8.9825 \mathrm{e}-01$	
Jorge Cars:	$1.4651 \mathrm{e}+00$	
Jorge Food:	$1.2021 \mathrm{e}+00$	
Jorge Pens:	$6.8392 \mathrm{e}-01$	
Sven Books:	$2.5392 \mathrm{e}-01$	
Sven Cars:	$7.2054 \mathrm{e}-01$	
Sven Food:	$1.6271 \mathrm{e}+00$	
Sven Pens:	$1.4787 \mathrm{e}+00$	
Todd Books:	$1.8478 \mathrm{e}+00$	
Todd Cars:	$8.1431 \mathrm{e}-01$	
Todd Food:	$1.7081 \mathrm{e}-01$	
Todd Pens:	$8.3738 \mathrm{e}-01$	

Books: $1.0000 \mathrm{e}+00$
Cars: 6.1742e-01
Food: 6.8345e-01
Pens: $1.0237 e+00$

Nonlinear Programming Formulation

$$
\begin{array}{ll}
\min _{x, y, \lambda, s, t \geq 0} & g(x, y) \\
\text { subject to } & h(y) \leq 0 \\
& s_{i}=\nabla_{x_{i}} f_{i}(x, y)+\lambda_{i}^{T} \nabla_{x_{i}} c_{i}\left(x_{i}\right) \\
& t_{i}=-c_{i}\left(x_{i}\right) \\
& \sum_{i}\left(s_{i}^{T} x_{i}+\lambda_{i} t_{i}\right) \leq 0
\end{array}
$$

- Constraint qualification fails
- Lagrange multiplier set unbounded
- Constraint gradients linearly dependent
- Central path does not exist
- Able to prove convergence results for some methods
- Reformulation very successful and versatile in practice

Penalization Approach

$$
\begin{aligned}
& \min _{x, y, \lambda, s, t \geq 0} g(x, y)+\pi \sum_{i}\left(s_{i}^{T} x_{i}+\lambda_{i} t_{i}\right) \\
& \text { subject to } \\
& \begin{array}{ll}
& h(y) \leq 0 \\
s_{i} & =\nabla_{x_{i}} f_{i}(x, y)+\lambda_{i}^{T} \nabla_{x_{i}} c_{i}\left(x_{i}\right) \\
t_{i} & =-c_{i}\left(x_{i}\right)
\end{array}
\end{aligned}
$$

- Optimization problem satisfies constraint qualification
- Need to increase π

Relaxation Approach

$$
\begin{array}{ll}
\min _{x, y, \lambda, s, t \geq 0} & g(x, y) \\
\text { subject to } & h(y) \leq 0 \\
& s_{i}=\nabla_{x_{i}} f_{i}(x, y)+\lambda_{i}^{T} \nabla_{x_{i}} c_{i}\left(x_{i}\right) \\
& t_{i}=-c_{i}\left(x_{i}\right) \\
& \sum_{i}\left(s_{i}^{T} x_{i}+\lambda_{i} t_{i}\right) \leq \tau
\end{array}
$$

- Need to decrease τ

Limitations

- Multipliers may not exist
- Solvers can have a hard time computing solutions
- Try different algorithms
- Compute feasible starting point
- Stationary points may have descent directions
- Checking for descent is an exponential problem
- Strong stationary points found in certain cases
- Many stationary points - global optimization

Limitations

- Multipliers may not exist
- Solvers can have a hard time computing solutions
- Try different algorithms
- Compute feasible starting point
- Stationary points may have descent directions
- Checking for descent is an exponential problem
- Strong stationary points found in certain cases
- Many stationary points - global optimization
- Formulation of follower problem
- Multiple solutions to Nash game
- Nonconvex objective or constraints
- Existence of multipliers

Model Formulation

- Firm $f \in \mathcal{F}$ chooses output x_{f} to maximize profit
- u is the utility function

$$
u=\left(1+\sum_{f \in \mathcal{F}} x_{f}^{\alpha}\right)^{\frac{\eta}{\alpha}}
$$

- α and η are parameters
- c_{f} is the unit cost for each firm
- In particular, for each firm $f \in \mathcal{F}$

$$
x_{f}^{*} \in \arg \max _{x_{f} \geq 0}\left(\frac{\partial u}{\partial x_{f}}-c_{f}\right) x_{f}
$$

- First-order optimality conditions

$$
0 \leq x_{f} \perp c_{f}-\frac{\partial u}{\partial x_{f}}-x_{f} \frac{\partial^{2} u}{\partial x_{f}^{2}} \geq 0
$$

Model: oligopoly.mod

```
set FIRMS;
param c {FIRMS};
param alpha > 0;
param eta > 0;
var x {FIRMS} default 0.1; # Output (no bounds!)
var s = 1 + sum {f in FIRMS} x[f]^alpha; # Summation term
var u = s^(eta/alpha); # Utility
var du {f in FIRMS} = # Marginal price
    eta * s^(eta/alpha - 1) * x[f]^(alpha - 1);
var dudu {f in FIRMS} = # Derivative
    eta * (eta - alpha) * s^(eta/alpha - 2) * x[f]^(2 * alpha - 2) +
    eta * (alpha - 1 ) * s^(eta/alpha - 1) * x[f]^( alpha - 2);
compl {f in FIRMS}:
    0<= x[f] complements c[f] - du[f] - x[f] * dudu[f] >= 0;
```


Data: oligopoly.dat

```
param: FIRMS : c :=
    1 0.07
    2 0.08
    3 0.09;
param alpha := 0.999;
param eta := 0.2;
```


Commands: oligopoly.cmd

```
# Load model and data
model oligopoly.mod;
data oligopoly.dat;
# Specify solver and options
option presolve 0;
option solver "pathampl";
# Solve complementarity problem
solve;
# Output the results
printf {f in FIRMS} "Output for firm %2d: % 5.4e\n", f, x[f] > oligcomp.out;
```


Results: oligopoly.out

Output for firm 1: 8.3735e-01
Output for firm 2: 5.0720e-01
Output for firm 3: 1.7921e-01

Model Formulation

- Players select strategies to minimize loss
- $p \in \Re^{n}$ is the probability player 1 chooses each strategy
- $q \in \Re^{m}$ is the probability player 2 chooses each strategy
- $A \in \Re^{n \times m}$ is the loss matrix for player 1
- $B \in \Re^{n \times m}$ is the loss matrix for player 2
- Optimization problem for player 1

$$
\begin{aligned}
& \min _{0 \leq p \leq 1} \quad p^{T} A q \\
& \text { subject to } e^{T} p=1
\end{aligned}
$$

- Optimization problem for player 2

$$
\begin{aligned}
& \min _{0 \leq q \leq 1} \quad p^{T} B q \\
& \text { subject to } e^{T} q=1
\end{aligned}
$$

Model Formulation

- Players select strategies to minimize loss
- $p \in \Re^{n}$ is the probability player 1 chooses each strategy
- $q \in \Re^{m}$ is the probability player 2 chooses each strategy
- $A \in \Re^{n \times m}$ is the loss matrix for player 1
- $B \in \Re^{n \times m}$ is the loss matrix for player 2
- Complementarity problem

$$
\begin{aligned}
& 0 \leq p \leq 1 \perp A q-\lambda_{1} \\
& 0 \leq q \leq 1 \perp B^{T} p-\lambda_{2} \\
& \lambda_{1} \text { free } \quad \perp e^{T} p=1 \\
& \lambda_{2} \text { free } \quad \perp e^{T} q=1
\end{aligned}
$$

Model: bimatrix1.mod

```
param n > 0, integer; # Strategies for player 1
param m > 0, integer;
param A{1..n, 1..m};
param B{1..n, 1..m};
var p{1..n};
var q{1..m};
var lambda1;
var lambda2;
subject to
    opt1 {i in 1..n}: # Optimality conditions for player 1
        0<= p[i] <= 1 complements sum{j in 1..m} A[i,j] * q[j] - lambda1;
    opt2 {j in 1..m}: # Optimality conditions for player 2
        0<=q[j] <= 1 complements sum{i in 1..n} B[i,j] * p[i] - lambda2;
    con1:
        lambda1 complements sum{i in 1..n} p[i] = 1;
    con2:
        lambda2 complements sum{j in 1..m} q[j] = 1;
```


Model: bimatrix2.mod

```
param n > 0, integer; # Strategies for player 1
param m > 0, integer;
param A{1..n, 1..m}; # Loss matrix for player 1
param B{1..n, 1..m};
var p{1..n}; # Probability player 1 selects strategy i
var q{1..m}; # Probability player 2 selects strategy j
var lambda1;
# Multiplier for constraint
var lambda2;
# Multiplier for constraint
subject to
    opt1 {i in 1..n}: # Optimality conditions for player 1
        0<= p[i] complements sum{j in 1..m} A[i,j] * q[j] - lambda1 >= 0;
    opt2 {j in 1..m}: # Optimality conditions for player 2
        0<= q[j] complements sum{i in 1..n} B[i,j] * p[i] - lambda2 >= 0;
    con1:
        0<= lambda1 complements sum{i in 1..n} p[i] >= 1;
    con2:
        0<= lambda2 complements sum{j in 1..m} q[j]>= 1;
```


Model: bimatrix3.mod

```
param n > 0, integer; # Strategies for player 1
param m > 0, integer;
param A{1..n, 1..m};
param B{1..n, 1..m};
var p{1..n}; # Probability player 1 selects strategy i
var q{1..m};
    # Probability player 2 selects strategy j
subject to
    opt1 {i in 1..n}: # Optimality conditions for player 1
        O <= p[i] complements sum{j in 1..m} A[i,j] * q[j] >= 1;
        opt2 {j in 1..m}: # Optimality conditions for player 2
            O <= q[j] complements sum{i in 1..n} B[i,j] * p[i] >= 1;
```


Part IV

Numerical Optimization IV: Extensions

Global Optimization

I need to find the GLOBAL minimum!

- use any NLP solver (often work well!)
- use the multi-start trick from previous slides
- global optimization based on branch-and-reduce: BARON
- constructs global underestimators
- refines region by branching
- tightens bounds by solving LPs
- solve problems with 100 s of variables
- "voodoo" solvers: genetic algorithm \& simulated annealing no convergence theory ... usually worse than deterministic

Derivative-Free Optimization

My model does not have derivatives!

- Change your model ... good models have derivatives!
- pattern-search methods for $\min f(x)$
- evaluate $f(x)$ at stencil $x_{k}+\Delta M$
- move to new best point
- extend to NLP; some convergence theory h
- matlab: NOMADm.m; parallel APPSPACK
- solvers based on building interpolating quadratic models
- DFO project on www.coin-or.org
- Mike Powell's NEWUOA quadratic model
- "voodoo" solvers: genetic algorithm \& simulated annealing no convergence theory ... usually worse than deterministic

Optimization with Integer Variables

Mixed-Integer Nonlinear Program (MINLP)

- modeling discrete choices $\Rightarrow 0-1$ variables
- modeling integer decisions \Rightarrow integer variables e.g. number of different stocks in portfolio (8-10) not number of beers sold at Goose Island (millions)

MINLP solvers:

- branch (separate $z_{i}=0$ and $z_{i}=1$) and cut
- solve millions of NLP relaxations: MINLPBB, SBB
- outer approximation: iterate MILP and NLP solvers BONMIN (COIN-OR) \& FilMINT on NEOS

Portfolio Management

- N : Universe of asset to purchase
- x_{i} : Amount of asset i to hold
- B: Budget

$$
\text { minimize } u(x) \text { subject to } \sum_{i \in N} x_{i}=B, \quad x \geq 0
$$

Portfolio Management

- N : Universe of asset to purchase
- x_{i} : Amount of asset i to hold
- B: Budget

$$
\operatorname{minimize} u(x) \quad \text { subject to } \sum_{i \in N} x_{i}=B, \quad x \geq 0
$$

- Markowitz: $u(x) \stackrel{\text { def }}{=}-\alpha^{\top} x+\lambda x^{\top} Q x$
- α : maximize expected returns
- Q: variance-covariance matrix of expected returns
- λ : minimize risk; aversion parameter

More Realistic Models

- $b \in \mathbb{R}^{|N|}$ of "benchmark" holdings
- Benchmark Tracking: $u(x) \stackrel{\text { def }}{=}(x-b)^{T} Q(x-b)$
- Constraint on $\mathbb{E}[$ Return $]: \alpha^{\top} x \geq r$

More Realistic Models

- $b \in \mathbb{R}^{|N|}$ of "benchmark" holdings
- Benchmark Tracking: $u(x) \stackrel{\text { def }}{=}(x-b)^{T} Q(x-b)$
- Constraint on $\mathbb{E}[$ Return $]: \alpha^{\top} x \geq r$
- Limit Names: $\left|i \in N: x_{i}>0\right| \leq K$
- Use binary indicator variables to model the implication $x_{i}>0 \Rightarrow y_{i}=1$
- Implication modeled with variable upper bounds:

$$
x_{i} \leq B y_{i} \quad \forall i \in N
$$

- $\sum_{i \in N} y_{i} \leq K$

Optimization Conclusions

Optimization is General Modeling Paradigm

- linear, nonlinear, equations, inequalities
- integer variables, equilibrium, control

AMPL (GAMS) Modeling and Programming Languages

- express optimization problems
- use automatic differentiation
- easy access to state-of-the-art solvers

Optimization Software

- open-source: COIN-OR, IPOPT, SOPLEX, \& ASTROS (soon)
- current solver limitations on laptop:
- 1,000,000 variables/constraints for LPs
- 100,000 variables/constraints for NLPs/NCPs
- 100 variables/constraints for global optimization
- 500,000,000 variable LP on BlueGene/P

