
Numerical Optimization for Economists

Todd Munson

Mathematics and Computer Science Division
Argonne National Laboratory

July 18–21, 2011

1 / 141

Part I

Numerical Optimization I: Static Models

2 / 141

Model Formulation

Classify m people into two groups using v variables

c ∈ {0, 1}m is the known classification
d ∈ <m×v are the observations
β ∈ <v+1 defines the separator
logit distribution function

Maximum likelihood problem

max
β

m∑
i=1

ci log(f (β, di ,·)) + (1− ci) log(1− f (β, di ,·))

where

f (β, x) =

exp

β0 +
v∑

j=1

βjxj


1 + exp

β0 +
v∑

j=1

βjxj


3 / 141

Solution Techniques

min
x

f (x)

Main ingredients of solution approaches:

Local method: given xk (solution guess) compute a step s.

Gradient Descent
Quasi-Newton Approximation
Sequential Quadratic Programming

Globalization strategy: converge from any starting point.

Trust region
Line search

4 / 141

Trust-Region Method

min
s

f (xk) + sT∇f (xk) +
1

2
sTH(xk)s

subject to ‖s‖ ≤ ∆k

5 / 141

Trust-Region Method

1 Initialize trust-region radius

Constant
Direction
Interpolation

2 Compute a new iterate

1 Solve trust-region subproblem

mins f (xk) + sT∇f (xk) + 1
2 s

TH(xk)s
subject to ‖s‖ ≤ ∆k

2 Accept or reject iterate
3 Update trust-region radius

Reduction
Interpolation

3 Check convergence

6 / 141

Trust-Region Method

1 Initialize trust-region radius

Constant
Direction
Interpolation

2 Compute a new iterate

1 Solve trust-region subproblem

mins f (xk) + sT∇f (xk) + 1
2 s

TH(xk)s
subject to ‖s‖ ≤ ∆k

2 Accept or reject iterate
3 Update trust-region radius

Reduction
Interpolation

3 Check convergence

7 / 141

Trust-Region Method

1 Initialize trust-region radius

Constant
Direction
Interpolation

2 Compute a new iterate

1 Solve trust-region subproblem

mins f (xk) + sT∇f (xk) + 1
2 s

TH(xk)s
subject to ‖s‖ ≤ ∆k

2 Accept or reject iterate
3 Update trust-region radius

Reduction
Interpolation

3 Check convergence

8 / 141

Solving the Subproblem

Moré-Sorensen method

Computes global solution to subproblem

Conjugate gradient method with trust region

Objective function decreases monotonically
Some choices need to be made

Preconditioner
Norm of direction and residual
Dealing with negative curvature

9 / 141

Line-Search Method

min
s

f (xk) + sT∇f (xk) +
1

2
sT (H(xk) + λk I)s

10 / 141

Line-Search Method

1 Initialize perturbation to zero

2 Solve perturbed quadratic model

min
s

f (xk) + sT∇f (xk) +
1

2
sT (H(xk) + λk I)s

3 Find new iterate
1 Search along Newton direction
2 Search along gradient-based direction

4 Update perturbation
Decrease perturbation if the following hold

Iterative method succeeds
Search along Newton direction succeeds

Otherwise increase perturbation

5 Check convergence

11 / 141

Line-Search Method

1 Initialize perturbation to zero

2 Solve perturbed quadratic model

min
s

f (xk) + sT∇f (xk) +
1

2
sT (H(xk) + λk I)s

3 Find new iterate
1 Search along Newton direction
2 Search along gradient-based direction

4 Update perturbation
Decrease perturbation if the following hold

Iterative method succeeds
Search along Newton direction succeeds

Otherwise increase perturbation

5 Check convergence

12 / 141

Line-Search Method

1 Initialize perturbation to zero

2 Solve perturbed quadratic model

min
s

f (xk) + sT∇f (xk) +
1

2
sT (H(xk) + λk I)s

3 Find new iterate
1 Search along Newton direction
2 Search along gradient-based direction

4 Update perturbation
Decrease perturbation if the following hold

Iterative method succeeds
Search along Newton direction succeeds

Otherwise increase perturbation

5 Check convergence

13 / 141

Solving the Subproblem

Conjugate gradient method

Conjugate gradient method with trust region
Initialize radius

Constant
Direction
Interpolation

Update radius

Reduction
Step length
Interpolation

Some choices need to be made

Preconditioner
Norm of direction and residual
Dealing with negative curvature

14 / 141

Solving the Subproblem

Conjugate gradient method

Conjugate gradient method with trust region
Initialize radius

Constant
Direction
Interpolation

Update radius

Reduction
Step length
Interpolation

Some choices need to be made

Preconditioner
Norm of direction and residual
Dealing with negative curvature

15 / 141

Performing the Line Search

Backtracking Armijo Line search

Find t such that

f (xk + ts) ≤ f (xk) + σt∇f (xk)T s

Try t = 1, β, β2, . . . for 0 < β < 1

More-Thuente Line search

Find t such that

f (xk + ts) ≤ f (xk) + σt∇f (xk)T s
|∇f (xk + ts)T s| ≤ δ|∇f (xk)T s|

Construct cubic interpolant
Compute t to minimize interpolant
Refine interpolant

16 / 141

Updating the Perturbation

1 If increasing and ∆k = 0

∆k+1 = Proj[`0,u0]

(
α0‖g(xk)‖

)
2 If increasing and ∆k > 0

∆k+1 = Proj[`i ,ui]

(
max

(
αi‖g(xk)‖, βi∆k

))
3 If decreasing

∆k+1 = min
(
αd‖g(xk)‖, βd∆k

)
4 If ∆k+1 < `d , then ∆k+1 = 0

17 / 141

Trust-Region Line-Search Method

1 Initialize trust-region radius

Constant
Direction
Interpolation

2 Compute a new iterate

1 Solve trust-region subproblem

mins f (xk) + sT∇f (xk) + 1
2 s

TH(xk)s
subject to ‖s‖ ≤ ∆k

2 Search along direction
3 Update trust-region radius

Reduction
Step length
Interpolation

3 Check convergence

18 / 141

Iterative Methods

Conjugate gradient method

Stop if negative curvature encountered
Stop if residual norm is small

Conjugate gradient method with trust region
Nash

Follow direction to boundary if first iteration
Stop at base of direction otherwise

Steihaug-Toint

Follow direction to boundary

Generalized Lanczos

Compute tridiagonal approximation
Find global solution to approximate problem on boundary
Initialize perturbation with approximate minimum eigenvalue

19 / 141

Iterative Methods

Conjugate gradient method

Stop if negative curvature encountered
Stop if residual norm is small

Conjugate gradient method with trust region
Nash

Follow direction to boundary if first iteration
Stop at base of direction otherwise

Steihaug-Toint

Follow direction to boundary

Generalized Lanczos

Compute tridiagonal approximation
Find global solution to approximate problem on boundary
Initialize perturbation with approximate minimum eigenvalue

20 / 141

Preconditioners

No preconditioner

Absolute value of Hessian diagonal

Absolute value of perturbed Hessian diagonal

Incomplete Cholesky factorization of Hessian

Block Jacobi with Cholesky factorization of blocks

Scaled BFGS approximation to Hessian matrix

None
Scalar
Diagonal of Broyden update
Rescaled diagonal of Broyden update
Absolute value of Hessian diagonal
Absolute value of perturbed Hessian diagonal

21 / 141

Norms

Residual

Preconditioned – ‖r‖M−TM−1

Unpreconditioned – ‖r‖2
Natural – ‖r‖M−1

Direction
Preconditioned – ‖s‖M ≤ ∆

Monotonically increasing ‖sk+1‖M > ‖sk‖M .

Unpreconditioned – ‖s‖2 ≤ ∆

22 / 141

Norms

Residual

Preconditioned – ‖r‖M−TM−1

Unpreconditioned – ‖r‖2
Natural – ‖r‖M−1

Direction
Preconditioned – ‖s‖M ≤ ∆

Monotonically increasing ‖sk+1‖M > ‖sk‖M .

Unpreconditioned – ‖s‖2 ≤ ∆

23 / 141

Termination

Typical convergence criteria

Absolute residual ‖∇f (xk)‖ < τa
Relative residual ‖∇f (xk)‖

‖∇f (xk)‖ < τr
Unbounded objective f (xk) < κ
Slow progress |f (xk)− f (xk−1)| < ε
Iteration limit
Time limit

Solver status

24 / 141

Convergence Issues

Quadratic convergence – best outcome

Linear convergence

Far from a solution – ‖∇f (xk)‖ is large
Hessian is incorrect – disrupts quadratic convergence
Hessian is rank deficient – ‖∇f (xk)‖ is small
Limits of finite precision arithmetic

1 ‖∇f (xk)‖ converges quadratically to small number
2 ‖∇f (xk)‖ hovers around that number with no progress

Domain violations such as 1
x when x = 0

Make implicit constraints explicit

Nonglobal solution

Apply a multistart heuristic
Use global optimization solver

25 / 141

Some Available Software

TRON – Newton method with trust-region

LBFGS – Limited-memory quasi-Newton method with line
search

TAO – Toolkit for Advanced Optimization

NLS – Newton line-search method
NTR – Newton trust-region method
NTL – Newton line-search/trust-region method
LMVM – Limited-memory quasi-Newton method
CG – Nonlinear conjugate gradient methods

26 / 141

Model Formulation

Economy with n agents and m commodities

e ∈ <n×m are the endowments
α ∈ <n×m and β ∈ <n×m are the utility parameters
λ ∈ <n are the social weights

Social planning problem

max
x≥0

n∑
i=1

λi

(
m∑

k=1

αi ,k(1 + xi ,k)1−βi,k

1− βi ,k

)

subject to
n∑

i=1

xi ,k ≤
n∑

i=1

ei ,k ∀k = 1, . . . ,m

27 / 141

Solving Constrained Optimization Problems

min
x

f (x)

subject to c(x) ≥ 0

Main ingredients of solution approaches:

Local method: given xk (solution guess) find a step s.

Sequential Quadratic Programming (SQP)
Sequential Linear/Quadratic Programming (SLQP)
Interior-Point Method (IPM)

Globalization strategy: converge from any starting point.

Trust region
Line search

Acceptance criteria: filter or penalty function.

28 / 141

Sequential Linear Programming

1 Initialize trust-region radius
2 Compute a new iterate

1 Solve linear program

min
s

f (xk) + sT∇f (xk)

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2 Accept or reject iterate
3 Update trust-region radius

3 Check convergence

29 / 141

Sequential Linear Programming

1 Initialize trust-region radius
2 Compute a new iterate

1 Solve linear program

min
s

f (xk) + sT∇f (xk)

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2 Accept or reject iterate
3 Update trust-region radius

3 Check convergence

30 / 141

Sequential Linear Programming

1 Initialize trust-region radius
2 Compute a new iterate

1 Solve linear program

min
s

f (xk) + sT∇f (xk)

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2 Accept or reject iterate
3 Update trust-region radius

3 Check convergence

31 / 141

Sequential Quadratic Programming

1 Initialize trust-region radius
2 Compute a new iterate

1 Solve quadratic program

min
s

f (xk) + sT∇f (xk) +
1

2
sTW (xk)s

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2 Accept or reject iterate
3 Update trust-region radius

3 Check convergence

32 / 141

Sequential Quadratic Programming

1 Initialize trust-region radius
2 Compute a new iterate

1 Solve quadratic program

min
s

f (xk) + sT∇f (xk) +
1

2
sTW (xk)s

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2 Accept or reject iterate
3 Update trust-region radius

3 Check convergence

33 / 141

Sequential Quadratic Programming

1 Initialize trust-region radius
2 Compute a new iterate

1 Solve quadratic program

min
s

f (xk) + sT∇f (xk) +
1

2
sTW (xk)s

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2 Accept or reject iterate
3 Update trust-region radius

3 Check convergence

34 / 141

Sequential Linear Quadratic Programming

1 Initialize trust-region radius
2 Compute a new iterate

1 Solve linear program to predict active set

min
d

f (xk) + dT∇f (xk)

subject to c(xk) +∇c(xk)Td ≥ 0
‖d‖ ≤ ∆k

2 Solve equality constrained quadratic program

min
s

f (xk) + sT∇f (xk) +
1

2
sTW (xk)s

subject to cA(xk) +∇cA(xk)T s = 0

3 Accept or reject iterate
4 Update trust-region radius

3 Check convergence

35 / 141

Sequential Linear Quadratic Programming

1 Initialize trust-region radius
2 Compute a new iterate

1 Solve linear program to predict active set

min
d

f (xk) + dT∇f (xk)

subject to c(xk) +∇c(xk)Td ≥ 0
‖d‖ ≤ ∆k

2 Solve equality constrained quadratic program

min
s

f (xk) + sT∇f (xk) +
1

2
sTW (xk)s

subject to cA(xk) +∇cA(xk)T s = 0

3 Accept or reject iterate
4 Update trust-region radius

3 Check convergence

36 / 141

Sequential Linear Quadratic Programming

1 Initialize trust-region radius
2 Compute a new iterate

1 Solve linear program to predict active set

min
d

f (xk) + dT∇f (xk)

subject to c(xk) +∇c(xk)Td ≥ 0
‖d‖ ≤ ∆k

2 Solve equality constrained quadratic program

min
s

f (xk) + sT∇f (xk) +
1

2
sTW (xk)s

subject to cA(xk) +∇cA(xk)T s = 0

3 Accept or reject iterate
4 Update trust-region radius

3 Check convergence

37 / 141

Acceptance Criteria

Decrease objective function value: f (xk + s) ≤ f (xk)

Decrease constraint violation: ‖c−(xk + s)‖ ≤ ‖c−(xk)‖

Four possibilities
1 step can decrease both f (x) and ‖c−(x)‖ GOOD
2 step can decrease f (x) and increase ‖c−(x)‖ ???
3 step can increase f (x) and decrease ‖c−(x)‖ ???
4 step can increase both f (x) and ‖c−(x)‖ BAD

Filter uses concept from multi-objective optimization

(hk+1, fk+1) dominates (h`, f`) iff hk+1 ≤ h` and fk+1 ≤ f`

38 / 141

Acceptance Criteria

Decrease objective function value: f (xk + s) ≤ f (xk)

Decrease constraint violation: ‖c−(xk + s)‖ ≤ ‖c−(xk)‖
Four possibilities

1 step can decrease both f (x) and ‖c−(x)‖ GOOD
2 step can decrease f (x) and increase ‖c−(x)‖ ???
3 step can increase f (x) and decrease ‖c−(x)‖ ???
4 step can increase both f (x) and ‖c−(x)‖ BAD

Filter uses concept from multi-objective optimization

(hk+1, fk+1) dominates (h`, f`) iff hk+1 ≤ h` and fk+1 ≤ f`

39 / 141

Acceptance Criteria

Decrease objective function value: f (xk + s) ≤ f (xk)

Decrease constraint violation: ‖c−(xk + s)‖ ≤ ‖c−(xk)‖
Four possibilities

1 step can decrease both f (x) and ‖c−(x)‖ GOOD
2 step can decrease f (x) and increase ‖c−(x)‖ ???
3 step can increase f (x) and decrease ‖c−(x)‖ ???
4 step can increase both f (x) and ‖c−(x)‖ BAD

Filter uses concept from multi-objective optimization

(hk+1, fk+1) dominates (h`, f`) iff hk+1 ≤ h` and fk+1 ≤ f`

40 / 141

Filter Framework
Filter F : list of non-dominated pairs (h`, f`)

new xk+1 is acceptable to filter F iff
1 hk+1 ≤ h` for all ` ∈ F or
2 fk+1 ≤ f` for all ` ∈ F

remove redundant filter entries

new xk+1 is rejected if for some ` ∈ F
1 hk+1 > h` and
2 fk+1 > f`

41 / 141

Filter Framework
Filter F : list of non-dominated pairs (h`, f`)

new xk+1 is acceptable to filter F iff
1 hk+1 ≤ h` for all ` ∈ F or
2 fk+1 ≤ f` for all ` ∈ F

remove redundant filter entries

new xk+1 is rejected if for some ` ∈ F
1 hk+1 > h` and
2 fk+1 > f`

42 / 141

Filter Framework
Filter F : list of non-dominated pairs (h`, f`)

new xk+1 is acceptable to filter F iff
1 hk+1 ≤ h` for all ` ∈ F or
2 fk+1 ≤ f` for all ` ∈ F

remove redundant filter entries

new xk+1 is rejected if for some ` ∈ F
1 hk+1 > h` and
2 fk+1 > f`

43 / 141

Convergence Criteria

Feasible and no descent directions

Constraint qualification – LICQ, MFCQ
Linearized active constraints characterize directions
Objective gradient is a linear combination of constraint
gradients

44 / 141

Optimality Conditions

If x∗ is a local minimizer and a constraint qualification holds,
then there exist multipliers λ∗ ≥ 0 such that

∇f (x∗)−∇cA(x∗)Tλ∗A = 0

Lagrangian function L(x , λ) := f (x)− λT c(x)

Optimality conditions can be written as

∇f (x)−∇c(x)Tλ = 0
0 ≤ λ ⊥ c(x) ≥ 0

Complementarity problem

45 / 141

Termination

Feasible and complementary ‖min(c(xk), λk)‖ ≤ τf
Optimal ‖∇xL(xk , λk)‖ ≤ τo
Other possible conditions

Slow progress
Iteration limit
Time limit

Multipliers and reduced costs

display consumption.slack; # Constraint violation

display consumption.dual; # Lagrange multipliers

display x.rc; # Gradient of Lagrangian

46 / 141

Convergence Issues

Quadratic convergence – best outcome

Globally infeasible – linear constraints infeasible

Locally infeasible – nonlinear constraints locally infeasible

Unbounded objective – hard to detect

Unbounded multipliers – constraint qualification not satisfied

Linear convergence rate

Far from a solution – ‖∇f (xk)‖ is large
Hessian is incorrect – disrupts quadratic convergence
Hessian is rank deficient – ‖∇f (xk)‖ is small
Limits of finite precision arithmetic

Domain violations such as 1
x when x = 0

Make implicit constraints explicit

Nonglobal solutions

Apply a multistart heuristic
Use global optimization solver

47 / 141

Some Available Software

ASTROS – Active-Set Trust-Region Optimization Solvers

filterSQP

trust-region SQP; robust QP solver
filter to promote global convergence

SNOPT

line-search SQP; null-space CG option
`1 exact penalty function

SLIQUE – part of KNITRO

SLP-EQP
trust-region with `1 penalty
use with knitro options = "algorithm=3";

48 / 141

Part II

Numerical Optimization II: Optimal

Control

49 / 141

Model Formulation

Maximize discounted utility

u(·) is the utility function
R is the retirement age
T is the terminal age
w is the wage
β is the discount factor
r is the interest rate

Optimization problem

max
s,c

T∑
t=0

βtu(ct)

subject to st+1 = (1 + r)st + w − ct t = 0, . . . ,R − 1
st+1 = (1 + r)st − ct t = R, . . . ,T
s0 = sT+1 = 0

50 / 141

Model: life1.mod

param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var c{0..T}; # Consumption

var s{0..T+1}; # Savings

var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

s[t+1] = (1+rate)*s[t] + wage - c[t];

retired {t in R..T}:

s[t+1] = (1+rate)*s[t] - c[t];

initial:

s[0] = 0;

terminal:

s[T+1] = 0;

51 / 141

Model: life1.mod

param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var c{0..T}; # Consumption

var s{0..T+1}; # Savings

var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

s[t+1] = (1+rate)*s[t] + wage - c[t];

retired {t in R..T}:

s[t+1] = (1+rate)*s[t] - c[t];

initial:

s[0] = 0;

terminal:

s[T+1] = 0;

52 / 141

Model: life1.mod

param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var c{0..T}; # Consumption

var s{0..T+1}; # Savings

var u{t in 0..T} = -exp(-c[t]); # Utility

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

s[t+1] = (1+rate)*s[t] + wage - c[t];

retired {t in R..T}:

s[t+1] = (1+rate)*s[t] - c[t];

initial:

s[0] = 0;

terminal:

s[T+1] = 0;

53 / 141

Data: life.dat

param R := 75; # Retirement age

param T := 100; # Terminal age

param beta := 0.9; # Discount factor

param rate := 0.2; # Interest rate

param wage := 1.0; # Wage rate

54 / 141

Commands: life1.cmd

Load model and data

model life1.mod;

data life.dat;

Specify solver and options

option solver mpec;

Solve the instance

solve;

Output results

printf {t in 0..T} "%2d %5.4e %5.4e\n", t, s[t], c[t] > out1.dat;

55 / 141

Output

ampl: include life1.cmd

AMPL interface to filter-MPEC: 20040408

: filter objective function = -3.24322

constraint violation = 1.01433e-11

Optimal solution found

14 iterations (0 for feasibility)

Evals: obj = 15, constr = 16, grad = 16, Hes = 15

ampl: quit;

56 / 141

Plot of Output

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

57 / 141

Model: life2.mod

param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var cbar{0..T}; # Scaled consumption

var c{t in 0..T} = cbar[t] / beta^t; # Actual consumption

var s{0..T+1}; # Savings

var u{t in 0..T} = -exp(-cbar[t] / beta^t);

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

s[t+1] = (1+rate)*s[t] + wage - cbar[t] / beta^t;

retired {t in R..T}:

s[t+1] = (1+rate)*s[t] - cbar[t] / beta^t;

initial:

s[0] = 0;

terminal:

s[T+1] = 0;

58 / 141

Plot of Output

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

59 / 141

Model: life3.mod

param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var cbar{0..T}; # Scaled consumption

var c{t in 0..T} = cbar[t] / beta^t; # Actual consumption

var s{0..T+1}; # Savings

var u{t in 0..T} = -exp(-cbar[t] / beta^t);

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

beta^t*s[t+1] = beta^t*(1+rate)*s[t] + beta^t*wage - cbar[t];

retired {t in R..T}:

beta^t*s[t+1] = beta^t*(1+rate)*s[t] - cbar[t];

initial:

s[0] = 0;

terminal:

s[T+1] = 0;

60 / 141

Plot of Output

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

61 / 141

Model: life4.mod

param R > 0, integer; # Retirement age

param T > R, integer; # Terminal age

param beta >= 0, < 1; # Discount factor

param rate >= 0, < 1; # Interest rate

param wage >= 0; # Wage rate

var cbar{0..T}; # Scaled consumption

var c{t in 0..T} = cbar[t] / beta^t; # Actual consumption

var sbar{0..T+1}; # Scaled savings

var s{t in 0..T+1} = sbar[t] / beta^t; # Actual savings

var u{t in 0..T} = -exp(-cbar[t] / beta^t);

maximize utility:

sum {t in 0..T} beta^t * u[t];

subject to

working {t in 0..R-1}:

sbar[t+1]/beta = (1+rate)*sbar[t] + beta^t*wage - cbar[t];

retired {t in R..T}:

sbar[t+1]/beta = (1+rate)*sbar[t] - cbar[t];

initial:

sbar[0] = 0;

terminal:

sbar[T+1] = 0;

62 / 141

Plot of Output

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

63 / 141

Solving Constrained Optimization Problems

min
x

f (x)

subject to c(x) ≥ 0

Main ingredients of solution approaches:

Local method: given xk (solution guess) find a step s.

Sequential Quadratic Programming (SQP)
Sequential Linear/Quadratic Programming (SLQP)
Interior-Point Method (IPM)

Globalization strategy: converge from any starting point.

Trust region
Line search

Acceptance criteria: filter or penalty function.

64 / 141

Interior-Point Method

Reformulate optimization problem with slacks

min
x

f (x)

subject to c(x) = 0
x ≥ 0

Construct perturbed optimality conditions

Fτ (x , y , z) =

∇f (x)−∇c(x)T y − z
c(x)

Xz − τe


Central path {x(τ), y(τ), z(τ) | τ > 0}
Apply Newton’s method for sequence τ ↘ 0

65 / 141

Interior-Point Method

1 Compute a new iterate
1 Solve linear system of equations Wk −∇c(xk)T −I

∇c(xk) 0 0
Zk 0 Xk

 sx
sy
sz

 = −Fµ(xk , yk , zk)

2 Accept or reject iterate
3 Update parameters

2 Check convergence

66 / 141

Convergence Issues

Quadratic convergence – best outcome

Globally infeasible – linear constraints infeasible

Locally infeasible – nonlinear constraints locally infeasible

Dual infeasible – dual problem is locally infeasible

Unbounded objective – hard to detect

Unbounded multipliers – constraint qualification not satisfied

Duality gap

Domain violations such as 1
x when x = 0

Make implicit constraints explicit

Nonglobal solutions

Apply a multistart heuristic
Use global optimization solver

67 / 141

Some Available Software

IPOPT – open source in COIN-OR

line-search filter algorithm

KNITRO

trust-region Newton to solve barrier problem
`1 penalty barrier function
Newton system: direct solves or null-space CG

LOQO

line-search method
Newton system: modified Cholesky factorization

68 / 141

Optimal Technology

Optimize energy production schedule and transition between old
and new reduced-carbon technology to meet carbon targets

Maximize social welfare

Constraints

Limit total greenhouse gas emissions
Low-carbon technology less costly as it becomes widespread

Assumptions on emission rates, economic growth, and energy
costs

69 / 141

Model Formulation

Finite time: t ∈ [0,T]

Instantaneous energy output: qo(t) and qn(t)

Cumulative energy output: xo(t) and xn(t)

xn(t) =

∫ t

0
qn(τ)dτ

Discounted greenhouse gases emissions∫ T

0
e−at (boq

o(t) + bnq
n(t)) dt ≤ zT

Consumer surplus S(Q(t), t) derived from utility

Production costs

co per unit cost of old technology
cn(xn(t)) per unit cost of new technology (learning by doing)

70 / 141

Continuous-Time Model

max
{qo ,qn,xn,z}(t)

∫ T

0
e−rt [S(qo(t) + qn(t), t)− coq

o(t)− cn(xn(t))qn(t)] dt

subject to ẋn(t) = qn(t) x(0) = x0 = 0

ż(t) = e−at (boq
o(t) + bnq

n(t)) z(0) = z0 = 0

z(T) ≤ zT

qo(t) ≥ 0, qn(t) ≥ 0.

71 / 141

Optimal Technology Penetration

Discretization:

t ∈ [0,T] replaced by N + 1 equally spaced points ti = ih

h := T/N time integration step-length

approximate qni ' qn(ti) etc.

Replace differential equation

ẋ(t) = qn(t)

by
xi+1 = xi + hqni

Output of new technology between t = 24 and t = 35

72 / 141

Optimal Technology Penetration

Discretization:

t ∈ [0,T] replaced by N + 1 equally spaced points ti = ih

h := T/N time integration step-length

approximate qni ' qn(ti) etc.

Replace differential equation

ẋ(t) = qn(t)

by
xi+1 = xi + hqni

Output of new technology between t = 24 and t = 35

73 / 141

Solution with Varying h

Output for different discretization schemes and step-sizes

74 / 141

Optimal Technology Penetration

Add adjustment cost to model building of capacity:
Capital and Investment:

K j(t) amount of capital in technology j at t.

I j(t) investment to increase K j(t).

initial capital level as K̄ j
0:

Notation:

Q(t) = qo(t) + qn(t)

C (t) = C o(qo(t),K o(t)) + Cn(qn(t),Kn(t))

I (t) = I o(t) + I n(t)

K (t) = K o(t) + Kn(t)

75 / 141

Optimal Technology Penetration

maximize
{qj ,K j ,I j ,x ,z}(t)

{∫ T

0
e−rt

[
S̃(Q(t), t)− C (t)− K (t)

]
dt + e−rTK (T)

}
subject to ẋ(t) = qn(t), x(0) = x0 = 0

K̇ j(t) = −δK j(t) + I j(t), K j(0) = K̄ j
0, j ∈ {o, n}

ż(t) = e−at [boq
o(t) + bnq

n(t)], z(0) = z0 = 0

z(T) ≤ zT

qj(t) ≥ 0, j ∈ {o, n}

I j(t) ≥ 0, j ∈ {o, n}

76 / 141

Optimal Technology Penetration

Optimal output, investment, and capital for 50% CO2 reduction.

77 / 141

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize 1
2

∫ 1

0
u2(t) + 2y2(t)dt

subject to

ẏ(t) = 1
2y(t) + u(t), t ∈ [0, 1],

y(0) = 1.

⇒ y∗(t) =
2e3t + e3

e3t/2(2 + e3)
,

u∗(t) =
2(e3t − e3)

e3t/2(2 + e3)
.

Discretize with 2nd order RK

minimize
h

2

K−1∑
k=0

u2k+1/2+2y2k+1/2

subject to (k = 0, . . . ,K):

yk+1/2 = yk +
h

2
(12yk + uk),

yk+1 = yk + h(12yk+1/2 + uk+1/2),

Discrete solution (k =
0, . . . ,K):

yk = 1, yk+1/2 = 0,

uk = −4 + h

2h
, uk+1/2 = 0,

DOES NOT CONVERGE!

78 / 141

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize 1
2

∫ 1

0
u2(t) + 2y2(t)dt

subject to

ẏ(t) = 1
2y(t) + u(t), t ∈ [0, 1],

y(0) = 1.

⇒ y∗(t) =
2e3t + e3

e3t/2(2 + e3)
,

u∗(t) =
2(e3t − e3)

e3t/2(2 + e3)
.

Discretize with 2nd order RK

minimize
h

2

K−1∑
k=0

u2k+1/2+2y2k+1/2

subject to (k = 0, . . . ,K):

yk+1/2 = yk +
h

2
(12yk + uk),

yk+1 = yk + h(12yk+1/2 + uk+1/2),

Discrete solution (k =
0, . . . ,K):

yk = 1, yk+1/2 = 0,

uk = −4 + h

2h
, uk+1/2 = 0,

DOES NOT CONVERGE!

79 / 141

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize 1
2

∫ 1

0
u2(t) + 2y2(t)dt

subject to

ẏ(t) = 1
2y(t) + u(t), t ∈ [0, 1],

y(0) = 1.

⇒ y∗(t) =
2e3t + e3

e3t/2(2 + e3)
,

u∗(t) =
2(e3t − e3)

e3t/2(2 + e3)
.

Discretize with 2nd order RK

minimize
h

2

K−1∑
k=0

u2k+1/2+2y2k+1/2

subject to (k = 0, . . . ,K):

yk+1/2 = yk +
h

2
(12yk + uk),

yk+1 = yk + h(12yk+1/2 + uk+1/2),

Discrete solution (k =
0, . . . ,K):

yk = 1, yk+1/2 = 0,

uk = −4 + h

2h
, uk+1/2 = 0,

DOES NOT CONVERGE!
80 / 141

Tips to Solve Continuous-Time Problems

Use discretize-then-optimize with different schemes

Refine discretization: h = 1 discretization is nonsense

Check implied discretization of adjoints

Alternative: Optimize-Then-Discretize

Consistent adjoint/dual discretization

Discretized gradients can be wrong!

Harder for inequality constraints

81 / 141

Tips to Solve Continuous-Time Problems

Use discretize-then-optimize with different schemes

Refine discretization: h = 1 discretization is nonsense

Check implied discretization of adjoints

Alternative: Optimize-Then-Discretize

Consistent adjoint/dual discretization

Discretized gradients can be wrong!

Harder for inequality constraints

82 / 141

Ordered Sets

param V, integer; # Number of vertices

param E, integer; # Number of elements

set VERTICES := {1..V}; # Vertex indices

set ELEMENTS := {1..E}; # Element indices

set COORDS := {1..3} ordered; # Spatial coordinates

param T{ELEMENTS, 1..4} in VERTICES; # Tetrahedral elements

var x{VERTICES, COORDS}; # Position of vertices

var norm{e in ELEMENTS} = sum{i in COORDS, j in 1..4}

(x[T[e,j], i] - x[T[e,1], i])^2;

var area{e in ELEMENTS} = sum{i in COORDS}

(x[T[e,2], i] - x[T[e,1], i]) *

((x[T[e,3], nextw(i)] - x[T[e,1], nextw(i)]) *

(x[T[e,4], prevw(i)] - x[T[e,1], prevw(i)]) -

(x[T[e,3], prevw(i)] - x[T[e,1], prevw(i)]) *

(x[T[e,4], nextw(i)] - x[T[e,1], nextw(i)]));

minimize f: sum {e in ELEMENTS} norm[e] / max(area[e], 0) ^ (2 / 3);

83 / 141

Circular Sets

param V, integer; # Number of vertices

param E, integer; # Number of elements

set VERTICES := {1..V}; # Vertex indices

set ELEMENTS := {1..E}; # Element indices

set COORDS := {1..3} circular; # Spatial coordinates

param T{ELEMENTS, 1..4} in VERTICES; # Tetrahedral elements

var x{VERTICES, COORDS}; # Position of vertices

var norm{e in ELEMENTS} = sum{i in COORDS, j in 1..4}

(x[T[e,j], i] - x[T[e,1], i])^2;

var area{e in ELEMENTS} = sum{i in COORDS}

(x[T[e,2], i] - x[T[e,1], i]) *

((x[T[e,3], next(i)] - x[T[e,1], next(i)]) *

(x[T[e,4], prev(i)] - x[T[e,1], prev(i)]) -

(x[T[e,3], prev(i)] - x[T[e,1], prev(i)]) *

(x[T[e,4], next(i)] - x[T[e,1], next(i)]));

minimize f: sum {e in ELEMENTS} norm[e] / max(area[e], 0) ^ (2 / 3);

84 / 141

Part III

Numerical Optimization III:

Complementarity Constraints

85 / 141

Nash Games

Non-cooperative game played by n individuals

Each player selects a strategy to optimize their objective
Strategies for the other players are fixed

Equilibrium reached when no improvement is possible

Characterization of two player equilibrium (x∗, y∗)

x∗ ∈

{
arg min

x≥0
f1(x , y∗)

subject to c1(x) ≤ 0

y∗ ∈

{
arg min

y≥0
f2(x∗, y)

subject to c2(y) ≤ 0

Many applications in economics

Bimatrix games
Cournot duopoly models
General equilibrium models
Arrow-Debreau models

86 / 141

Nash Games

Non-cooperative game played by n individuals

Each player selects a strategy to optimize their objective
Strategies for the other players are fixed

Equilibrium reached when no improvement is possible

Characterization of two player equilibrium (x∗, y∗)

x∗ ∈

{
arg min

x≥0
f1(x , y∗)

subject to c1(x) ≤ 0

y∗ ∈

{
arg min

y≥0
f2(x∗, y)

subject to c2(y) ≤ 0

Many applications in economics

Bimatrix games
Cournot duopoly models
General equilibrium models
Arrow-Debreau models

87 / 141

Nash Games

Non-cooperative game played by n individuals

Each player selects a strategy to optimize their objective
Strategies for the other players are fixed

Equilibrium reached when no improvement is possible

Characterization of two player equilibrium (x∗, y∗)

x∗ ∈

{
arg min

x≥0
f1(x , y∗)

subject to c1(x) ≤ 0

y∗ ∈

{
arg min

y≥0
f2(x∗, y)

subject to c2(y) ≤ 0

Many applications in economics

Bimatrix games
Cournot duopoly models
General equilibrium models
Arrow-Debreau models

88 / 141

Complementarity Formulation

Assume each optimization problem is convex

f1(·, y) is convex for each y
f2(x , ·) is convex for each x
c1(·) and c2(·) satisfy constraint qualification

Then the first-order conditions are necessary and sufficient

min
x≥0

f1(x , y∗)

subject to c1(x) ≤ 0
⇔ 0 ≤ x ⊥ ∇x f1(x , y∗) + λT

1 ∇xc1(x) ≥ 0
0 ≤ λ1 ⊥ −c1(x) ≥ 0

89 / 141

Complementarity Formulation

Assume each optimization problem is convex

f1(·, y) is convex for each y
f2(x , ·) is convex for each x
c1(·) and c2(·) satisfy constraint qualification

Then the first-order conditions are necessary and sufficient

min
y≥0

f2(x∗, y)

subject to c2(y) ≤ 0
⇔ 0 ≤ y ⊥ ∇y f2(x∗, y) + λT

2 ∇yc2(y) ≥ 0
0 ≤ λ2 ⊥ −c2(y) ≥ 0

90 / 141

Complementarity Formulation

Assume each optimization problem is convex

f1(·, y) is convex for each y
f2(x , ·) is convex for each x
c1(·) and c2(·) satisfy constraint qualification

Then the first-order conditions are necessary and sufficient

0 ≤ x ⊥ ∇x f1(x , y) + λT1 ∇xc1(x) ≥ 0
0 ≤ y ⊥ ∇y f2(x , y) + λT2 ∇yc2(y) ≥ 0
0 ≤ λ1 ⊥ −c1(y) ≥ 0
0 ≤ λ2 ⊥ −c2(y) ≥ 0

Nonlinear complementarity problem

Square system – number of variables and constraints the same
Each solution is an equilibrium for the Nash game

91 / 141

Model Formulation

Economy with n agents and m commodities

e ∈ <n×m are the endowments
α ∈ <n×m and β ∈ <n×m are the utility parameters
p ∈ <m are the commodity prices

Agent i maximizes utility with budget constraint

max
xi,∗≥0

m∑
k=1

αi ,k(1 + xi ,k)1−βi,k

1− βi ,k

subject to
m∑

k=1

pk (xi ,k − ei ,k) ≤ 0

Market k sets price for the commodity

0 ≤ pk ⊥
n∑

i=1

(ei ,k − xi ,k) ≥ 0

92 / 141

Model: cge.mod

set AGENTS; # Agents

set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment

param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters

param beta {AGENTS, COMMODITIES} > 0;

var x {AGENTS, COMMODITIES}; # Consumption (no bounds!)

var l {AGENTS}; # Multipliers (no bounds!)

var p {COMMODITIES}; # Prices (no bounds!)

var du {i in AGENTS, k in COMMODITIES} = # Marginal prices

alpha[i,k] / (1 + x[i,k])^beta[i,k];

subject to

optimality {i in AGENTS, k in COMMODITIES}:

0 <= x[i,k] complements -du[i,k] + p[k] * l[i] >= 0;

budget {i in AGENTS}:

0 <= l[i] complements sum {k in COMMODITIES} p[k]*(e[i,k] - x[i,k]) >= 0;

market {k in COMMODITIES}:

0 <= p[k] complements sum {i in AGENTS} (e[i,k] - x[i,k]) >= 0;

93 / 141

Data: cge.dat

set AGENTS := Jorge, Sven, Todd;

set COMMODITIES := Books, Cars, Food, Pens;

param alpha : Books Cars Food Pens :=

Jorge 1 1 1 1

Sven 1 2 3 4

Todd 2 1 1 5;

param beta (tr): Jorge Sven Todd :=

Books 1.5 2 0.6

Cars 1.6 3 0.7

Food 1.7 2 2.0

Pens 1.8 2 2.5;

94 / 141

Commands: cge.cmd

Load model and data

model cge.mod;

data cge.dat;

Specify solver and options

option presolve 0;

option solver "pathampl";

Solve the instance

solve;

Output results

printf {i in AGENTS, k in COMMODITIES} "%5s %5s: % 5.4e\n", i, k, x[i,k] > cge.out;

printf "\n" > cge.out;

printf {k in COMMODITIES} "%5s: % 5.4e\n", k, p[k] > cge.out;

95 / 141

Results: cge.out

Jorge Books: 8.9825e-01

Jorge Cars: 1.4651e+00

Jorge Food: 1.2021e+00

Jorge Pens: 6.8392e-01

Sven Books: 2.5392e-01

Sven Cars: 7.2054e-01

Sven Food: 1.6271e+00

Sven Pens: 1.4787e+00

Todd Books: 1.8478e+00

Todd Cars: 8.1431e-01

Todd Food: 1.7081e-01

Todd Pens: 8.3738e-01

Books: 1.0825e+01

Cars: 6.6835e+00

Food: 7.3983e+00

Pens: 1.1081e+01

96 / 141

Commands: cgenum.cmd

Load model and data

model cge.mod;

data cge.dat;

Specify solver and options

option presolve 0;

option solver "pathampl";

Solve the instance

drop market[’Books’];

fix p[’Books’] := 1;

solve;

Output results

printf {i in AGENTS, k in COMMODITIES} "%5s %5s: % 5.4e\n", i, k, x[i,k] > cgenum.out;

printf "\n" > cgenum.out;

printf {k in COMMODITIES} "%5s: % 5.4e\n", k, p[k] > cgenum.out;

97 / 141

Results: cgenum.out

Jorge Books: 8.9825e-01

Jorge Cars: 1.4651e+00

Jorge Food: 1.2021e+00

Jorge Pens: 6.8392e-01

Sven Books: 2.5392e-01

Sven Cars: 7.2054e-01

Sven Food: 1.6271e+00

Sven Pens: 1.4787e+00

Todd Books: 1.8478e+00

Todd Cars: 8.1431e-01

Todd Food: 1.7081e-01

Todd Pens: 8.3738e-01

Books: 1.0000e+00

Cars: 6.1742e-01

Food: 6.8345e-01

Pens: 1.0237e+00

98 / 141

Pitfalls

Nonsquare systems

Side variables
Side constraints

Orientation of equations

Skew symmetry preferred
Proximal point perturbation

AMPL presolve

option presolve 0;

99 / 141

Newton Method for Nonlinear Equations

100 / 141

Newton Method for Nonlinear Equations

101 / 141

Newton Method for Nonlinear Equations

102 / 141

Newton Method for Nonlinear Equations

103 / 141

Methods for Complementarity Problems

Sequential linearization methods (PATH)
1 Solve the linear complementarity problem

0 ≤ x ⊥ F (xk) +∇F (xk)(x − xk) ≥ 0

2 Perform a line search along merit function
3 Repeat until convergence

Semismooth reformulation methods (SEMI)

Solve linear system of equations to obtain direction
Globalize with a trust region or line search
Less robust in general

Interior-point methods

104 / 141

Methods for Complementarity Problems

Sequential linearization methods (PATH)
1 Solve the linear complementarity problem

0 ≤ x ⊥ F (xk) +∇F (xk)(x − xk) ≥ 0

2 Perform a line search along merit function
3 Repeat until convergence

Semismooth reformulation methods (SEMI)

Solve linear system of equations to obtain direction
Globalize with a trust region or line search
Less robust in general

Interior-point methods

105 / 141

Semismooth Reformulation

Define Fischer-Burmeister function

φ(a, b) := a + b −
√

a2 + b2

φ(a, b) = 0 iff a ≥ 0, b ≥ 0, and ab = 0

Define the system

[Φ(x)]i = φ(xi ,Fi (x))

x∗ solves complementarity problem iff Φ(x∗) = 0

Nonsmooth system of equations

106 / 141

Semismooth Algorithm

1 Calculate Hk ∈ ∂BΦ(xk) and solve the following system for
dk :

Hkdk = −Φ(xk)

If this system either has no solution, or

∇Ψ(xk)Tdk ≤ −p1‖dk‖p2

is not satisfied, let dk = −∇Ψ(xk).

2 Compute smallest nonnegative integer ik such that

Ψ(xk + βi
k
dk) ≤ Ψ(xk) + σβi

k∇Ψ(xk)dk

3 Set xk+1 = xk + βi
k
dk , k = k + 1, and go to 1.

107 / 141

Semismooth Algorithm

1 Calculate Hk ∈ ∂BΦ(xk) and solve the following system for
dk :

Hkdk = −Φ(xk)

If this system either has no solution, or

∇Ψ(xk)Tdk ≤ −p1‖dk‖p2

is not satisfied, let dk = −∇Ψ(xk).

2 Compute smallest nonnegative integer ik such that

Ψ(xk + βi
k
dk) ≤ Ψ(xk) + σβi

k∇Ψ(xk)dk

3 Set xk+1 = xk + βi
k
dk , k = k + 1, and go to 1.

108 / 141

Convergence Issues

Quadratic convergence – best outcome

Linear convergence

Far from a solution – r(xk) is large
Jacobian is incorrect – disrupts quadratic convergence
Jacobian is rank deficient – ‖∇r(xk)‖ is small
Converge to local minimizer – guarantees rank deficiency
Limits of finite precision arithmetic

1 r(xk) converges quadratically to small number
2 r(xk) hovers around that number with no progress

Domain violations such as 1
x when x = 0

109 / 141

Some Available Software

PATH – sequential linearization method

MILES – sequential linearization method

SEMI – semismooth linesearch method

TAO – Toolkit for Advanced Optimization

SSLS – full-space semismooth linesearch methods
ASLS – active-set semismooth linesearch methods
RSCS – reduced-space method

110 / 141

Definition

Leader-follower game
Dominant player (leader) selects a strategy y∗

Then followers respond by playing a Nash game

x∗i ∈

{
arg min

xi≥0
fi (x , y)

subject to ci (xi) ≤ 0

Leader solves optimization problem with equilibrium
constraints

min
y≥0,x ,λ

g(x , y)

subject to h(y) ≤ 0
0 ≤ xi ⊥ ∇xi fi (x , y) + λTi ∇xi ci (xi) ≥ 0
0 ≤ λi ⊥ −ci (xi) ≥ 0

Many applications in economics
Optimal taxation
Tolling problems

111 / 141

Model Formulation

Economy with n agents and m commodities

e ∈ <n×m are the endowments
α ∈ <n×m and β ∈ <n×m are the utility parameters
p ∈ <m are the commodity prices

Agent i maximizes utility with budget constraint

max
xi,∗≥0

m∑
k=1

αi ,k(1 + xi ,k)1−βi,k

1− βi ,k

subject to
m∑

k=1

pk (xi ,k − ei ,k) ≤ 0

Market k sets price for the commodity

0 ≤ pk ⊥
n∑

i=1

(ei ,k − xi ,k) ≥ 0

112 / 141

Model: cgempec.mod

set LEADER; # Leader

set FOLLOWERS; # Followers

set AGENTS := LEADER union FOLLOWERS; # All the agents

check: (card(LEADER) == 1 && card(LEADER inter FOLLOWERS) == 0);

set COMMODITIES; # Commodities

param e {AGENTS, COMMODITIES} >= 0, default 1; # Endowment

param alpha {AGENTS, COMMODITIES} > 0; # Utility parameters

param beta {AGENTS, COMMODITIES} > 0;

var x {AGENTS, COMMODITIES}; # Consumption (no bounds!)

var l {FOLLOWERS}; # Multipliers (no bounds!)

var p {COMMODITIES}; # Prices (no bounds!)

var u {i in AGENTS} = # Utility

sum {k in COMMODITIES} alpha[i,k] * (1 + x[i,k])^(1 - beta[i,k]) / (1 - beta[i,k]);

var du {i in AGENTS, k in COMMODITIES} = # Marginal prices

alpha[i,k] / (1 + x[i,k])^beta[i,k];

113 / 141

Model: cgempec.mod

maximize

objective: sum {i in LEADER} u[i];

subject to

leader_budget {i in LEADER}:

sum {k in COMMODITIES} p[k]*(e[i,k] - x[i,k]) >= 0;

optimality {i in FOLLOWERS, k in COMMODITIES}:

0 <= x[i,k] complements -du[i,k] + p[k] * l[i] >= 0;

budget {i in FOLLOWERS}:

0 <= l[i] complements sum {k in COMMODITIES} p[k]*(e[i,k] - x[i,k]) >= 0;

market {k in COMMODITIES}:

0 <= p[k] complements sum {i in AGENTS} (e[i,k] - x[i,k]) >= 0;

114 / 141

Data: cgempec.dat

set LEADER := Jorge;

set FOLLOWERS := Sven, Todd;

set COMMODITIES := Books, Cars, Food, Pens;

param alpha : Books Cars Food Pens :=

Jorge 1 1 1 1

Sven 1 2 3 4

Todd 2 1 1 5;

param beta (tr): Jorge Sven Todd :=

Books 1.5 2 0.6

Cars 1.6 3 0.7

Food 1.7 2 2.0

Pens 1.8 2 2.5;

115 / 141

Commands: cgempec.cmd

Load model and data

model cgempec.mod;

data cgempec.dat;

Specify solver and options

option presolve 0;

option solver "loqo";

Solve the instance

drop market[’Books’];

fix p[’Books’] := 1;

solve;

Output results

printf {i in AGENTS, k in COMMODITIES} "%5s %5s: % 5.4e\n", i, k, x[i,k] > cgempec.out;

printf "\n" > cgempec.out;

printf {k in COMMODITIES} "%5s: % 5.4e\n", k, p[k] > cgempec.out;

116 / 141

Output: cgempec.out

Stackleberg Nash Game

Jorge Books: 9.2452e-01 Jorge Books: 8.9825e-01

Jorge Cars: 1.3666e+00 Jorge Cars: 1.4651e+00

Jorge Food: 1.1508e+00 Jorge Food: 1.2021e+00

Jorge Pens: 7.7259e-01 Jorge Pens: 6.8392e-01

Sven Books: 2.5499e-01 Sven Books: 2.5392e-01

Sven Cars: 7.4173e-01 Sven Cars: 7.2054e-01

Sven Food: 1.6657e+00 Sven Food: 1.6271e+00

Sven Pens: 1.4265e+00 Sven Pens: 1.4787e+00

Todd Books: 1.8205e+00 Todd Books: 1.8478e+00

Todd Cars: 8.9169e-01 Todd Cars: 8.1431e-01

Todd Food: 1.8355e-01 Todd Food: 1.7081e-01

Todd Pens: 8.0093e-01 Todd Pens: 8.3738e-01

Books: 1.0000e+00 Books: 1.0000e+00

Cars: 5.9617e-01 Cars: 6.1742e-01

Food: 6.6496e-01 Food: 6.8345e-01

Pens: 1.0700e+00 Pens: 1.0237e+00

117 / 141

Nonlinear Programming Formulation

min
x ,y ,λ,s,t≥0

g(x , y)

subject to h(y) ≤ 0
si = ∇xi fi (x , y) + λTi ∇xi ci (xi)
ti = −ci (xi)∑
i

(
sTi xi + λi ti

)
≤ 0

Constraint qualification fails

Lagrange multiplier set unbounded
Constraint gradients linearly dependent
Central path does not exist

Able to prove convergence results for some methods

Reformulation very successful and versatile in practice

118 / 141

Penalization Approach

min
x ,y ,λ,s,t≥0

g(x , y) + π
∑
i

(
sTi xi + λi ti

)
subject to h(y) ≤ 0

si = ∇xi fi (x , y) + λTi ∇xi ci (xi)
ti = −ci (xi)

Optimization problem satisfies constraint qualification

Need to increase π

119 / 141

Relaxation Approach

min
x ,y ,λ,s,t≥0

g(x , y)

subject to h(y) ≤ 0
si = ∇xi fi (x , y) + λTi ∇xi ci (xi)
ti = −ci (xi)∑
i

(
sTi xi + λi ti

)
≤ τ

Need to decrease τ

120 / 141

Limitations

Multipliers may not exist

Solvers can have a hard time computing solutions

Try different algorithms
Compute feasible starting point

Stationary points may have descent directions

Checking for descent is an exponential problem
Strong stationary points found in certain cases

Many stationary points – global optimization

Formulation of follower problem

Multiple solutions to Nash game
Nonconvex objective or constraints
Existence of multipliers

121 / 141

Limitations

Multipliers may not exist

Solvers can have a hard time computing solutions

Try different algorithms
Compute feasible starting point

Stationary points may have descent directions

Checking for descent is an exponential problem
Strong stationary points found in certain cases

Many stationary points – global optimization

Formulation of follower problem

Multiple solutions to Nash game
Nonconvex objective or constraints
Existence of multipliers

122 / 141

Model Formulation

Firm f ∈ F chooses output xf to maximize profit

u is the utility function

u =

(
1 +

∑
f∈F

xαf

) η
α

α and η are parameters
cf is the unit cost for each firm

In particular, for each firm f ∈ F

x∗f ∈ arg max
xf≥0

(
∂u

∂xf
− cf

)
xf

First-order optimality conditions

0 ≤ xf ⊥ cf − ∂u
∂xf
− xf

∂2u
∂x2f
≥ 0

123 / 141

Model: oligopoly.mod

set FIRMS; # Firms in problem

param c {FIRMS}; # Unit cost

param alpha > 0; # Constants

param eta > 0;

var x {FIRMS} default 0.1; # Output (no bounds!)

var s = 1 + sum {f in FIRMS} x[f]^alpha; # Summation term

var u = s^(eta/alpha); # Utility

var du {f in FIRMS} = # Marginal price

eta * s^(eta/alpha - 1) * x[f]^(alpha - 1);

var dudu {f in FIRMS} = # Derivative

eta * (eta - alpha) * s^(eta/alpha - 2) * x[f]^(2 * alpha - 2) +

eta * (alpha - 1) * s^(eta/alpha - 1) * x[f]^(alpha - 2);

compl {f in FIRMS}:

0 <= x[f] complements c[f] - du[f] - x[f] * dudu[f] >= 0;

124 / 141

Data: oligopoly.dat

param: FIRMS : c :=

1 0.07

2 0.08

3 0.09;

param alpha := 0.999;

param eta := 0.2;

125 / 141

Commands: oligopoly.cmd

Load model and data

model oligopoly.mod;

data oligopoly.dat;

Specify solver and options

option presolve 0;

option solver "pathampl";

Solve complementarity problem

solve;

Output the results

printf {f in FIRMS} "Output for firm %2d: % 5.4e\n", f, x[f] > oligcomp.out;

126 / 141

Results: oligopoly.out

Output for firm 1: 8.3735e-01

Output for firm 2: 5.0720e-01

Output for firm 3: 1.7921e-01

127 / 141

Model Formulation

Players select strategies to minimize loss

p ∈ <n is the probability player 1 chooses each strategy
q ∈ <m is the probability player 2 chooses each strategy
A ∈ <n×m is the loss matrix for player 1
B ∈ <n×m is the loss matrix for player 2

Optimization problem for player 1

min
0≤p≤1

pTAq

subject to eTp = 1

Optimization problem for player 2

min
0≤q≤1

pTBq

subject to eTq = 1

128 / 141

Model Formulation

Players select strategies to minimize loss

p ∈ <n is the probability player 1 chooses each strategy
q ∈ <m is the probability player 2 chooses each strategy
A ∈ <n×m is the loss matrix for player 1
B ∈ <n×m is the loss matrix for player 2

Complementarity problem

0 ≤ p ≤ 1 ⊥ Aq − λ1
0 ≤ q ≤ 1 ⊥ BTp − λ2
λ1 free ⊥ eTp = 1
λ2 free ⊥ eTq = 1

129 / 141

Model: bimatrix1.mod

param n > 0, integer; # Strategies for player 1

param m > 0, integer; # Strategies for player 2

param A{1..n, 1..m}; # Loss matrix for player 1

param B{1..n, 1..m}; # Loss matrix for player 2

var p{1..n}; # Probability player 1 selects strategy i

var q{1..m}; # Probability player 2 selects strategy j

var lambda1; # Multiplier for constraint

var lambda2; # Multiplier for constraint

subject to

opt1 {i in 1..n}: # Optimality conditions for player 1

0 <= p[i] <= 1 complements sum{j in 1..m} A[i,j] * q[j] - lambda1;

opt2 {j in 1..m}: # Optimality conditions for player 2

0 <= q[j] <= 1 complements sum{i in 1..n} B[i,j] * p[i] - lambda2;

con1:

lambda1 complements sum{i in 1..n} p[i] = 1;

con2:

lambda2 complements sum{j in 1..m} q[j] = 1;

130 / 141

Model: bimatrix2.mod

param n > 0, integer; # Strategies for player 1

param m > 0, integer; # Strategies for player 2

param A{1..n, 1..m}; # Loss matrix for player 1

param B{1..n, 1..m}; # Loss matrix for player 2

var p{1..n}; # Probability player 1 selects strategy i

var q{1..m}; # Probability player 2 selects strategy j

var lambda1; # Multiplier for constraint

var lambda2; # Multiplier for constraint

subject to

opt1 {i in 1..n}: # Optimality conditions for player 1

0 <= p[i] complements sum{j in 1..m} A[i,j] * q[j] - lambda1 >= 0;

opt2 {j in 1..m}: # Optimality conditions for player 2

0 <= q[j] complements sum{i in 1..n} B[i,j] * p[i] - lambda2 >= 0;

con1:

0 <= lambda1 complements sum{i in 1..n} p[i] >= 1;

con2:

0 <= lambda2 complements sum{j in 1..m} q[j] >= 1;

131 / 141

Model: bimatrix3.mod

param n > 0, integer; # Strategies for player 1

param m > 0, integer; # Strategies for player 2

param A{1..n, 1..m}; # Loss matrix for player 1

param B{1..n, 1..m}; # Loss matrix for player 2

var p{1..n}; # Probability player 1 selects strategy i

var q{1..m}; # Probability player 2 selects strategy j

subject to

opt1 {i in 1..n}: # Optimality conditions for player 1

0 <= p[i] complements sum{j in 1..m} A[i,j] * q[j] >= 1;

opt2 {j in 1..m}: # Optimality conditions for player 2

0 <= q[j] complements sum{i in 1..n} B[i,j] * p[i] >= 1;

132 / 141

Part IV

Numerical Optimization IV: Extensions

133 / 141

Global Optimization

I need to find the GLOBAL minimum!

use any NLP solver (often work well!)

use the multi-start trick from previous slides

global optimization based on branch-and-reduce: BARON

constructs global underestimators
refines region by branching
tightens bounds by solving LPs
solve problems with 100s of variables

“voodoo” solvers: genetic algorithm & simulated annealing
no convergence theory ... usually worse than deterministic

134 / 141

Derivative-Free Optimization

My model does not have derivatives!

Change your model ... good models have derivatives!

pattern-search methods for min f (x)

evaluate f (x) at stencil xk + ∆M
move to new best point
extend to NLP; some convergence theory h
matlab: NOMADm.m; parallel APPSPACK

solvers based on building interpolating quadratic models

DFO project on www.coin-or.org

Mike Powell’s NEWUOA quadratic model

“voodoo” solvers: genetic algorithm & simulated annealing
no convergence theory ... usually worse than deterministic

135 / 141

Optimization with Integer Variables

Mixed-Integer Nonlinear Program (MINLP)

modeling discrete choices ⇒ 0− 1 variables

modeling integer decisions ⇒ integer variables
e.g. number of different stocks in portfolio (8-10)
not number of beers sold at Goose Island (millions)

MINLP solvers:

branch (separate zi = 0 and zi = 1) and cut

solve millions of NLP relaxations: MINLPBB, SBB

outer approximation: iterate MILP and NLP solvers
BONMIN (COIN-OR) & FilMINT on NEOS

136 / 141

Portfolio Management

N: Universe of asset to purchase

xi : Amount of asset i to hold

B: Budget

minimize u(x) subject to
∑
i∈N

xi = B, x ≥ 0

Markowitz: u(x)
def
= −αT x + λxTQx

α: maximize expected returns
Q: variance-covariance matrix of expected returns
λ: minimize risk; aversion parameter

137 / 141

Portfolio Management

N: Universe of asset to purchase

xi : Amount of asset i to hold

B: Budget

minimize u(x) subject to
∑
i∈N

xi = B, x ≥ 0

Markowitz: u(x)
def
= −αT x + λxTQx

α: maximize expected returns
Q: variance-covariance matrix of expected returns
λ: minimize risk; aversion parameter

138 / 141

More Realistic Models

b ∈ R|N| of “benchmark” holdings

Benchmark Tracking: u(x)
def
= (x − b)TQ(x − b)

Constraint on E[Return]: αT x ≥ r

Limit Names: |i ∈ N : xi > 0| ≤ K

Use binary indicator variables to model the implication
xi > 0⇒ yi = 1
Implication modeled with variable upper bounds:

xi ≤ Byi ∀i ∈ N∑
i∈N yi ≤ K

139 / 141

More Realistic Models

b ∈ R|N| of “benchmark” holdings

Benchmark Tracking: u(x)
def
= (x − b)TQ(x − b)

Constraint on E[Return]: αT x ≥ r

Limit Names: |i ∈ N : xi > 0| ≤ K

Use binary indicator variables to model the implication
xi > 0⇒ yi = 1
Implication modeled with variable upper bounds:

xi ≤ Byi ∀i ∈ N∑
i∈N yi ≤ K

140 / 141

Optimization Conclusions

Optimization is General Modeling Paradigm

linear, nonlinear, equations, inequalities

integer variables, equilibrium, control

AMPL (GAMS) Modeling and Programming Languages

express optimization problems

use automatic differentiation

easy access to state-of-the-art solvers

Optimization Software

open-source: COIN-OR, IPOPT, SOPLEX, & ASTROS (soon)

current solver limitations on laptop:

1,000,000 variables/constraints for LPs
100,000 variables/constraints for NLPs/NCPs
100 variables/constraints for global optimization
500,000,000 variable LP on BlueGene/P

141 / 141

	Numerical Optimization I: Static Models
	Unconstrained Optimization
	Maximum Likelihood Estimation
	Solution Techniques

	Constrained Optimization
	Social Planning Model
	Sequential Quadratic Programming

	Numerical Optimization II: Optimal Control
	Discrete-Time Optimal Control
	Life-Cycle Saving Model
	Interior-Point Methods

	Continuous-Time Optimal Control
	Technology Penetration Model
	Discretize then Optimize

	Other Models
	Finite-Element Method

	Numerical Optimization III: Complementarity Constraints
	Complementarity Problems
	Arrow-Debreu Model
	Generalized Newton Methods

	Mathematical Programs with Equilibrium Constraints
	Endowment Economy
	Solution Techniques

	Other Models
	Oligopoly Model
	Bimatrix Games

	Numerical Optimization IV: Extensions
	Global Optimization
	Derivative-Free Optimization
	Integer Variables

