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Overview of Optimization

@ One-dimensional unconstrained optimization

o Characterization of critical points
e Basic algorithms

Nonlinear systems of equations

Multi-dimensional unconstrained optimization
o Critical points and their types
e Computation of local maximizers

@ Multi-dimensional constrained optimization

o Critical points and Lagrange multipliers

e Second-order sufficiency conditions

o Globally-convergent algorithms

Complementarity constraints
e Stationarity concepts
o Constraint qualifications
o Numerical methods
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.\ _________________________________________
One-dimensional Unconstrained Optimization

max f(x) = —x* +5x* + x — 4

X
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Critical Points

o Stationarity: VFf(x) = —4x34+10x+1=0
o Local maximizer: V2f(x) = —12x% +10 < 0
e Local minimizer: V2f(x) = —12x2 +10 > 0

4
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.
Locally-convergent Newton Method

o All good algorithms are based on Newton's method
e Compute stationary points: F(x) = Vf(x) =0
e Form Taylor series approximation around x*

F(x) =~ VF(Xk)(X — xk) + F(xk)

@ Solve for x and iterate

k
e ok FOE)
V F(xk)
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[llustration of Newton's Method
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[llustration of Newton's Method
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[llustration of Newton's Method
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[llustration of Newton's Method
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lllustration of Cycling
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lllustration of Divergence
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Possible Qutcomes

@ Sequence converges to a solution
@ Sequence cycles

o Convergent subsequences (limit points)
e Limit points are not solutions

@ Sequence diverges
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.
Globally Convergent Newton Method

@ Use Newton method to compute a direction
@ Determine an appropriate stepsize

e Line search using the objective function
e Trust region around the approximation

@ lterate until convergence
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Part |l

Nonlinear Systems of Equations
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Newton Method for Square Systems of Equations

o Given F : R" — R", compute x such that
F(x)=0
o First-order Taylor series approximation
VF(x*)(x = x*)+ F(x*)=0
@ Solve linear system of equations
XKL = Xk VE(xK)LF(x9)

e Direct method — compute factorization
o lterative method — use Krylov subspace

@ Method has local (fast) convergence under suitable conditions

o If x is near a solution, method converges to a solution x*
e The distance to the solution decreases quickly; ideally,

[l — x| < el — x| 2

16
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Globalized Newton Method

@ Solve linear system of equations
VF(x¥) s, = —F(x¥)
@ Determine step length

t € arg min, IF(x* + tsi) 13

)

@ Update iterate

k+1

X =Xk+tk5k
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N
Globalized Newton Method with Proximal Perturbation

@ Solve linear system of equations

(VF(x*) + X D)se = —F(x5)

Check step and possibly use steepest descent direction

Determine step length

t € arg min, IF (% + ts)5

Update iterate

k+1

X = xk + tiSk

Update perturbation
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Nonsquare Nonlinear Systems of Equations
e Given F : 1" — R™, compute x such that
F(x)=0

@ System is underdetermined if m < n
o More variables than constraints
e Solution typically not unique
o Need to select one solution

min ||x||2 subject to F(x) =0
X

@ System is overdetermined if m > n
e More constraints than variables
e Solution typically does not exist
o Need to select approximate solution

min [F()]>

@ System is square if m=n
e Jacobian has full rank then solution is unique
o If Jacobian is rank deficient then
@ Underdetermined when compatible
o Overdetermined when incompatible
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Part Il

Unconstrained Optimization
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Model Formulation

o Classify m people into two groups using v variables
c € {0,1}™ is the known classification

d € R™*Y are the observations

B € RN+ defines the separator

logit distribution function

@ Maximum likelihood problem
max cilog(f(B,d;i.))+ (1 —ci)log(l —f(5,d;.
23 0B(F(.,.)) + (1= ) log(1 — (5., )
where

exp | Bo+ ) Bix;

Jj=1

F(5.3) = v
1+exp | Bo —i—Zﬁij

j=1
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Basic Theory

min f(x)
X
@ Convex functions — local minimizers are global minimizers
@ Nonconvex functions
e Stationarity: Vf(x) =0
o Local minimizer: V2f(x) is positive definite
o Local maximizer: V2f(x) is negative definite

a 22/125



Solution Techniques

mxin f(x)

Main ingredients of solution approaches:

@ Local method: given x, (solution guess) compute a step s.

o Gradient Descent
e Quasi-Newton Approximation
e Sequential Quadratic Programming
o Globalization strategy: converge from any starting point.

e Trust region
e Line search
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Trust-Region Method

subject to [|s]| < A

] 'P‘ =N
* 4“\\\\\\\\\\\\\\
TR

(' oy

f ‘ i

1
A
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Trust-Region Method

@ Initialize trust-region radius

o Constant
e Direction
e Interpolation

a 25 /125



Trust-Region Method

@ Initialize trust-region radius

o Constant
e Direction
e Interpolation

@ Compute a new iterate

@ Solve trust-region subproblem

min Fxk) +sTVF(x) + 3sTH(x)s
subject to ||s]| < Ag
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Trust-Region Method

@ Initialize trust-region radius

o Constant
e Direction
e Interpolation

@ Compute a new iterate
@ Solve trust-region subproblem

min Fxk) +sTVF(x) + 3sTH(x)s
subject to ||s]| < Ag

@ Accept or reject iterate
© Update trust-region radius

@ Reduction
o Interpolation

© Check convergence
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Solving the Subproblem

@ Moré-Sorensen method
e Computes global solution to subproblem
o Conjugate gradient method with trust region

e Objective function decreases monotonically
e Some choices need to be made

@ Preconditioner

@ Norm of direction and residual

@ Dealing with negative curvature
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Line-Search Method

min f(Xk) + STVf(Xk) + %ST(H(X/() + /\k/)s
s

A b fixpr ts)
S

Jtx) acceptable 1
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Line-Search Method

@ Initialize perturbation to zero

@ Solve perturbed quadratic model

1
min f(x¢) + s’ VF(xe) + 5sT(H(xk) + Mil)s
S
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Line-Search Method

@ Initialize perturbation to zero

@ Solve perturbed quadratic model

1
min f(x¢) + s’ VF(xe) + EsT(H(xk) + Mil)s
S

© Find new iterate

@ Search along Newton direction
@ Search along gradient-based direction
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Line-Search Method

@ Initialize perturbation to zero

@ Solve perturbed quadratic model

1
min f(xe) + s VF(xc) + EST(H(X/() + Ail)s
s

© Find new iterate
@ Search along Newton direction
@ Search along gradient-based direction
© Update perturbation
o Decrease perturbation if the following hold

o lterative method succeeds
@ Search along Newton direction succeeds

e Otherwise increase perturbation

© Check convergence
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Solving the Subproblem

o Conjugate gradient method
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Solving the Subproblem

o Conjugate gradient method

@ Conjugate gradient method with trust region
o Initialize radius
o Constant
o Direction
o Interpolation
e Update radius
@ Reduction
o Step length
o Interpolation
e Some choices need to be made
e Preconditioner
@ Norm of direction and residual
@ Dealing with negative curvature
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Performing the Line Search

@ Backtracking Armijo Line search
e Find t such that

f(xk +ts) < f(xx) + otVF(x) s

o Tryt=1,6,8%...for0<pB<1
@ More-Thuente Line search
e Find t such that

f(xk + ts) < f(xk) + otVF(x)Ts
|VF(xk + ts)Ts| < 5|VF(xk)Ts|

e Construct cubic interpolant
e Compute t to minimize interpolant
o Refine interpolant
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Updating the Perturbation

@ If increasing and Ak =0
KL = Projp, 4 (collg(x*)]])
@ |If increasing and AK >0
KL = Projy, ) (max (adllg(x¥)]. 5ia*) )
O If decreasing
AL = min (agllg(<*)], Bats*)

Q If AK1 < ¢, then Akt =0

36 /125



Trust-Region Line-Search Method

@ Initialize trust-region radius

o Constant
e Direction
e Interpolation

@ Compute a new iterate
@ Solve trust-region subproblem

ming F(xk) +sTVF(xi) + 35T H(x)s
subject to ||s]| < Ak

@ Search along direction

@ Update trust-region radius
o Reduction
@ Step length
@ Interpolation

© Check convergence
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[terative Methods

o Conjugate gradient method

e Stop if negative curvature encountered
o Stop if residual norm is small
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[terative Methods

o Conjugate gradient method
e Stop if negative curvature encountered
o Stop if residual norm is small

e Conjugate gradient method with trust region
e Nash

o Follow direction to boundary if first iteration
o Stop at base of direction otherwise

e Steihaug-Toint
e Follow direction to boundary
o Generalized Lanczos

e Compute tridiagonal approximation
e Find global solution to approximate problem on boundary
o Initialize perturbation with approximate minimum eigenvalue
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Preconditioners

@ No preconditioner
@ Absolute value of Hessian diagonal
@ Absolute value of perturbed Hessian diagonal
@ Incomplete Cholesky factorization of Hessian
@ Block Jacobi with Cholesky factorization of blocks
@ Scaled BFGS approximation to Hessian matrix

e None

e Scalar

e Diagonal of Broyden update

o Rescaled diagonal of Broyden update

e Absolute value of Hessian diagonal

o Absolute value of perturbed Hessian diagonal
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Norms
@ Residual
o Preconditioned — ||r||p-7p—1
o Unpreconditioned — ||r||2
o Natural — ||r||y—2
@ Direction

e Preconditioned — ||s||p < A
e Monotonically increasing ||sct1/[m > ||sk||m-
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Norms
@ Residual
o Preconditioned — ||r||p-7p—1
o Unpreconditioned — ||r||2
o Natural — ||r||y—2
@ Direction

e Preconditioned — ||s||p < A
e Monotonically increasing ||sct1/[m > ||sk||m-
o Unpreconditioned — [|s]|. < A
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Termination

o Typical convergence criteria

o Absolute residual [|Vf(xq)|| < 7a

o Relative residual Hg;giﬁg” <7

o Unbounded objective f(xx) < &

o Slow progress |f(xk) — f(xk—1)| < €
o lteration limit

Time limit

@ Solver status

43/
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Convergence lIssues

Quadratic convergence — best outcome

Linear convergence
o Far from a solution — ||V f(x)|| is large
e Hessian is incorrect — disrupts quadratic convergence

o Hessian is rank deficient — ||V £ (xk)]| is small
e Limits of finite precision arithmetic

© ||VF(x«)|| converges quadratically to small number
@ ||Vf(x«)|| hovers around that number with no progress

@ Domain violations such as % when x =0
e Make implicit constraints explicit

Nonglobal solution

o Apply a multistart heuristic
o Use global optimization solver
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Some Available Software

@ TRON — Newton method with trust-region

@ LBFGS — Limited-memory quasi-Newton method with line
search

@ TAO - Toolkit for Advanced Optimization

NLS — Newton line-search method

NTR — Newton trust-region method

NTL — Newton line-search/trust-region method
LMVM - Limited-memory quasi-Newton method
CG — Nonlinear conjugate gradient methods
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Part IV

Constrained Optimization
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Social Planning Model

@ Economy with n agents and m commodities

e e € R™M are the endowments
o a € R™™ and B € R"™™ are the utility parameters

o A € R" are the social weights
@ Social planning problem
k(1 + x,',k)l_ﬁ"’k>

mex 2N (Z =

k=1
n n

subject to Zx,',k < Z € k Vk=1,....m
i=1 i=1
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Life-Cycle Saving Model

@ Maximize discounted utility
u(+) is the utility function
R is the retirement age
T is the terminal age

w is the wage

[ is the discount factor

r is the interest rate

@ Optimization problem

)

-
t
max Zﬁ u(c)
t=0

subject tos;y1 = (1+r)ss+w—c t=0,...
5t+1:(1+r)5t—Ct t:R,

so=s741=0
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Theory Revisited

@ Strict descent direction d
VF(x)"d <0

e Stationarity conditions (first-order conditions)

e No feasible, strict descent directions
o For all feasible directions d

VFf(x)Td>0
e Unconstrained case, d € R" and
Vi(x)=0

o Constrained cases

o Characterize superset of feasible directions
o Requires constraint qualification
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Convergence Criteria

min f(x)
X
subject to c(x) >0

@ Feasible and no strict descent directions

e Constraint qualification — LICQ, MFCQ
o Linearized active constraints characterize directions
o Objective gradient is a linear combination of constraint

gradients

contours f(x)
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Optimality Conditions

o If x* is a local minimizer and a constraint qualification holds,

then there exist multipliers A* > 0 such that

VF(x*) = Vea(x*) A% =0

o Lagrangian function £(x, ) := f(x) — AT ¢(x)

e Optimality conditions can be written as

VF(x) = Ve(x)TA=0
0<ALlc(x)>0

o Complementarity problem
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Solving Constrained Optimization Problems

Main ingredients of solution approaches:
@ Local method: given x, (solution guess) find a step s.

o Sequential Quadratic Programming (SQP)
o Sequential Linear/Quadratic Programming (SLQP)
o Interior-Point Method (IPM)

o Globalization strategy: converge from any starting point.

e Trust region
e Line search

@ Acceptance criteria: filter or penalty function.
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Sequential Linear Programming

@ Initialize trust-region radius
@ Compute a new iterate
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Sequential Linear Programming

@ Initialize trust-region radius
@ Compute a new iterate
@ Solve linear program

min f(Xk) + STVf(Xk)
subject to c(xx) + Ve(xx)Ts >0
[sll < Ak
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Sequential Linear Programming

@ Initialize trust-region radius
@ Compute a new iterate
@ Solve linear program

min f(Xk) + STVf(Xk)
subject to c(xx) + Ve(xx)Ts >0
[sll < Ak

@ Accept or reject iterate
© Update trust-region radius

© Check convergence
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 —
Sequential Quadratic Programming

@ Initialize trust-region radius
@ Compute a new iterate
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 —
Sequential Quadratic Programming

Q Initialize trust-region radius
@ Compute a new iterate
@ Solve quadratic program

1
min f(xk) +sTVF(xx) + ESTW(xk)s
S
subject to c(xx) + Vc(xk) s >0
lIsll < Ax
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 —
Sequential Quadratic Programming

Q Initialize trust-region radius
@ Compute a new iterate
@ Solve quadratic program

1
min f(xk) +sTVF(xx) + EsTW(xk)s
S
subject to c(xx) + Vc(xk) s >0
lIsll < Ax

@ Accept or reject iterate
@ Update trust-region radius

© Check convergence
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.\ _________________________________________
Sequential Linear Quadratic Programming

@ Initialize trust-region radius
@ Compute a new iterate
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 —
Sequential Linear Quadratic Programming

@ Initialize trust-region radius
@ Compute a new iterate
@ Solve linear program to predict active set

mdin f(Xk) + C/TVf(Xk)
subject to c(xx) + Ve(xk)Td > 0
Id]l < Ax
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Sequential Linear Quadratic Programming

@ Initialize trust-region radius
@ Compute a new iterate
@ Solve linear program to predict active set

mdin f(xk) +dTVF(x)
subject to c(xx) + Ve(xk)Td > 0
1d|| < Ak

@ Solve equality constrained quadratic program
1
min f(xk) +sTVF(xx) + EsTW(xk)s
subject to ca(xk) + Vea(xx) s =0

© Accept or reject iterate
@ Update trust-region radius

© Check convergence
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Acceptance Criteria

@ Decrease objective function value: f(xx +s) < f(xk)

@ Decrease constraint violation: ||c_(xx + s)|| < |lc—(xk)]|
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Acceptance Criteria

@ Decrease objective function value: f(xx +s) < f(xk)
@ Decrease constraint violation: ||c_(xx + s)|| < |lc—(xk)]|
@ Four possibilities

© step can decrease both f(x) and ||c_(x)|| GOOD
@ step can decrease f(x) and increase ||c_(x)| 77
© step can increase f(x) and decrease ||c_(x)|| 77
@ step can increase both 7(x) and ||c_(x)]| BAD
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Acceptance Criteria

@ Decrease objective function value: f(xx +s) < f(xk)

@ Decrease constraint violation: [[c_(xx + s)|| < ||c=(x«)l|
@ Four possibilities

© step can decrease both f(x) and ||c_(x)|| GOOD
@ step can decrease f(x) and increase ||c_(x)|| 77
© step can increase f(x) and decrease ||c_(x)| 77
@ step can increase both f(x) and ||c_(x)]| BAD

o Filter uses concept from multi-objective optimization

(hk+1, fk+1) dominates (hg, fg) iff hi+1 < hy and fk+1 <f
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 EEEEEEEEEE———S
Filter Framework
Filter F: list of non-dominated pairs (hy, f;)

@ new Xxj1 Is acceptable to filter F iff for
all t e F

Q hi1 < hgor
Q ki <1y

fx)

le(x) |

Aj: 65 /125



 EEEEEEEEEE———S
Filter Framework
Filter F: list of non-dominated pairs (hy, f;)

@ new Xxj1 Is acceptable to filter F iff for
all t e F

Q hi1 < hgor
Q ki <1y

@ remove redundant filter entries

fx)

le(x) |

Aj: 66 /125



 —
Filter Framework
Filter F: list of non-dominated pairs (hy, f;)
@ new Xxj1 Is acceptable to filter F iff for
all t e F

Q hi1 < hgor
Q ki <1y

@ remove redundant filter entries
@ new Xxj1 is rejected if for some ¢ € F

(1] hk+1 > hy and
Q fip1> 1

fx)

letx) |
A‘%’ 67/125
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Termination

o Feasible and complementary || min(c(xx), A\k)| < 7¢
e Optimal ||V L(xk, \i)|l < 7o
@ Other possible conditions

e Slow progress
o lteration limit
e Time limit

@ Multipliers and reduced costs
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Convergence Issues

Quadratic convergence — best outcome

Globally infeasible — linear constraints infeasible

Unbounded objective — hard to detect

°

°

@ Locally infeasible — nonlinear constraints locally infeasible

°

@ Unbounded multipliers — constraint qualification not satisfied
°

Linear convergence rate

e Far from a solution — ||V f(xk)|| is large

e Hessian is incorrect — disrupts quadratic convergence
o Hessian is rank deficient — | V£ (xk)]| is small

e Limits of finite precision arithmetic

@ Domain violations such as % when x =0
e Make implicit constraints explicit

Nonglobal solutions

o Apply a multistart heuristic
e Use global optimization solver
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Some Available Software

o filterSQP

e trust-region SQP; robust QP solver
o filter to promote global convergence

e SNOPT

o line-search SQP; null-space CG option
e {; exact penalty function

@ SLIQUE - part of KNITRO

e SLP-EQP
e trust-region with ¢; penalty

e use with knitro_options = "algorithm=3";
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Interior-Point Method

@ Reformulate optimization problem with slacks

min f(x)
subject to ¢(x) =0
x>0

o Construct perturbed optimality conditions

VF(x) = Ve(x)TA—p
FT(X,_)/,Z) = XC(X)
pU—Te

e Central path {x(7), (), u(7) | 7 > 0}
@ Apply Newton's method for sequence 7\, 0
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Interior-Point Method

@ Compute a new iterate
@ Solve linear system of equations

Wi —VC(Xk)T —1 Sx
Ve(x) 0 0 | [ sn ] =—Fr(x A, k)
Mk 0 Xi Su

@ Accept or reject iterate
©® Update parameters

@ Check convergence
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Convergence Issues

Quadratic convergence — best outcome
Globally infeasible — linear constraints infeasible
Locally infeasible — nonlinear constraints locally infeasible
Dual infeasible — dual problem is locally infeasible
Unbounded objective — hard to detect
Unbounded multipliers — constraint qualification not satisfied
Duality gap
Domain violations such as % when x =0

o Make implicit constraints explicit

Nonglobal solutions

e Apply a multistart heuristic
e Use global optimization solver
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Termination

o Feasible and complementary || min(c(xx), A\k)| < 7¢
e Optimal ||V L(xk, \i)|l < 7o
@ Other possible conditions

e Slow progress
o lteration limit
e Time limit

@ Multipliers and reduced costs
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Some Available Software

@ IPOPT - open source in COIN-OR
o line-search filter algorithm
e KNITRO

o trust-region Newton to solve barrier problem

e {1 penalty barrier function

o Newton system: direct solves or null-space CG
e LOQO

o line-search method

o Newton system: modified Cholesky factorization
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Part V

Optimal Control
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Optimal Technology

Optimize energy production schedule and transition between old
and new reduced-carbon technology to meet carbon targets
@ Maximize social welfare
o Constraints
o Limit total greenhouse gas emissions

e Low-carbon technology less costly as it becomes widespread

@ Assumptions on emission rates, economic growth, and energy
costs
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Model Formulation

Finite time: t € [0, T]
Instantaneous energy output: ¢°(t) and q"(t)

Cumulative energy output: x°(t) and x"(t)

Discounted greenhouse gases emissions

.
/ e (boq°(t) + bnq"(t)) dt < zr
0

Consumer surplus S(Q(t), t) derived from utility
Production costs

@ ¢, per unit cost of old technology
o c,(x"(t)) per unit cost of new technology (learning by doing)
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Continuous-Time Model

.
(a1 (6) /0 e " [S(q°(t) + q"(1), t) — coq°(t) — ca(x"(t))q"(t)] dt
subject to x"(t) = q"(t) x(0)=x =0
3(t) = e (boq®(£) + bnq" () 2(0) = 2 = 0
z(T) < zr

q°(t) >0, ¢"(t)>0.
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Optimal Technology Penetration

Discretization:
e t €0, T] replaced by N + 1 equally spaced points t; = ih
@ h:= T /N time integration step-length

@ approximate g ~ q"(t;) etc.

Replace differential equation

x(t) = q"(t)

Xit1 = X; + hqf
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Optimal Technology Penetration
Discretization:
e t €0, T] replaced by N + 1 equally spaced points t; = ih
@ h:= T /N time integration step-length

@ approximate g ~ q"(t;) etc.

Replace differential equation

x(t) = q"(t)
by
Xit1 = X + hqj
24L‘/./.——.f—:35

Output of new technology between t = 24 and t = 35
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Solution with Varying h

Trapezoid discretization

T T T T T T T T T T
100 2
Prm——
e
e
50 A B
el
0 P2 I I I I L I
24 25 26 27 28 29 30 31 32 33 34 35
= Explicit Euler
oF T T T
o
5 100 4
k=
3 T
o™=
& 50F 4
E]
£
% 0 ! I I I L !
< 24 29 30 31 32 33 34 35
Implicit Euler
T T T T T T T T T T
100+ !
-
© // - -
// - -
/ 0
0 I I L L
24 25 26 27 28 29 30 31 32 33 34 35

Output for different discretization schemes and step-sizes
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Optimal Technology Penetration

Add adjustment cost to model building of capacity:
Capital and Investment:

o KJ(t) amount of capital in technology j at t.
o //(t) investment to increase K/(t).
@ initial capital level as Ré:
Notation:
o Q1) = °() + q"(t)
o C(t) = C°(q°(r), K°(t)) + C"(q"(t), K"(t))
o [(t)=1I°(t)+ I"(t)
o K(t)=Ke°(t)+ K"(t)
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Optimal Technology Penetration

s, {f o om0 -co-ro]ase )
subject to x(t) = q"(t), x(0)=x9 =0
Ki(t) = —6KI(8) + F(t), KI(0)=K], je{o,n}
2(t) = e *[bog°(t) + baq"(t)], 2(0) =2 =0
2(T) < zr

¢(t) 20, j €{o,n}

H(t) >0, j € {o,n}
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Optimal Technology Penetration

150 : | | : ! ! ! - .
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Optimal output, investment, and capital for 50% CO2 reduction.
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Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

1
minimize %/ u?(t) + 2y2(t)dt
0

subject to

y(t) = 3y(t) +u(t), t€[0,1],
1

y(0)=1.
i) = 2e3t 4 &3
Y ©e3t/2(2 4 e3)’
B 2(e3t _ 63)

u*(t) = e3t/2(2 + €3)
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Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem Discretize with 2nd order RK

1 K-1
DL h
minimize é/o vA(t) 4+ 2y2(t)dt  minimize 5 E u,%+1/2+2y,3+1/2
k=0

subject to subject to (k =0,...,K):

h
Yit1/2 = Yk + 55k + ug),

y(t) = 3y(t) + (o). t€[0.2] 2"
y(0) =1. Y1 = Yk + h(5Ykg1/2 + Ukt12),
j *(t) _ 2e3t + e3
Y ©e3t/2(2 4 e3)’
2(e3t _ 63)

u*(t) =

e3t/2(2 + e3) ’
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Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem Discretize with 2nd order RK

1 K-1
DL h
minimize é/o vA(t) 4+ 2y2(t)dt  minimize 5 E u,%+1/2+2y,3+1/2
k=0

subject to subject to (k =0,...,K):

h
Yit1/2 = Yk + 55k + ug),

(1) = by(0) + u(e), e 0.1), >
y(0) =1. Y1 = Yk + h(5Ykg1/2 + Ukt12),
Discrete solution (k =
(1) = 2e3t 4 @3 0,...,K):
Y ©e3t/2(2 4 e3)’
. 2(e3t - e3) Ye =1 Yig12=0,
(t) = 3t/2 3y’ 4+ h
e3t/2(2 4 &) Uk = =5~ Uky1/2 =0,

DOES NOT CONVERGE!
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.
Tips to Solve Continuous-Time Problems

@ Use discretize-then-optimize with different schemes
@ Refine discretization: h = 1 discretization is nonsense

@ Check implied discretization of adjoints
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Tips to Solve Continuous-Time Problems

@ Use discretize-then-optimize with different schemes
@ Refine discretization: h = 1 discretization is nonsense

@ Check implied discretization of adjoints

Alternative: Optimize-Then-Discretize
e Consistent adjoint/dual discretization
@ Discretized gradients can be wrong!

@ Harder for inequality constraints
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Part VI

Complementarity Constraints
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Nash Games

@ Non-cooperative game played by n individuals

e Each player selects a strategy to optimize their objective
o Strategies for the other players are fixed

@ Equilibrium reached when no improvement is possible
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Nash Games

@ Non-cooperative game played by n individuals

e Each player selects a strategy to optimize their objective
o Strategies for the other players are fixed

@ Equilibrium reached when no improvement is possible

o Characterization of two player equilibrium (x*, y*)

x* e

y*e

argmln f(x,y*)
x>0

subject to ¢1(x) <0

argmin  f(x*,y)

y>0 4
subject to c»(y) <0
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Nash Games

@ Non-cooperative game played by n individuals

e Each player selects a strategy to optimize their objective
o Strategies for the other players are fixed

@ Equilibrium reached when no improvement is possible

o Characterization of two player equilibrium (x*, y*)

argmln f(x,y*)
x* e x>0

subject to ¢1(x) <0

argmin  f(x*,y)

y* c y>0 4
subject to c»(y) <0

@ Many applications in economics
Bimatrix games

Cournot duopoly models
General equilibrium models
Arrow-Debreau models
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Complementarity Formulation

@ Assume each optimization problem is convex

o fi(-,y) is convex for each y
o f5(x,-) is convex for each x
o c1(+) and c(+) satisfy constraint qualification

@ Then the first-order conditions are necessary and sufficient

min A(x,y") o 0<x LVuAi(xy") + A Vea(x) >0
subject to 1 (x) <0 0< AL —a(x)>0
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Complementarity Formulation

@ Assume each optimization problem is convex
o fi(-,y) is convex for each y
o f5(x,-) is convex for each x
o ¢i(-) and ¢ (+) satisfy constraint qualification

@ Then the first-order conditions are necessary and sufficient

min H(x",y) 0<y LV,h(x*y)+MV,aly)=>0

y=>0
subject to &(y) <0 0< XAl -c(y)=0
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Complementarity Formulation

@ Assume each optimization problem is convex

o fi(+,y) is convex for each y
o fr(x,-) is convex for each x
e c1(-) and c(-) satisfy constraint qualification

@ Then the first-order conditions are necessary and sufficient

0<x LV,A(xy)+ N Vca(x) >0
0<y LV,hb(xy)+MV,a(y)>0
0 S )\1 J_—cl(y) 20
0< X l-al)>0

@ Nonlinear complementarity problem

e Square system — number of variables and constraints the same
e Each solution is an equilibrium for the Nash game
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Model Formulation

@ Economy with n agents and m commodities

e e € R™M are the endowments
o a € R™™ and B € R"™™ are the utility parameters
e p € R™ are the commodity prices

@ Agent i maximizes utility with budget constraint

m .
. 1 . 1751,/(
max Z k(1 + Xik)
Xj.» >0 1—Bixk
k=1 ’
m
subject to g px (Xik —eik) <0
k=1

@ Market k sets price for the commodity

n
0<pxl Z(e,-,k —Xik) >0
i=1
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.\ _________________________________________
Newton Method for Nonlinear Equations

b prx)
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.\ _________________________________________
Newton Method for Nonlinear Equations

b F(x)
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.\ _________________________________________
Newton Method for Nonlinear Equations

b By

a 101/125



.\ _________________________________________
Newton Method for Nonlinear Equations

b By
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.
Methods for Complementarity Problems

@ Sequential linearization methods (PATH)
@ Solve the linear complementarity problem

0<x L F(x)+VF(x)(x—xk)>0

@ Perform a line search along merit function
© Repeat until convergence

a 103 /125



Methods for Complementarity Problems

@ Sequential linearization methods (PATH)
@ Solve the linear complementarity problem

0<x L F(xx)+VF(x)(x—x)>0

@ Perform a line search along merit function
© Repeat until convergence

@ Semismooth reformulation methods (SEMI)

e Solve linear system of equations to obtain direction
o Globalize with a trust region or line search
e Less robust in general

@ Interior-point methods
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Semismooth Reformulation

@ Define Fischer-Burmeister function

a,b):=a+b—+a*+ b?
o(

o ¢(a,b)=0iffa>0,b>0,and ab=0

@ Define the system

[®(x)]i = o(xi, Fi(x))

e x* solves complementarity problem iff ®(x*) =0

@ Nonsmooth system of equations
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Semismooth Algorithm

@ Calculate H* € 9g®(x*¥) and solve the following system for
dk:

H<d* = —o(x¥)
If this system either has no solution, or
VU(x)Td* < —pi]|d¥|P

is not satisfied, let dk = —VW(xk).
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Semismooth Algorithm

@ Calculate H* € 9p®(x*) and solve the following system for
dk:

H d* = —(x¥)
If this system either has no solution, or
VU(x)Td* < —pi]|d¥|P

is not satisfied, let d¥ = —VW(x¥).

@ Compute smallest nonnegative integer i such that
W(xk + 5ikdk) < W(xk) + UﬁikV\U(xk)dk

@ Set xkt1 = xk —I—Bikdk, k=k+1, and go to 1.
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Convergence lIssues

@ Quadratic convergence — best outcome
@ Linear convergence

e Far from a solution — r(xx) is large

Jacobian is incorrect — disrupts quadratic convergence
Jacobian is rank deficient — ||V r(xx)|| is small

Converge to local minimizer — guarantees rank deficiency
Limits of finite precision arithmetic

© r(xk) converges quadratically to small number
@ r(x«) hovers around that number with no progress

@ Domain violations such as % when x =0
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Some Available Software

PATH — sequential linearization method
MILES - sequential linearization method
SEMI — semismooth linesearch method

TAOQO — Toolkit for Advanced Optimization

@ SSLS - full-space semismooth linesearch methods
e ASLS - active-set semismooth linesearch methods
e RSCS - reduced-space method
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Definition

o Leader-follower game

o Dominant player (leader) selects a strategy y*
e Then followers respond by playing a Nash game

argmin  fi(x,y)
X’-* e x>0
subject to ¢;(x;) <0

@ Leader solves optimization problem with equilibrium
constraints
min - g(x.y)
subject to h(y) <0
0<xi L Vifi(x,y)+ )\,-TVX,.C;(X,') >0
0 < )\,’ 1 —C,'(X,') > 0

@ Many applications in economics
e Optimal taxation
e Tolling problems
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Model Formulation

@ Economy with n agents and m commodities

e e € R™M are the endowments
o a € R™™ and B € R"™™ are the utility parameters
e p € R™ are the commodity prices

@ Agent i maximizes utility with budget constraint

m .
. 1 . 1751,/(
max Z k(1 + Xik)
Xj.» >0 1—Bixk
k=1 ’
m
subject to g px (Xik —eik) <0
k=1

@ Market k sets price for the commodity

n
0<pxl Z(e,-,k —Xik) >0
i=1
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Nonlinear Programming Formulation

ey Nz EO0Y)

subject to h(y) <0
Si = vx;ﬁ(X,y) + )‘iTvX;Ci(Xi)
ti = —C,'(X,')

Z (s,-Tx,- + )\,-t,-) <0

i

e Constraint qualification fails

o Lagrange multiplier set unbounded
o Constraint gradients linearly dependent
o Central path does not exist

@ Able to prove convergence results for some methods

@ Reformulation very successful and versatile in practice
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Penalization Approach

min g(x,y)+ 772 (s,-TX,- + )\,-t,-)

X,¥,A,5,t>0

subject to h(y) <0
Si = VXI-fi(X,}/) + )‘,Tvx,-ci(xi)
ti = —C,'(X,')

]

@ Optimization problem satisfies constraint qualification
@ Need to increase 7
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Relaxation Approach

L, g(x,y)

subject to h(y) <0
Si = inﬁ(x,y) + )\,TVXI.C,'(X,')
ti = —C,'(X,')

Z (S,-TX,' + )\,’1.',') <T

i

@ Need to decrease 7
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Limitations

Multipliers may not exist

Solvers can have a hard time computing solutions

o Try different algorithms
e Compute feasible starting point

Stationary points may have descent directions

o Checking for descent is an exponential problem
e Strong stationary points found in certain cases

@ Many stationary points — global optimization
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Limitations

Multipliers may not exist

Solvers can have a hard time computing solutions

o Try different algorithms
e Compute feasible starting point

Stationary points may have descent directions

o Checking for descent is an exponential problem
e Strong stationary points found in certain cases

Many stationary points — global optimization

Formulation of follower problem

e Multiple solutions to Nash game
e Nonconvex objective or constraints
e Existence of multipliers
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Part VII

Mixed Integer and Global Optimization
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Global Optimization

| need to find the GLOBAL minimum!

@ use any NLP solver (often work well!)

@ use the multi-start trick from previous slides
o global optimization based on branch-and-reduce: BARON

e constructs global underestimators

o refines region by branching

e tightens bounds by solving LPs

e solve problems with 100s of variables

@ '"voodoo” solvers: genetic algorithm & simulated annealing
no convergence theory ... usually worse than deterministic
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Derivative-Free Optimization

My model does not have derivatives!

@ Change your model ... good models have derivatives!
@ pattern-search methods for min f(x)

evaluate f(x) at stencil xx + AM

move to new best point

extend to NLP; some convergence theory h
matlab: NOMADm.m; parallel APPSPACK

@ solvers based on building interpolating quadratic models

e DFO project on www.coin-or.org
e Mike Powell's NEWUOA quadratic model

@ '"voodoo” solvers: genetic algorithm & simulated annealing
no convergence theory ... usually worse than deterministic
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Optimization with Integer Variables

Mixed-Integer Nonlinear Program (MINLP)
@ modeling discrete choices = 0 — 1 variables

@ modeling integer decisions = integer variables
e.g. number of different stocks in portfolio (8-10)
not number of beers sold at Goose Island (millions)

MINLP solvers:
@ branch (separate z; = 0 and z; = 1) and cut
@ solve millions of NLP relaxations: MINLPBB, SBB

@ outer approximation: iterate MILP and NLP solvers
BONMIN (COIN-OR) & FilMINT on NEOS
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Portfolio Management

@ N: Universe of asset to purchase
@ x;: Amount of asset / to hold
e B: Budget

minimize u(x) subject to Zx,- =B, x>0
ieN

a 121/125



Portfolio Management

@ N: Universe of asset to purchase
@ x;: Amount of asset / to hold
e B: Budget

minimize u(x) subject to Zx,- =B, x>0
ieN

. def
o Markowitz: u(x) = —aTx+ AxT Qx
@ «: maximize expected returns
e @: variance-covariance matrix of expected returns
e \: minimize risk; aversion parameter
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More Realistic Models

o b e RIN of “benchmark” holdings

@ Benchmark Tracking: u(x) dof (x —b)TQ(x — b)
o Constraint on E[Return]: a'x > r
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More Realistic Models

o b e RIN of “benchmark” holdings

@ Benchmark Tracking: u(x) o (x — b)TQ(x — b)
o Constraint on E[Return]: a'x > r
o Limit Names: [ie N : x; >0/ < K
e Use binary indicator variables to model the implication
x; > 0= yi = 1
e Implication modeled with variable upper bounds:

X,'SBy; VieN

° ZieNYI <K
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Optimization Conclusions

Optimization is General Modeling Paradigm
@ linear, nonlinear, equations, inequalities
@ integer variables, equilibrium, control
AMPL (GAMS) Modeling and Programming Languages
@ express optimization problems
@ use automatic differentiation
@ easy access to state-of-the-art solvers
Optimization Software

@ open-source: COIN-OR, IPOPT, SOPLEX, & ASTROS (soon)
@ current solver limitations on laptop:

1,000,000 variables/constraints for LPs

100,000 variables/constraints for NLPs/NCPs

100 variables/constraints for global optimization
500,000,000 variable LP on BlueGene/P
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