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Part I

Introduction
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Overview of Optimization

One-dimensional unconstrained optimization

Characterization of critical points
Basic algorithms

Nonlinear systems of equations

Multi-dimensional unconstrained optimization

Critical points and their types
Computation of local maximizers

Multi-dimensional constrained optimization

Critical points and Lagrange multipliers
Second-order sufficiency conditions
Globally-convergent algorithms

Complementarity constraints

Stationarity concepts
Constraint qualifications
Numerical methods
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One-dimensional Unconstrained Optimization

max
x

f (x) = −x4 + 5x2 + x − 4
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Critical Points

Stationarity: ∇f (x) = −4x3 + 10x + 1 = 0

Local maximizer: ∇2f (x) = −12x2 + 10 < 0

Local minimizer: ∇2f (x) = −12x2 + 10 > 0
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Locally-convergent Newton Method

All good algorithms are based on Newton’s method

Compute stationary points: F (x) = ∇f (x) = 0

Form Taylor series approximation around xk

F (x) ≈ ∇F (xk)(x − xk) + F (xk)

Solve for x and iterate

xk+1 = xk − F (xk)

∇F (xk)
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Illustration of Newton’s Method
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Illustration of Newton’s Method
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Illustration of Newton’s Method
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Illustration of Newton’s Method
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Illustration of Cycling
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Illustration of Divergence
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Possible Outcomes

Sequence converges to a solution

Sequence cycles

Convergent subsequences (limit points)
Limit points are not solutions

Sequence diverges
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Globally Convergent Newton Method

Use Newton method to compute a direction

Determine an appropriate stepsize

Line search using the objective function
Trust region around the approximation

Iterate until convergence
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Part II

Nonlinear Systems of Equations
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Newton Method for Square Systems of Equations

Given F : <n → <n, compute x such that

F (x) = 0

First-order Taylor series approximation

∇F (xk)(x − xk) + F (xk) = 0

Solve linear system of equations

xk+1 = xk −∇F (xk)−1F (xk)

Direct method – compute factorization
Iterative method – use Krylov subspace

Method has local (fast) convergence under suitable conditions
If xk is near a solution, method converges to a solution x∗

The distance to the solution decreases quickly; ideally,

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2
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Globalized Newton Method

Solve linear system of equations

∇F (xk)sk = −F (xk)

Determine step length

tk ∈ arg min
t∈(0,1]

‖F (xk + tsk)‖22

Update iterate
xk+1 = xk + tksk
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Globalized Newton Method with Proximal Perturbation

Solve linear system of equations

(∇F (xk) + λk I )sk = −F (xk)

Check step and possibly use steepest descent direction

Determine step length

tk ∈ arg min
t∈(0,1]

‖F (xk + tsk)‖22

Update iterate
xk+1 = xk + tksk

Update perturbation
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Nonsquare Nonlinear Systems of Equations
Given F : <n → <m, compute x such that

F (x) = 0

System is underdetermined if m < n
More variables than constraints
Solution typically not unique
Need to select one solution

min
x
‖x‖2 subject to F (x) = 0

System is overdetermined if m > n
More constraints than variables
Solution typically does not exist
Need to select approximate solution

min
x
‖F (x)‖2

System is square if m = n
Jacobian has full rank then solution is unique
If Jacobian is rank deficient then

Underdetermined when compatible
Overdetermined when incompatible
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Part III

Unconstrained Optimization
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Model Formulation

Classify m people into two groups using v variables

c ∈ {0, 1}m is the known classification
d ∈ <m×v are the observations
β ∈ <v+1 defines the separator
logit distribution function

Maximum likelihood problem

max
β

m∑
i=1

ci log(f (β, di ,·)) + (1− ci ) log(1− f (β, di ,·))

where

f (β, x) =

exp

β0 +
v∑

j=1

βjxj


1 + exp

β0 +
v∑

j=1

βjxj
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Basic Theory

min
x

f (x)

Convex functions – local minimizers are global minimizers

Nonconvex functions

Stationarity: ∇f (x) = 0
Local minimizer: ∇2f (x) is positive definite
Local maximizer: ∇2f (x) is negative definite
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Solution Techniques

min
x

f (x)

Main ingredients of solution approaches:

Local method: given xk (solution guess) compute a step s.

Gradient Descent
Quasi-Newton Approximation
Sequential Quadratic Programming

Globalization strategy: converge from any starting point.

Trust region
Line search
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Trust-Region Method

min
s

f (xk) + sT∇f (xk) +
1

2
sTH(xk)s

subject to ‖s‖ ≤ ∆k
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Trust-Region Method

1 Initialize trust-region radius

Constant
Direction
Interpolation

2 Compute a new iterate

1 Solve trust-region subproblem

mins f (xk) + sT∇f (xk) + 1
2 s

TH(xk)s
subject to ‖s‖ ≤ ∆k

2 Accept or reject iterate
3 Update trust-region radius

Reduction
Interpolation

3 Check convergence
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Solving the Subproblem

Moré-Sorensen method

Computes global solution to subproblem

Conjugate gradient method with trust region

Objective function decreases monotonically
Some choices need to be made

Preconditioner
Norm of direction and residual
Dealing with negative curvature
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Line-Search Method

min
s

f (xk) + sT∇f (xk) +
1

2
sT (H(xk) + λk I )s
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Line-Search Method

1 Initialize perturbation to zero

2 Solve perturbed quadratic model

min
s

f (xk) + sT∇f (xk) +
1

2
sT (H(xk) + λk I )s

3 Find new iterate
1 Search along Newton direction
2 Search along gradient-based direction

4 Update perturbation
Decrease perturbation if the following hold

Iterative method succeeds
Search along Newton direction succeeds

Otherwise increase perturbation

5 Check convergence
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Solving the Subproblem

Conjugate gradient method

Conjugate gradient method with trust region
Initialize radius

Constant
Direction
Interpolation

Update radius

Reduction
Step length
Interpolation

Some choices need to be made

Preconditioner
Norm of direction and residual
Dealing with negative curvature
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Performing the Line Search

Backtracking Armijo Line search

Find t such that

f (xk + ts) ≤ f (xk) + σt∇f (xk)T s

Try t = 1, β, β2, . . . for 0 < β < 1

More-Thuente Line search

Find t such that

f (xk + ts) ≤ f (xk) + σt∇f (xk)T s
|∇f (xk + ts)T s| ≤ δ|∇f (xk)T s|

Construct cubic interpolant
Compute t to minimize interpolant
Refine interpolant
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Updating the Perturbation

1 If increasing and ∆k = 0

∆k+1 = Proj[`0,u0]

(
α0‖g(xk)‖

)
2 If increasing and ∆k > 0

∆k+1 = Proj[`i ,ui ]

(
max

(
αi‖g(xk)‖, βi∆k

))
3 If decreasing

∆k+1 = min
(
αd‖g(xk)‖, βd∆k

)
4 If ∆k+1 < `d , then ∆k+1 = 0

36 / 125



Trust-Region Line-Search Method

1 Initialize trust-region radius

Constant
Direction
Interpolation

2 Compute a new iterate

1 Solve trust-region subproblem

mins f (xk) + sT∇f (xk) + 1
2 s

TH(xk)s
subject to ‖s‖ ≤ ∆k

2 Search along direction
3 Update trust-region radius

Reduction
Step length
Interpolation

3 Check convergence
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Iterative Methods

Conjugate gradient method

Stop if negative curvature encountered
Stop if residual norm is small

Conjugate gradient method with trust region
Nash

Follow direction to boundary if first iteration
Stop at base of direction otherwise

Steihaug-Toint

Follow direction to boundary

Generalized Lanczos

Compute tridiagonal approximation
Find global solution to approximate problem on boundary
Initialize perturbation with approximate minimum eigenvalue

38 / 125



Iterative Methods

Conjugate gradient method

Stop if negative curvature encountered
Stop if residual norm is small

Conjugate gradient method with trust region
Nash

Follow direction to boundary if first iteration
Stop at base of direction otherwise

Steihaug-Toint

Follow direction to boundary

Generalized Lanczos

Compute tridiagonal approximation
Find global solution to approximate problem on boundary
Initialize perturbation with approximate minimum eigenvalue

39 / 125



Preconditioners

No preconditioner

Absolute value of Hessian diagonal

Absolute value of perturbed Hessian diagonal

Incomplete Cholesky factorization of Hessian

Block Jacobi with Cholesky factorization of blocks

Scaled BFGS approximation to Hessian matrix

None
Scalar
Diagonal of Broyden update
Rescaled diagonal of Broyden update
Absolute value of Hessian diagonal
Absolute value of perturbed Hessian diagonal
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Norms

Residual

Preconditioned – ‖r‖M−TM−1

Unpreconditioned – ‖r‖2
Natural – ‖r‖M−1

Direction
Preconditioned – ‖s‖M ≤ ∆

Monotonically increasing ‖sk+1‖M > ‖sk‖M .

Unpreconditioned – ‖s‖2 ≤ ∆
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Termination

Typical convergence criteria

Absolute residual ‖∇f (xk)‖ < τa
Relative residual ‖∇f (xk )‖

‖∇f (x0)‖ < τr
Unbounded objective f (xk) < κ
Slow progress |f (xk)− f (xk−1)| < ε
Iteration limit
Time limit

Solver status
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Convergence Issues

Quadratic convergence – best outcome

Linear convergence

Far from a solution – ‖∇f (xk)‖ is large
Hessian is incorrect – disrupts quadratic convergence
Hessian is rank deficient – ‖∇f (xk)‖ is small
Limits of finite precision arithmetic

1 ‖∇f (xk)‖ converges quadratically to small number
2 ‖∇f (xk)‖ hovers around that number with no progress

Domain violations such as 1
x when x = 0

Make implicit constraints explicit

Nonglobal solution

Apply a multistart heuristic
Use global optimization solver
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Some Available Software

TRON – Newton method with trust-region

LBFGS – Limited-memory quasi-Newton method with line
search

TAO – Toolkit for Advanced Optimization

NLS – Newton line-search method
NTR – Newton trust-region method
NTL – Newton line-search/trust-region method
LMVM – Limited-memory quasi-Newton method
CG – Nonlinear conjugate gradient methods
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Part IV

Constrained Optimization
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Social Planning Model

Economy with n agents and m commodities

e ∈ <n×m are the endowments
α ∈ <n×m and β ∈ <n×m are the utility parameters
λ ∈ <n are the social weights

Social planning problem

max
x≥0

n∑
i=1

λi

(
m∑

k=1

αi ,k(1 + xi ,k)1−βi,k

1− βi ,k

)

subject to
n∑

i=1

xi ,k ≤
n∑

i=1

ei ,k ∀k = 1, . . . ,m
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Life-Cycle Saving Model

Maximize discounted utility

u(·) is the utility function
R is the retirement age
T is the terminal age
w is the wage
β is the discount factor
r is the interest rate

Optimization problem

max
s,c

T∑
t=0

βtu(ct)

subject to st+1 = (1 + r)st + w − ct t = 0, . . . ,R − 1
st+1 = (1 + r)st − ct t = R, . . . ,T
s0 = sT+1 = 0
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Theory Revisited

Strict descent direction d

∇f (x)Td < 0

Stationarity conditions (first-order conditions)

No feasible, strict descent directions
For all feasible directions d

∇f (x)Td ≥ 0

Unconstrained case, d ∈ <n and

∇f (x) = 0

Constrained cases

Characterize superset of feasible directions
Requires constraint qualification
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Convergence Criteria

min
x

f (x)

subject to c(x) ≥ 0

Feasible and no strict descent directions
Constraint qualification – LICQ, MFCQ
Linearized active constraints characterize directions
Objective gradient is a linear combination of constraint
gradients
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Optimality Conditions

If x∗ is a local minimizer and a constraint qualification holds,
then there exist multipliers λ∗ ≥ 0 such that

∇f (x∗)−∇cA(x∗)Tλ∗A = 0

Lagrangian function L(x , λ) := f (x)− λT c(x)

Optimality conditions can be written as

∇f (x)−∇c(x)Tλ = 0
0 ≤ λ ⊥ c(x) ≥ 0

Complementarity problem
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Solving Constrained Optimization Problems

Main ingredients of solution approaches:

Local method: given xk (solution guess) find a step s.

Sequential Quadratic Programming (SQP)
Sequential Linear/Quadratic Programming (SLQP)
Interior-Point Method (IPM)

Globalization strategy: converge from any starting point.

Trust region
Line search

Acceptance criteria: filter or penalty function.
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Sequential Linear Programming

1 Initialize trust-region radius
2 Compute a new iterate

1 Solve linear program

min
s

f (xk) + sT∇f (xk)

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2 Accept or reject iterate
3 Update trust-region radius

3 Check convergence

53 / 125



Sequential Linear Programming

1 Initialize trust-region radius
2 Compute a new iterate

1 Solve linear program

min
s

f (xk) + sT∇f (xk)

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2 Accept or reject iterate
3 Update trust-region radius

3 Check convergence

54 / 125



Sequential Linear Programming

1 Initialize trust-region radius
2 Compute a new iterate

1 Solve linear program

min
s

f (xk) + sT∇f (xk)

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k

2 Accept or reject iterate
3 Update trust-region radius

3 Check convergence

55 / 125



Sequential Quadratic Programming

1 Initialize trust-region radius
2 Compute a new iterate

1 Solve quadratic program

min
s

f (xk) + sT∇f (xk) +
1

2
sTW (xk)s

subject to c(xk) +∇c(xk)T s ≥ 0
‖s‖ ≤ ∆k
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3 Check convergence
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Sequential Linear Quadratic Programming

1 Initialize trust-region radius
2 Compute a new iterate

1 Solve linear program to predict active set

min
d

f (xk) + dT∇f (xk)

subject to c(xk) +∇c(xk)Td ≥ 0
‖d‖ ≤ ∆k

2 Solve equality constrained quadratic program

min
s

f (xk) + sT∇f (xk) +
1

2
sTW (xk)s

subject to cA(xk) +∇cA(xk)T s = 0

3 Accept or reject iterate
4 Update trust-region radius

3 Check convergence
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Acceptance Criteria

Decrease objective function value: f (xk + s) ≤ f (xk)

Decrease constraint violation: ‖c−(xk + s)‖ ≤ ‖c−(xk)‖

Four possibilities
1 step can decrease both f (x) and ‖c−(x)‖ GOOD
2 step can decrease f (x) and increase ‖c−(x)‖ ???
3 step can increase f (x) and decrease ‖c−(x)‖ ???
4 step can increase both f (x) and ‖c−(x)‖ BAD

Filter uses concept from multi-objective optimization

(hk+1, fk+1) dominates (h`, f`) iff hk+1 ≤ h` and fk+1 ≤ f`
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Filter Framework
Filter F : list of non-dominated pairs (h`, f`)

new xk+1 is acceptable to filter F iff for
all ` ∈ F

1 hk+1 ≤ h` or
2 fk+1 ≤ f`

remove redundant filter entries

new xk+1 is rejected if for some ` ∈ F
1 hk+1 > h` and
2 fk+1 > f`
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Termination

Feasible and complementary ‖min(c(xk), λk)‖ ≤ τf
Optimal ‖∇xL(xk , λk)‖ ≤ τo
Other possible conditions

Slow progress
Iteration limit
Time limit

Multipliers and reduced costs
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Convergence Issues

Quadratic convergence – best outcome

Globally infeasible – linear constraints infeasible

Locally infeasible – nonlinear constraints locally infeasible

Unbounded objective – hard to detect

Unbounded multipliers – constraint qualification not satisfied

Linear convergence rate

Far from a solution – ‖∇f (xk)‖ is large
Hessian is incorrect – disrupts quadratic convergence
Hessian is rank deficient – ‖∇f (xk)‖ is small
Limits of finite precision arithmetic

Domain violations such as 1
x when x = 0

Make implicit constraints explicit

Nonglobal solutions

Apply a multistart heuristic
Use global optimization solver
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Some Available Software

filterSQP

trust-region SQP; robust QP solver
filter to promote global convergence

SNOPT

line-search SQP; null-space CG option
`1 exact penalty function

SLIQUE – part of KNITRO

SLP-EQP
trust-region with `1 penalty
use with knitro options = "algorithm=3";
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Interior-Point Method

Reformulate optimization problem with slacks

min
x

f (x)

subject to c(x) = 0
x ≥ 0

Construct perturbed optimality conditions

Fτ (x , y , z) =

∇f (x)−∇c(x)Tλ− µ
c(x)

Xµ− τe


Central path {x(τ), λ(τ), µ(τ) | τ > 0}
Apply Newton’s method for sequence τ ↘ 0
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Interior-Point Method

1 Compute a new iterate
1 Solve linear system of equations Wk −∇c(xk)T −I

∇c(xk) 0 0
µk 0 Xk

 sx
sλ
sµ

 = −Fτ (xk , λk , µk)

2 Accept or reject iterate
3 Update parameters

2 Check convergence
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Convergence Issues

Quadratic convergence – best outcome

Globally infeasible – linear constraints infeasible

Locally infeasible – nonlinear constraints locally infeasible

Dual infeasible – dual problem is locally infeasible

Unbounded objective – hard to detect

Unbounded multipliers – constraint qualification not satisfied

Duality gap

Domain violations such as 1
x when x = 0

Make implicit constraints explicit

Nonglobal solutions

Apply a multistart heuristic
Use global optimization solver
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Termination

Feasible and complementary ‖min(c(xk), λk)‖ ≤ τf
Optimal ‖∇xL(xk , λk)‖ ≤ τo
Other possible conditions

Slow progress
Iteration limit
Time limit
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Some Available Software

IPOPT – open source in COIN-OR

line-search filter algorithm

KNITRO

trust-region Newton to solve barrier problem
`1 penalty barrier function
Newton system: direct solves or null-space CG

LOQO

line-search method
Newton system: modified Cholesky factorization
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Part V

Optimal Control
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Optimal Technology

Optimize energy production schedule and transition between old
and new reduced-carbon technology to meet carbon targets

Maximize social welfare

Constraints

Limit total greenhouse gas emissions
Low-carbon technology less costly as it becomes widespread

Assumptions on emission rates, economic growth, and energy
costs
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Model Formulation

Finite time: t ∈ [0,T ]

Instantaneous energy output: qo(t) and qn(t)

Cumulative energy output: xo(t) and xn(t)

xn(t) =

∫ t

0
qn(τ)dτ

Discounted greenhouse gases emissions∫ T

0
e−at (boq

o(t) + bnq
n(t)) dt ≤ zT

Consumer surplus S(Q(t), t) derived from utility

Production costs

co per unit cost of old technology
cn(xn(t)) per unit cost of new technology (learning by doing)
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Continuous-Time Model

max
{qo ,qn,xn,z}(t)

∫ T

0

e−rt [S(qo(t) + qn(t), t)− coq
o(t)− cn(xn(t))qn(t)] dt

subject to ẋn(t) = qn(t) x(0) = x0 = 0

ż(t) = e−at (boq
o(t) + bnq

n(t)) z(0) = z0 = 0

z(T ) ≤ zT

qo(t) ≥ 0, qn(t) ≥ 0.
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Optimal Technology Penetration

Discretization:

t ∈ [0,T ] replaced by N + 1 equally spaced points ti = ih

h := T/N time integration step-length

approximate qni ' qn(ti ) etc.

Replace differential equation

ẋ(t) = qn(t)

by
xi+1 = xi + hqni

Output of new technology between t = 24 and t = 35
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Solution with Varying h

Output for different discretization schemes and step-sizes
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Optimal Technology Penetration

Add adjustment cost to model building of capacity:
Capital and Investment:

K j(t) amount of capital in technology j at t.

I j(t) investment to increase K j(t).

initial capital level as K̄ j
0:

Notation:

Q(t) = qo(t) + qn(t)

C (t) = C o(qo(t),K o(t)) + Cn(qn(t),Kn(t))

I (t) = I o(t) + I n(t)

K (t) = K o(t) + Kn(t)
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Optimal Technology Penetration

maximize
{qj ,K j ,I j ,x ,z}(t)

{∫ T

0
e−rt

[
S̃(Q(t), t)− C (t)− K (t)

]
dt + e−rTK (T )

}
subject to ẋ(t) = qn(t), x(0) = x0 = 0

K̇ j(t) = −δK j(t) + I j(t), K j(0) = K̄ j
0, j ∈ {o, n}

ż(t) = e−at [boq
o(t) + bnq

n(t)], z(0) = z0 = 0

z(T ) ≤ zT

qj(t) ≥ 0, j ∈ {o, n}

I j(t) ≥ 0, j ∈ {o, n}
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Optimal Technology Penetration

Optimal output, investment, and capital for 50% CO2 reduction.
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Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize 1
2

∫ 1

0
u2(t) + 2y2(t)dt

subject to

ẏ(t) = 1
2y(t) + u(t), t ∈ [0, 1],

y(0) = 1.

⇒ y∗(t) =
2e3t + e3

e3t/2(2 + e3)
,

u∗(t) =
2(e3t − e3)

e3t/2(2 + e3)
.

Discretize with 2nd order RK

minimize
h

2

K−1∑
k=0

u2k+1/2+2y2k+1/2

subject to (k = 0, . . . ,K ):

yk+1/2 = yk +
h

2
(12yk + uk),

yk+1 = yk + h(12yk+1/2 + uk+1/2),

Discrete solution (k =
0, . . . ,K ):

yk = 1, yk+1/2 = 0,

uk = −4 + h

2h
, uk+1/2 = 0,

DOES NOT CONVERGE!
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Tips to Solve Continuous-Time Problems

Use discretize-then-optimize with different schemes

Refine discretization: h = 1 discretization is nonsense

Check implied discretization of adjoints

Alternative: Optimize-Then-Discretize

Consistent adjoint/dual discretization

Discretized gradients can be wrong!

Harder for inequality constraints
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Part VI

Complementarity Constraints
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Nash Games

Non-cooperative game played by n individuals

Each player selects a strategy to optimize their objective
Strategies for the other players are fixed

Equilibrium reached when no improvement is possible

Characterization of two player equilibrium (x∗, y∗)

x∗ ∈

{
arg min

x≥0
f1(x , y∗)

subject to c1(x) ≤ 0

y∗ ∈

{
arg min

y≥0
f2(x∗, y)

subject to c2(y) ≤ 0

Many applications in economics

Bimatrix games
Cournot duopoly models
General equilibrium models
Arrow-Debreau models
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Complementarity Formulation

Assume each optimization problem is convex

f1(·, y) is convex for each y
f2(x , ·) is convex for each x
c1(·) and c2(·) satisfy constraint qualification

Then the first-order conditions are necessary and sufficient

min
x≥0

f1(x , y∗)

subject to c1(x) ≤ 0
⇔ 0 ≤ x ⊥ ∇x f1(x , y∗) + λT

1 ∇xc1(x) ≥ 0
0 ≤ λ1 ⊥ −c1(x) ≥ 0

95 / 125



Complementarity Formulation

Assume each optimization problem is convex

f1(·, y) is convex for each y
f2(x , ·) is convex for each x
c1(·) and c2(·) satisfy constraint qualification

Then the first-order conditions are necessary and sufficient

min
y≥0

f2(x∗, y)

subject to c2(y) ≤ 0
⇔ 0 ≤ y ⊥ ∇y f2(x∗, y) + λT

2 ∇yc2(y) ≥ 0
0 ≤ λ2 ⊥ −c2(y) ≥ 0

96 / 125



Complementarity Formulation

Assume each optimization problem is convex

f1(·, y) is convex for each y
f2(x , ·) is convex for each x
c1(·) and c2(·) satisfy constraint qualification

Then the first-order conditions are necessary and sufficient

0 ≤ x ⊥ ∇x f1(x , y) + λT1 ∇xc1(x) ≥ 0
0 ≤ y ⊥ ∇y f2(x , y) + λT2 ∇yc2(y) ≥ 0
0 ≤ λ1 ⊥ −c1(y) ≥ 0
0 ≤ λ2 ⊥ −c2(y) ≥ 0

Nonlinear complementarity problem

Square system – number of variables and constraints the same
Each solution is an equilibrium for the Nash game
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Model Formulation

Economy with n agents and m commodities

e ∈ <n×m are the endowments
α ∈ <n×m and β ∈ <n×m are the utility parameters
p ∈ <m are the commodity prices

Agent i maximizes utility with budget constraint

max
xi,∗≥0

m∑
k=1

αi ,k(1 + xi ,k)1−βi,k

1− βi ,k

subject to
m∑

k=1

pk (xi ,k − ei ,k) ≤ 0

Market k sets price for the commodity

0 ≤ pk ⊥
n∑

i=1

(ei ,k − xi ,k) ≥ 0
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Newton Method for Nonlinear Equations
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Methods for Complementarity Problems

Sequential linearization methods (PATH)
1 Solve the linear complementarity problem

0 ≤ x ⊥ F (xk) +∇F (xk)(x − xk) ≥ 0

2 Perform a line search along merit function
3 Repeat until convergence

Semismooth reformulation methods (SEMI)

Solve linear system of equations to obtain direction
Globalize with a trust region or line search
Less robust in general

Interior-point methods
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Semismooth Reformulation

Define Fischer-Burmeister function

φ(a, b) := a + b −
√

a2 + b2

φ(a, b) = 0 iff a ≥ 0, b ≥ 0, and ab = 0

Define the system

[Φ(x)]i = φ(xi ,Fi (x))

x∗ solves complementarity problem iff Φ(x∗) = 0

Nonsmooth system of equations
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Semismooth Algorithm

1 Calculate Hk ∈ ∂BΦ(xk) and solve the following system for
dk :

Hkdk = −Φ(xk)

If this system either has no solution, or

∇Ψ(xk)Tdk ≤ −p1‖dk‖p2

is not satisfied, let dk = −∇Ψ(xk).

2 Compute smallest nonnegative integer ik such that

Ψ(xk + βi
k
dk) ≤ Ψ(xk) + σβi

k∇Ψ(xk)dk

3 Set xk+1 = xk + βi
k
dk , k = k + 1, and go to 1.
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Convergence Issues

Quadratic convergence – best outcome

Linear convergence

Far from a solution – r(xk) is large
Jacobian is incorrect – disrupts quadratic convergence
Jacobian is rank deficient – ‖∇r(xk)‖ is small
Converge to local minimizer – guarantees rank deficiency
Limits of finite precision arithmetic

1 r(xk) converges quadratically to small number
2 r(xk) hovers around that number with no progress

Domain violations such as 1
x when x = 0

108 / 125



Some Available Software

PATH – sequential linearization method

MILES – sequential linearization method

SEMI – semismooth linesearch method

TAO – Toolkit for Advanced Optimization

SSLS – full-space semismooth linesearch methods
ASLS – active-set semismooth linesearch methods
RSCS – reduced-space method
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Definition

Leader-follower game
Dominant player (leader) selects a strategy y∗

Then followers respond by playing a Nash game

x∗i ∈

{
arg min

xi≥0
fi (x , y)

subject to ci (xi ) ≤ 0

Leader solves optimization problem with equilibrium
constraints

min
y≥0,x ,λ

g(x , y)

subject to h(y) ≤ 0
0 ≤ xi ⊥ ∇xi fi (x , y) + λTi ∇xi ci (xi ) ≥ 0
0 ≤ λi ⊥ −ci (xi ) ≥ 0

Many applications in economics
Optimal taxation
Tolling problems
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Model Formulation

Economy with n agents and m commodities

e ∈ <n×m are the endowments
α ∈ <n×m and β ∈ <n×m are the utility parameters
p ∈ <m are the commodity prices

Agent i maximizes utility with budget constraint

max
xi,∗≥0

m∑
k=1

αi ,k(1 + xi ,k)1−βi,k

1− βi ,k

subject to
m∑

k=1

pk (xi ,k − ei ,k) ≤ 0

Market k sets price for the commodity

0 ≤ pk ⊥
n∑

i=1

(ei ,k − xi ,k) ≥ 0
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Nonlinear Programming Formulation

min
x ,y ,λ,s,t≥0

g(x , y)

subject to h(y) ≤ 0
si = ∇xi fi (x , y) + λTi ∇xi ci (xi )
ti = −ci (xi )∑
i

(
sTi xi + λi ti

)
≤ 0

Constraint qualification fails

Lagrange multiplier set unbounded
Constraint gradients linearly dependent
Central path does not exist

Able to prove convergence results for some methods

Reformulation very successful and versatile in practice
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Penalization Approach

min
x ,y ,λ,s,t≥0

g(x , y) + π
∑
i

(
sTi xi + λi ti

)
subject to h(y) ≤ 0

si = ∇xi fi (x , y) + λTi ∇xi ci (xi )
ti = −ci (xi )

Optimization problem satisfies constraint qualification

Need to increase π
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Relaxation Approach

min
x ,y ,λ,s,t≥0

g(x , y)

subject to h(y) ≤ 0
si = ∇xi fi (x , y) + λTi ∇xi ci (xi )
ti = −ci (xi )∑
i

(
sTi xi + λi ti

)
≤ τ

Need to decrease τ
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Limitations

Multipliers may not exist

Solvers can have a hard time computing solutions

Try different algorithms
Compute feasible starting point

Stationary points may have descent directions

Checking for descent is an exponential problem
Strong stationary points found in certain cases

Many stationary points – global optimization

Formulation of follower problem

Multiple solutions to Nash game
Nonconvex objective or constraints
Existence of multipliers
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Part VII

Mixed Integer and Global Optimization
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Global Optimization

I need to find the GLOBAL minimum!

use any NLP solver (often work well!)

use the multi-start trick from previous slides

global optimization based on branch-and-reduce: BARON

constructs global underestimators
refines region by branching
tightens bounds by solving LPs
solve problems with 100s of variables

“voodoo” solvers: genetic algorithm & simulated annealing
no convergence theory ... usually worse than deterministic
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Derivative-Free Optimization

My model does not have derivatives!

Change your model ... good models have derivatives!

pattern-search methods for min f (x)

evaluate f (x) at stencil xk + ∆M
move to new best point
extend to NLP; some convergence theory h
matlab: NOMADm.m; parallel APPSPACK

solvers based on building interpolating quadratic models

DFO project on www.coin-or.org

Mike Powell’s NEWUOA quadratic model

“voodoo” solvers: genetic algorithm & simulated annealing
no convergence theory ... usually worse than deterministic
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Optimization with Integer Variables

Mixed-Integer Nonlinear Program (MINLP)

modeling discrete choices ⇒ 0− 1 variables

modeling integer decisions ⇒ integer variables
e.g. number of different stocks in portfolio (8-10)
not number of beers sold at Goose Island (millions)

MINLP solvers:

branch (separate zi = 0 and zi = 1) and cut

solve millions of NLP relaxations: MINLPBB, SBB

outer approximation: iterate MILP and NLP solvers
BONMIN (COIN-OR) & FilMINT on NEOS
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Portfolio Management

N: Universe of asset to purchase

xi : Amount of asset i to hold

B: Budget

minimize u(x) subject to
∑
i∈N

xi = B, x ≥ 0

Markowitz: u(x)
def
= −αT x + λxTQx

α: maximize expected returns
Q: variance-covariance matrix of expected returns
λ: minimize risk; aversion parameter
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More Realistic Models

b ∈ R|N| of “benchmark” holdings

Benchmark Tracking: u(x)
def
= (x − b)TQ(x − b)

Constraint on E[Return]: αT x ≥ r

Limit Names: |i ∈ N : xi > 0| ≤ K

Use binary indicator variables to model the implication
xi > 0⇒ yi = 1
Implication modeled with variable upper bounds:

xi ≤ Byi ∀i ∈ N∑
i∈N yi ≤ K
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Optimization Conclusions

Optimization is General Modeling Paradigm

linear, nonlinear, equations, inequalities

integer variables, equilibrium, control

AMPL (GAMS) Modeling and Programming Languages

express optimization problems

use automatic differentiation

easy access to state-of-the-art solvers

Optimization Software

open-source: COIN-OR, IPOPT, SOPLEX, & ASTROS (soon)

current solver limitations on laptop:

1,000,000 variables/constraints for LPs
100,000 variables/constraints for NLPs/NCPs
100 variables/constraints for global optimization
500,000,000 variable LP on BlueGene/P
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