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Abstract

In this paper I examine ε-equilibria of stationary dynamic economies with hetero-
geneous agents and possibly incomplete financial markets. I give a simple example to
show that even for arbitrarily small ε > 0, allocation and prices can be far away from
exact equilibrium allocations and prices. That is, errors in market clearing or individu-
als’ optimality conditions do not provide enough information to assess the quality of an
approximation. I derive a sufficient condition for an ε-equilibrium to be close to an exact
equilibrium. If the economic fundamentals are semi-algebraic, one can verify computa-
tionally whether this condition holds. The condition can be interpreted economically
as a robustness requirement on the set of ε-equilibria which form a neighborhood of the
computed approximation.

I illustrate the main result and the computational method using an infinite horizon
economy with overlapping generations and incomplete financial markets.
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1 Introduction

Given a numerically computed ε-equilibrium of a dynamic stochastic economy with het-
erogeneous agents, how can one verify whether or not this is a good approximation to an
exact competitive equilibrium? In this paper, I show that if economic fundamentals are
semi-algebraic, i.e. per period utility- and production-functions can be described by finitely
many polynomials (see e.g. Blume and Zame (1993) or Kubler and Schmedders (2010a)),
one can validate numerically when a computed ε-equilibrium provides a good approximation
to an exact equilibrium. The basic idea is as follows. One can create a set of ε-equilibria
by constructing a neighborhood around the computed approximation. Under some regu-
larity conditions explained in detail below, one can ensure that this set contains an exact
equilibrium by verifying that, if the next period’s endogenous variables lie in the set, the
conditions necessary for competitive equilibrium imply that endogenous variables in the
current period must also lie in the set. I show that this verification can be done relatively
efficiently by using methods from polynomial optimization and therefore that the method
can be used for medium-sized dynamic stochastic models. While this is only a sufficient
condition for the computed approximation to be close to an exact equilibrium, I argue that,
under an economically intuitive robustness requirement on the exact equilibrium, it is also
necessary.

Applied researchers routinely compute ε-equilibria of dynamic stochastic economies al-
though almost nothing is known about the nature of exact equilibria in these models. For
dynamic models where the solution can be characterized as a planner’s problem, Santos
and Vigo-Aguiar (1998) and Santos (2000) have developed sufficient conditions under which
they can give explicit error bounds both on policy functions and on allocations. Under these
conditions, error bounds on allocations can be derived from Euler equation residuals and
ε-equilibria are always close to exact equilibria. Unfortunately, however, these results do
not generalize to models with heterogeneous agents and incomplete markets or overlapping
generations. In these models, it is not known if recursive equilibria exist or if policies are
continuous functions of the state (see e.g. Kubler and Polemarchakis (2004)). Even if, for
given prices, each agent makes only a small error in his utility maximization problem, it
is possible that the exact market clearing price is far from the computed approximation.
The set of ε-equilibria in these economies might therefore be very large and the computed
approximation might be nowhere near to an exact equilibrium. In Section 2, I construct
a simple example of a deterministic economy with overlapping generations where I find
two approximate solutions. I can show that one ε-equilibrium is close to an exact equi-
librium while the other ε-equilibrium, which exhibits similar errors in market-clearing and
optimality conditions, is far away from any exact solution.

So far, no sufficient conditions were known which allow the derivation of error bounds
on computed equilibrium prices and allocations in the models considered in this paper.
Kubler and Schmedders (2005) show that, in these models, ε-equilibria can be interpreted
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as exact equilibria of close-by economies. Their paper does not make any statements about
the set of all ε-equilibria or about how ε-equilibria are related to exact equilibria of the
given stationary economy1. However, it suggests that if a competitive equilibrium is well-
behaved (in a sense to be made precise later) perturbations of exogenous variables should
not lead to large perturbations in the equilibrium and, if one considers the set of ε-equilibria
that results from such perturbations, it should form a well-behaved neighborhood around
the exact equilibrium. In this paper, I build on this idea, derive a simple condition that
ensures that a set of ε-equilibria contains an exact equilibrium and argue that, in well-
behaved cases, a neighborhood of a computed ε-equilibrium should satisfy this condition if
it contains an exact equilibrium.

I define a set of ε-equilibria to be robust if it satisfies the following property. Suppose at
date T economic fundamentals are perturbed so that from T onwards the new competitive
equilibrium realizes in the ε-equilibrium set. Then robustness of this set requires that
up to date T the endogenous variables of the competitive equilibrium in which all agents
anticipate the changes at T also realize in the set. The main reason for introducing this
concept is that robustness ensures that an ε-equilibrium set contains an exact equilibrium
and that one can effectively check if a (semi-algebraic) ε-equilibrium set is robust. For semi-
algebraic economies, robust ε-equilibrium sets that are semi-algebraic exist for all ε > 0.
It is economically sensible to focus on competitive equilibria whose neighborhoods form
robust ε-equilibrium sets since otherwise small perturbations of fundamentals will lead to
large changes in the equilibrium.

While the theoretical analysis is conducted using abstract equilibrium sets, one has
to consider recursive ε-equilibria for the practical error analysis. Computational algo-
rithms typically use recursive methods to approximate equilibria numerically and for this
ε-equilibria are written as functions mapping the state of the economy into current endoge-
nous variables. If this is the case, one of course wants to verify that the computed recursive
ε-equilibrium is close to an exact equilibrium for all permissable values of the state. In
order to do so, I construct candidate robust ε-equilibrium sets by creating a strip around a
computed recursive ε-equilibrium. I show that one can verify that the ε-equilibrium set is
robust for all relevant initial values of the state by solving a polynomial optimization prob-
lem. While this is not a convex programming problem, there now exist algorithms which
find lower bounds on global minima of relatively large constrained polynomial problems
(see Laurent (2008) for an overview).

Throughout the paper, I take as given that a candidate approximate equilibrium has
been computed by some existing method and that this is described by a continuous and semi-
algebraic (policy-) function ρ̂. While the existence of a recursive exact equilibrium is not
guaranteed in general (Citanna and Siconolfi (2010) give conditions for the generic existence
of recursive equilibria in economies with overlapping generations), recursive ε-equilibria

1I illustrate the differences between the two approaches in the example in Section 2.
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always exist. However, typically there is no guarantee that a recursive ε-equilibrium can be
described by continuous functions. This paper is not about the computation of ε-equilibria
(see Judd (1998) for detailed descriptions of algorithms for the computation of equilibria in
dynamic stochastic models) but about the verification that a recursive ε-equilibrium is close
to an exact equilibrium. Even if there is a recursive ε-equilibrium with a continuous policy-
function, it is not guaranteed that the construction of a candidate robust ε-equilibrium set
always works. However, if this is not the case, the economy is likely to be so ‘badly-behaved’
that it seems hopeless to derive accurate numerical solutions at all.

As an example, I study a stochastic economy with overlapping generations which is
a generalization of Samuelson (1958) to uncertainty. In many applications, researchers
routinely compute approximate equilibria for versions of this model and find that low degree
polynomials suffice for very good approximations of policy-functions. This might strike one
as surprising since it is well known that in many dynamic economic models with overlapping
generations the set of competitive equilibria can be almost arbitrarily wild. In particular the
issue of indeterminacy of equilibria in deterministic olg models received a lot of attention and
it is now well understood that extremely restrictive assumptions are needed to guarantee
local uniqueness (see e.g. Kehoe and Levine (1990)). But this obviously says little about
the existence (or non-existence) of simple equilibria that can be approximated by low-
degree polynomials or by piece-wise polynomials. As Kehoe and Levine (1990) point out, in
deterministic olg models the fact that the equilibrium set is complicated does not necessarily
imply anything about the practical computation of equilibria.

The rest of the paper is organized as follows. In Section 2, I give a simple example to
illustrate the main points of the paper. In Section 3, I abstractly describe the economy,
define robust ε-equilibrium sets and prove the main theoretical result that relates robust
ε-equilibria to exact competitive equilibrium. Section 4 introduces recursive methods and
relates the theoretical result to polynomial optimization. I argue in this section that whether
or not a recursive ε-equilibrium is close to an exact equilibrium can be verified by solving
a series of constrained optimization problems. Section 5 applies the methods to examine
simple dynamic equilibria in stochastic models with overlapping generations.

2 An example

To illustrate the main ideas, I examine one of the simplest examples where serious problems
can arise. Consider an exchange economy with a single perishable commodity and overlap-
ping generations. Time extends from zero to infinity, t = 0, 1, . . .. At each t, a representative
agent is born and lives for three periods. In each period, individuals receive endowments
depending on their age, ea being the endowment of an agent of age a = 1, . . . , 3. Utility is
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time separable with the utility of an agent born at time t given by

Ut(c1, c2, c3) =
3∑

a=1

βa
c1−σ
a

1− σ
.

At each t, agents can trade in a risk-free bond with price q(t). Let θa(t) denote the bond-
holding of an agent of age a at time t. At t = 0, the initial conditions of the economy are
determined by the bond-holding of the initially alive agents of ages a = 1, 2.

A competitive equilibrium is defined as usual by market clearing and agent optimal-
ity, that is, it is given by a sequence

(
q(t), (ca(t))3

a=1, (θa(t))
2
a=1

)
such that for each t,∑2

a=1 θa(t) = 0 and such that each agent maximizes his utility given prices (q(t))∞t=0.
Since utility is concave and satisfies an Inada condition, and agents are finitely lived,

the first order conditions for agents’ optimality are necessary and sufficient. A competitive
equilibrium can therefore be described by first order conditions and market clearing. It
is useful to define z(t) to be the vector of all endogenous variables relevant at time t, i.e.
z(t) =

(
θ1(t− 1), q(t), (ca(t))3

a=1, (θa(t))
2
a=1

)
. Given initial conditions θ1(−1), a competitive

equilibrium can then be characterized as a sequence (z(t))∞t=0 with ca(t) ≥ 0 for all t and
all a = 1, 2, 3 that satisfies h(z(t), z(t+ 1)) = 0 for all t = 0, 1, ..., where

h(z(t), z(t+ 1)) =



−q(t) 1
c1(t)σ + β

c2(t+1)σ

−q(t) 1
c2(t)σ + β

c3(t+1)σ

c1(t)− e1 + q(t)θ1(t)
c2(t)− e2 − θ1(t− 1) + q(t)θ2(t)
c3(t)− e3 + θ1(t− 1)
θ1(t) + θ2(t)

(1)

The beginning-of-period wealth of the middle aged at time t is given by θ1(t − 1), i.e. the
savings of the young in the last period. It is convenient to build market-clearing into the
definition of z and h and take the beginning of period wealth of the old to be −θ1(t− 1).

A competitive equilibrium is a steady state if there is a z̄ such that zt = z̄ for all t,
i.e. if there is a z̄ with h(z̄, z̄) = 0. At least one steady state always exists in this example
(the situation will be quite different once uncertainty is introduced). Generally, however,
one is interested in competitive equilibria for initial conditions which are not part of a
steady state. Ideally, one would like to describe competitive equilibria for an entire interval
of initial conditions. In this case, one needs a convenient method to numerically describe
or approximate the equilibrium. In this paper, I assume throughout that the approximate
solution is in the form of a recursive ε-equilibrium. In this example, the natural state space Θ
consists of beginning-of-period bond-holdings of the middle aged and there are approximate
policy-functions that map the state, θ− ∈ Θ into current period consumptions, savings and
prices, ρ̂ : Θ→ R+ × R3

+ × R2. That is for each t, z(t) can be written as

z(t) =
(
θ1(t− 1), q(t), (ca(t))3

a=1, (θa(t))
2
a=1

)
= (θ1(t− 1), ρ̂(θ1(t− 1))
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and satisfies for each t, ‖h(zt, zt+1)‖ < ε.
For the concrete example, suppose there is no discounting (β = 1), that the coefficient

of relative risk aversion is given by σ = 3 and that individual endowments are e1 = 1, e2 =
10.575 and e3 = 0.5. Suppose one is interested in equilibria for initial conditions θ− = −6.

I turns out that for this specification there exist recursive ε -equilibria for which ρ̂ can
be written as a polynomial of degree 4. It is not clear if polynomials are always the right
choice in these economies as policies could be backward bending - however, for this example
(and all the ones consider in Section 5 below) it turns out fine. There are the following two
candidate solutions.

(1) The admissible state space is Θ = [−6, 0] and approximate savings policy of the middle
aged is given by

ρ̂θ2(θ−) = 0.000433θ4
− + 0.00224θ3

− − 0.000585θ2
− + 0.0289θ− − 0.154

The bond price is given by

ρ̂q(θ−) = −0.0012θ4
− + 0.0382θ3

− + 1.35θ2
− + 14.9θ− + 52.7

(2) The admissible state space is Θ = [−6,−5.4] and the approximate savings policy (of
the middle aged) is given by the following polynomial

ρ̂θ2(θ−) = 0.245θ3
− + 4.54θ2

− + 28.7θ− + 55.4.

The bond price is given by

ρ̂q(θ−) = 0.0385θ3
− + 0.717θ2

− + 4.56θ− + 10.

Figure 1 shows the approximate portfolio-policies for the two candidate solutions. Clearly
the two equilibria are quite different. Solution (1) is inefficient, with very low consumption
of the old, while Solution (2) is efficient with high consumption of the old.

In this simple example, one can verify that there is something ‘wrong’ with the second
approximate solution as the model has a unique steady state at around θ− = −0.15839. The
second solution seems to converge to an approximate steady state at around θ− = −5.44571,
but all exact steady states in this model are characterized by a finite number of polynomial
equations and the methods in Kubler and Schmedders (2010b) can be used to show that
there is a unique steady state in this economy. In fact, building on this, I show in Appendix
A of the paper that there cannot be a competitive equilibrium anywhere close to candidate
solution (2), i.e. this ε-equilibrium cannot be part of a cyclical equilibrium either.

The question is how to determine which one of these candidate solutions provides a good
approximation to an exact equilibrium without knowing the steady states. As mentioned
above, in models with stochastic shocks, there are no steady-state equilibria and the quality
of an approximation has to be judged differently. The standard measure is relative errors
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in Euler equations. That is, one can impose market clearing and budget-constraints on
the approximate equilibrium by computing consumptions from the budget constraints. The
only error is then in the Euler equations and it is useful (see Judd (1998)) to report the
maximum relative error

εr = max
t

{
max

(
β
c2(t+ 1)−σ

q(t)c1(t)−σ
− 1,

βc3(t+ 1)−σ

q(t)c2(t)−σ
− 1
)}

.

In both cases, these errors turn out to be very small (in solution 2 the maximum error is
10−5, in solution 1 around 2×10−5) and therefore this criterion cannot discriminate between
the good approximation and the candidate solution that is far from any exact equilibrium.
In fact, it is clear from Santos (2000) that one can only infer from these errors how far away
agents choices are from optimal choices, given fixed prices. In this example, both choices
and prices are approximate.

The analysis in Kubler and Schmedders (2005) implies that for both approximate equi-
libria one can construct some ’close-by’ economy so that these equilibria become exact.
In fact, it turns out that for a slightly larger endowment of the middle-aged, e.g. for
e2 = 10.576, the economy has three steady states and the second candidate solution is close
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to an exact solution. However, for e2 ≤ 10.575, there is certainly no exact equilibrium
anywhere close-by. Therefore, it is not possible to conduct local comparative statics in any
meaningful way and the second candidate solution is not robust even as an ε-equilibrium.
In a stochastic setting the situation is even worse. The construction in Kubler and Schmed-
ders (2005) generally does not yield a stationary economy and it is possible that there is
no ’close-by’ economy that is stationary and for which the computed equilibrium is ex-
act. Even if one performs careful robustness analysis and computes many examples with
similar endowments and preferences, it is possible that one never obtains ε-equilibria that
are good approximations of exact competitive equilibria for the stationary economies under
consideration.

In the following two sections, I will describe a method which can be used to prove that
the first candidate solution is close to an exact equilibrium. In Section 5, I will illustrate
the method using the example from this section.

3 An abstract model

In order to formally present the main theoretical result, I first introduce a general stochastic
dynamic framework that fits both models with overlapping generations and models with
infinitely lived agents and incomplete markets. At this stage, I do not assume that the
approximate equilibrium is recursive, since the main result is easiest to prove in a general
framework.

3.1 The Dynamic Economy

I consider a general abstract formulation of dynamic general equilibrium. Duffie et al. (1994)
use a similar framework (not assuming differentiability and semi-algebraic fundamentals,
as I do) and show in their paper that it encompasses general equilibrium models with
overlapping generations as well as models with infinitely lived agents. It will turn out that
most dynamic general equilibrium models used in applications fit the framework.

Time and uncertainty are represented by a countably infinite tree Σ. Each node of the
tree, σ ∈ Σ, is a finite history of shocks σ = st = (s0, s1, . . . , st) for a given initial shock
s0. The process of shocks (st) is assumed to be a Markov chain with finite support S. To
indicate that st

′
is a successor of st (or st itself), I write st

′ � st. The number of elements
in S is S. The S × S transition matrix is denoted by π. With a slight abuse of notation,
for σ′ � σ, I write π(σ′|σ) to denote the conditional probability of σ′ given σ.

I consider dynamic economic models where an equilibrium can be characterized by a
system of semi-algebraic equalities and weak inequalities relating current-period exogenous
and endogenous variables to endogenous and exogenous variables one period ahead. Exam-
ples of such conditions are individuals’ Euler equations, firms’ first-order conditions, and
market-clearing equations for goods or financial assets.
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A subset A ⊂ Rn is a semi-algebraic subset of Rn if it can be written as the finite union
and intersection of sets of the form {x ∈ Rn : g(x) > 0} or {x ∈ Rn : f(x) = 0} where f
and g are polynomials in x with coefficients in R, that is, f, g ∈ R[x]. Let A ⊂ Rn be a
semi-algebraic set. A function θ : A→ Rm is semi-algebraic if its graph {(x, y) ∈ A× Rm :
y = θ(x)} is a semi-algebraic subset of Rn+m. Blume and Zame (1993) and Kubler and
Schmedders (2010a) discuss in detail the assumption of semi-algebraic fundamentals in finite
exchange economies.

Current period endogenous variables are denoted by z ∈ RM . I assume that the system
of inequalities characterizing equilibrium can be written as follows.

h(s̄, z̄, z1, . . . , zS) = 0, g(s̄, z̄) ≥ 0, (2)

where for each fixed s ∈ S, h and g are continuous semi-algebraic functions. The arguments
(s̄, z̄) denote the exogenous state and endogenous variables for the current period. The
vector zs ∈ RM denotes endogenous variables in the subsequent period in state s. This is
identical to the characterization in the example in Section 2, except that now one also has
to consider S possible exogenous shocks in the subsequent period.

A competitive equilibrium is then a process (z(st)) such that for each st

h(st, z(st), z(st, 1), . . . , z(st, S)) = 0, g(st, z(st)) ≥ 0 (3)

It is useful to describe a competitive equilibrium not by infinite sequences but by a set
that consists of at least all elements of the sequence but might also contain several equilibria
at the same time.

Definition 1 An equilibrium set is a set Z = Z1 × . . .×ZS ⊂ RMS , such that for all s̄ ∈ S
and all z̄ ∈ Zs̄, g(s̄, z̄) ≥ 0, and there exist (z1, . . . , zS) ∈ Z such that

h(s̄, z̄, z1, . . . , zS) = 0.

Given the equilibrium equations (2), I define a backward operator to map variables in
the next period into variables in the current period that are consistent with the equilibrium
conditions. That is, given sets K0,K1, ...,KS ⊂ RM , I define for each s̄,

Bs̄(K0, (K1, . . . ,KS)) = {z̄ ∈ K0 : ∃zs ∈ Ks, s = 1, ..., S such that h(s̄, z̄, z1, . . . , zS) = 0,

g(s̄, z̄) ≥ 0}.

Very roughly speaking, in the subsequent analysis this operator will play a role similar
to the role of the Bellman operator in dynamic programming. The main difference is that it
is defined on sets and not on functions and that in general one cannot prove any contraction
or monotonicity properties for this operator.
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3.2 Robust ε-equilibria

Given any ε ≥ 0, define an ε-equilibrium set to be a set Zε = Zε1 × . . . × ZεS ⊂ RMS , such
that for all s̄ ∈ S and all z̄ ∈ Zεs̄, g(s̄, z̄) ≥ 0, and there exist (z1, . . . , zS) ∈ Zε such that

‖h(s̄, z̄, z1, . . . , zS)‖ ≤ ε.

The following is an abstract definition of a robust ε-equilibrium set.

Definition 2 An ε-equilibrium set Zε ⊂ RMS is robust if it is closed and bounded and if for

all s̄ ∈ S,

Bs̄(RM , (Zε1, . . . ,ZεS)) ⊂ Zεs̄.

The definition requires that for all endogenous variables in the ε-equilibrium set which
could realize in the subsequent period, all variables in the current period that are consistent
with equilibrium must also lie in the set. I present a more intuitive economic interpretation
of the concept below after characterizing robust ε-equilibrium in terms of exact equilibrium.
The following lemma provides the theoretical foundation for this.

Lemma 1 Suppose that there are (non-empty) closed and bounded sets (K0
1 , ...,K

0
S) such that

if one defines recursively, for each s̄,

Ki
s̄ = Bs̄(K0

s̄ , (K
i−1
1 , . . . ,Ki−1

S ))

each Ki
s is non-empty and closed. Then there exists an equilibrium set with Zs ⊂ K0

s for all

s = 1, ..., S

Although the lemma follows directly from Duffie et al. (1994) I provide the proof for
completeness. The proof also helps with understanding the subsequent analysis.

Proof of the Lemma. The main step of the proof consists in showing, by induction,
that Ki

s ⊂ Ki−1
s for all i and for all s. By definition K1

s ⊂ K0
s for all s. To show that if

Ki
s ⊂ Ki−1

s , it must also be the case that Ki+1
s ⊂ Ki

s, observe that if for a given s̄, z̄, there
exist zs ∈ Ki

s, s = 1, ..., S such that h(s̄, z̄, z1, ..., zS) = 0, g(s̄, z̄) ≥ 0 then, since Ki
s ⊂ Ki−1

s ,
there must also exist zs ∈ Ki−1

s , s = 1, . . . , S satisfying this property, and hence z̄ must lie
in Ki

s̄. Since the intersection of nested closed non-empty sets is non-empty, one can now
define for each s ∈ S, Zs = ∩∞i=0K

i
s. Clearly the collection of sets (Z1, . . . ,ZS) satisfy the

conditions of an equilibrium set. �

The lemma states that if one has candidate equilibrium sets K0 and one can somehow
prove that the recursively defined Ki are non-empty for all i, then one can infer that each
K0
s in fact contains an equilibrium set Zs. If one takes K0 to be a robust ε equilibrium set,

in order to apply the lemma one still somehow needs to verify that each Ki is non-empty.
It is useful to do this by showing the existence of truncated equilibria.

10



Definition 3 Given arbitrary sets (Z1, ..., ZS), Zs ⊂ RM , define a T -truncated equilibrium

with terminal condition (Z1, ..., ZS) as a finite horizon process (z(st))t≤T such that for each st,

t ≤ T − 1, the equilibrium conditions (3) hold and such that z(sT ) ∈ ZsT for all terminal sT .

The concept is closely related to the standard definition of equilibrium in truncated
economies. The only difference is that in the final period, T , agents face prices, consump-
tions and investments prescribed by Z and not, as in the standard concept, zero asset prices
and no new trade. Showing existence of a T-truncated equilibrium with terminal condi-
tion turns out to be not much harder than showing existence of equilibria for truncated
economies (which is part of standard existence proofs in these models). A sufficient condi-
tion for existence is typically that each Zs contains a continuous function, that there are
constraints on trades which guarantee that it is never feasible to leave the specified state
space and that budget sets are non-empty for all choices and prices. I illustrate this with
an example in Section 5.1 below.

If for an arbitrary ε-equilibrium set Zε, there exists a truncated equilibrium with termi-
nal condition Zε for all T , it is not guaranteed that the set contains an exact equilibrium
since it is not guaranteed that the truncated equilibria take values in Zε. However, if the
ε-equilibrium set is robust, it is clear from the definition that the truncated equilibria (if
they exist) must take values in the set. One can apply Lemma 1 and ensure that an exact
equilibrium set must be contained in the ε-equilibrium set. The following theorem states
this formally.

Theorem 1 Suppose Zε constitutes a robust ε -equilibrium and that for each T there exists a

T -truncated equilibrium with terminal condition Zε. Then there exists an exact equilibrium set

Z with Zs ⊂ Zεs for each s ∈ S.

While the definition of robust ε-equilibrium makes no mention of an exact equilibrium,
this theorem allows for the following interpretation of robust ε-equilibrium in terms of exact
equilibrium.

One typically hopes that competitive equilibria in infinite horizon models are good
approximations to equilibria in models with large finite horizons, and that these equilibria
converge to the infinite equilibrium. In fact, one hopes that changes in exogenous variables
in the far future have negligible effect on endogenous variables today. As Kubler and
Schmedders (2005) show, ε-equilibria can be interpreted as equilibria of a perturbed economy,
i.e. equilibria of an economy with slightly different endowments or preferences. Robustness
of an ε-equilibrium set requires that no matter how exogenous variables in the future are
(locally) perturbed, as long as the new equilibrium realizes in the ε-equilibrium set, the effect
on endogenous variables today must be no larger than the effect on endogenous variables
at the date of the perturbation.

Note that a reverse interpretation is not possible. If up to some T , all endogenous
variables realize in any ε-equilibrium set, the only way that all equilibrium conditions from
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T onwards hold exactly is that at the value of all endogenous variables at T , z(sT ) already
lies in an exact equilibrium set.

3.3 Verification and existence of robust ε-equilibria

The main advantage of the concept is that (at least in principle) one can always check
numerically whether a given semi-algebraic set constitutes a robust ε-equilibrium. This
follows directly from the so-called Tarski-Seidenberg principle and the quantifier elimination
algorithm (see e.g. Bochnak et al. (1998, Chapter 5)). More precisely, there is an algorithm
that decides for a given semi-algebraic set of ε-equilibria if it is a robust ε-equilibrium set2.
If it is, it must contain an exact equilibrium. This raises the question of whether one should
expect robust ε-equilibrium sets to exist and to be semi-algebraic.

3.3.1 Existence of robust ε-equilibrium

Suppose from the economic model one can find a priori bounds on all endogenous equilibrium
variables (the example below shows this is usually not very difficult, these bounds typically
arise from non-negativity constraints in consumption, market-clearing etc.) Let K0 satisfy
these bounds and, without loss of generality, impose the bounds in the equilibrium inequality
g(.) ≥ 0.

It is clear that, if K0 is semi-algebraic, the constructed Ki
s are semi-algebraic for all

i = 1, ... and each s. Fixing an ε > 0, there must now exist a sufficiently large i such that
Ki actually constitutes an ε-equilibrium set. By boundedness of K0, for each δ > 0 there
must be an i such that for all s, if z ∈ Ki

s, there must be a z̃ ∈ Ki+1
s with ‖z − z̃‖ < δ.

For each ε, there must be a δ, so that if h(s̄, z̃, z1, . . . , zS) = 0 then ‖h(s̄, z, z1, . . . , zS)‖ ≤ ε
whenever ‖z − z̃‖ < δ.

The construction also implies that Ki is robust: If there existed some s̄, z̄ with z̄ ∈
Bs̄(RM , (Ki

1, . . . ,K
i
S)) but z̄ /∈ Ki

s̄, clearly by Lemma 1, we must have z̄ /∈ K0
s̄ . But this is

impossible because the inequality g(.) ≥ 0 imposes z̄ ∈ K0
s̄ by constructions.

4 A recursive formulation

So far, the analysis has been conducted for abstract (ε) equilibrium sets. However, while
it is easy to compute one ‘recursive’ approximate equilibrium, researchers typically do not
explicitly compute entire sets of equilibria. In this Section, I use the theoretical results from
above to show that it is possible to verify that a recursive ε-equilibrium is close to an exact
(not necessarily recursive) competitive equilibrium.

For this, I need to impose a bit more structure on the abstract economy and define a
recursive ε-equilibrium. As in Section 2, I write the vector of endogenous variables as z =

2It is well known that quantifier elimination is hopelessly inefficient. I introduce more tractable methods

for this below.
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(θ−, η), with θ− being the ‘endogenous state’. The relevant endogenous state space is Θ =
(Θ1, . . . ,ΘS) where each Θs ⊂ RD depends on the underlying model and is determined by
the payoff-relevant pre-determined endogenous variables; that is, by variables sufficient for
the optimization of individuals at every date-event, given the prices. If Θ is the ‘endogenous
state space’ there must exist set-valued functions ρs : Θs ⇒ RM−D such that each Zs =
graph(ρs) for all s ∈ S.

The function h(.) typically uniquely determines θ−s for each shock s, as a function of z̄.
In the simplest example, the beginning-of-period portfolio holding is the endogenous state
and this is equal to the last period’s choices across agents. I illustrate this point in the next
section.

The value of the state variables s0 ∈ S,θ−(0) ∈ Θs0 in period 0 is called ‘initial condition’
and is part of the description of the economy. It will often be useful to make this explicit.
In particular, I often want to require that an equilibrium set describes a family of equilibria
arising from different initial conditions in a set of θ−(0) that contains an open set. Through
this requirement, the state-space Θ is partly specified exogenously, but it is of course en-
dogenous in the sense it must contain all realizations of θ− that occur in equilibrium. In
some models with exogenous constraints on trades, Θ can be taken as exogenous since the
realizations of θ− are predetermined through these restrictions. This applies for example
in models with asset markets and short-sale constraints on these assets. For the purpose of
this section, it will be useful to assume that there are sufficient constraints on trades that
ensure that in fact Θ is specified exogenously. I will give an example below where this is not
the case and show that it is without loss of generality to assume that agents face trading
constraints that are never binding in equilibrium.

A recursive ε-equilibrium consists of sets Θ̂s, and functions ρ̂s : Θ̂s → RM−D, s ∈ S
such that if Zεs = graph(ρ̂s) for all s ∈ S, then Zε constitutes an ε-equilibrium set. Note
that the comment made about the exogeneity of Θ also applies to Θ̂. Again I will assume
that Θ̂ is given through the description of the economy and that therefore Θs = Θ̂s for all
s ∈ S. From now on, I will also assume that ρ̂s is a continuous semi-algebraic function
(which implies that Θ̂s is a semi-algebraic set) for all s ∈ S.

It is easy to see that ρ̂s itself, since it is a function, will never describe a robust ε-
equilibrium set (unless it is an exact equilibrium). The first step is therefore to create a
function strip around ρ̂ that describes an entire set of ε-equilibria.

4.1 Constructing robust ε-equilibrium sets

For a given approximate recursive equilibrium (Θ̂s, ρ̂s)s∈S and fixed δ > 0, I take as a
candidate ε-equilibrium set

Zεs = {(θ−, η) : θ− ∈ Θ̂s, ‖η − ρ̂s(θ−)‖ ≤ δ}, s ∈ S. (4)

Note that the exact relation between δ and ε in this definition is not important for what
follows. What is important is that if, for sufficiently small δ, Zε contains an exact compet-
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itive equilibrium then Zε should also be a robust ε-equilibrium set. At this abstract level
this is not entirely clear. This should certainly be trued if close to the exact equilibrium the
backward operator is monotone but actually turns out to hold more generally. In Section
5, I illustrate this point in detail.

Given the above analysis, in order to verify robustness, one now needs to verify that for
all s ∈ S,

Bs(RM , (Zε1, . . . ,ZεS)) ⊂ Zεs.

However, this neglects the fact that one would like the recursive ε-equilibrium to be close to
an exact equilibrium for all θ− ∈ Θ̂s, s ∈ S. But since I assumed that Θ is given exogenously
through constraints on trades, it is without loss of generality to impose that the inequalities
h(.) ≥ 0 ensure that θ−s always realize in Θs. Therefore the definition of robust equilibrium
is now equivalent to the following, perhaps more intuitive concept. Define for each s ∈ S,
Ys = {z = (θ−, η) ∈ RM : θ− ∈ Θ̂s} and require for Zε that for each s ∈ S,

Bs(Ys, (Zε1, . . . ,ZεS)) ⊂ Zεs. (5)

In other words, if endogenous variables in next period lie within some δ of ρ̂ all endoge-
nous variables in this period must also lie within δ of ρ̂. Of course, Theorem 1 now needs
to be slightly modified and one needs to verify that truncated equilibria exist for all initial
conditions in Θ̂. The rest of the argument then remains the same.

If Zε is robust, and the conditions of Theorem 1 are satisfied, it must contain an exact
equilibrium, i.e. the computed approximation must be within δ of an exact equilibrium for
all values of the state. Note that these are absolute errors. Alternatively, we could have
defined

Zεs = {(θ−, η) : θ− ∈ Θ̂s, max
i

∣∣∣∣ ηi
ρ̂si(θ−)

− 1
∣∣∣∣ ≤ δ}

to obtain relative errors. The exposition in this section uses absolute errors, while I will use
relative errors in some of the examples below.

The advantage of working in a recursive framework is that one can formulate Condition
(5) as a constrained optimization problem. Given a fixed δ > 0, I consider the following
constrained optimization problem for each s ∈ S,

maxθ−∈Θ̂s,ε,η
‖η − ρ̂(θ−)‖ s.t. ‖ε‖ ≤ δ

h (s, θ−, η, (θ−1, ρ̂1(θ−1) + ε1), . . . , (θ−S , ρ̂S(θ−S) + εS)) = 0
g(s, θ−, η) ≥ 0

(6)
It is easy to see that, if the optimal value of this problem lies below δ, the set Zε as

defined in (4) is a robust ε-equilibrium set.
Since the optimization problem (6) is not a convex programming problem one can gen-

erally not find the global maximum. However, in the semi-algebraic case, it is a different
matter. I assume that h,g and ρ̂ are continuous semi-algebraic functions and that Θ̂s are

14



closed semi-algebraic sets. It follows from Proposition 2.1.8. of Bochnak et al. (1998) that
one can solve the maximization problem (6) by solving a series of polynomial optimization
problems and verifying additional polynomial inequalities. See also Kubler and Schmedders
(2010a) for a detailed description of this point in finite economies. To simplify notation I
will assume from now on that h, g and ρ̂ are already polynomial functions. In the appli-
cations below, the equilibrium conditions can be rewritten directly as polynomial functions
and ρ̂ is polynomial to start with.

4.2 Solving the maximization problem (6)

Under the assumption that the Kuhn-Tucker conditions are necessary and have finitely many
isolated solutions, algorithms designed to find all solutions to polynomial equations (see
Sturmfels (2002) for an overview) can be used to find all critical points and, by comparing
them, one can find the globally optimal solution to system (6). However, this ‘brute force’
approach is extremely inefficient.

It turns out to be much more efficient to use semi-definite programming and so called
sum-of-squares relaxation to solve the polynomial optimization problem. In the following,
I briefly explain the basic idea of the method.

4.2.1 Sum-of-squares relaxations

In the last decade, big advances have been made in polynomial optimization - see Laurent
(2009) for an overview. The basic idea, (which is nicely explained in detail in e.g. Parrilo
(2003)), is as follows.

A polynomial p ∈ R[x] is said to be a sum of squares (of polynomials) if it can be written
as

p =
m∑
j=1

u2
j for some uj ∈ R[x].

Clearly, if for a polynomial p, there exists a number γ, such that p− γ is a sum of squares,
then γ is a lower bound for p(x) for any x.

If the degree of p is d, in order for it to be a sum of squares, there have to exist uj which
are of degree d/2. The main insight is now that one can use semi-definite programming to
search over all polynomials of degree d/2 to establish that p is the sum of squares. The
polynomial p can be written as a quadratic form of all the monomials of degree less than or
equal to d, i.e. let z =

[
1, x1, x2, ..., xn, x

2
1, x1x2, ..., x

d
n

]
be the vector of all such monomials.

Then there must exist a positive-definite matrix Q with

p(x) = zTQz.

This matrix can be found using semi-definite programming (see Parrilo (2003) for details).
Following the same idea, but slightly more complicated, now consider the constrained

optimization problem
min f(x) s.t
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g1(x) = . . . = gm(x) = 0, h1(x) ≥ 0, . . . , hl(x) ≥ 0.

If there exist a number γ, arbitrary polynomials q1, ..., qm ∈ R[x] and sum-of-squares poly-
nomials r1, ..., rl ∈ R[x] such that

p := f − γ −
m∑
i=1

giqi −
l∑

i=1

hiri (7)

is a sum-of-squares, then clearly f(x) ≥ γ for all x satisfying g(x) = 0, h(x) ≥ 0. So again, γ
is a lower bound for the minimization problem. As before, given a candidate p, semi-definite
programming can be used to efficiently check if p is a sum-of-squares.

It is quite complicated to derive conditions on g and h that ensure that the converse
holds, i.e. if γ solves the minimization problem, one can achieve the sum-of-squares rep-
resentation. The Positivstellensätze by Schmüdgen and by Putinar (see Laurent (2009,
Theorem 3.16)) provide an answer – it is beyond the scope of this paper to discuss this
further.

More important for this paper is the fact that it is not possible to find good bounds
on the degree of q and r and therefore on the degree of p in equation (7). While one can
still use semi-definite programming to determine for which γ the term in the equation can
be written as a sum of squares, one has no a priori-bound on the degree and therefore
has to experiment with different values. Fixing the maximal degree of the polynomial p,
semi-definite programming can be used to determine efficiently if polynomials q and r of
appropriate degree exist. Waki et al. (2006) provide a way to exploit sparseness in the
polynomial problem so that the method is applicable to interesting problems. They report
solving (sparse) problems with several hundred variables.

In Section 5 below, I use a matlab implementation by the authors called SparsePOP,
described in Waki et al. (2008) to solve the relatively small problems that arise from the
applications. The package produces a lower bound for the problem, γ, from the solution
of the semi-definite program, as well as an approximate solution (the minimizer) to the
polynomial problem. If these values coincide, a true minimum has been found. If γ is
smaller than the value of f at the approximate solution, γ is still a lower bound for the
problem but neither γ nor the value of f might be the true minimum.

It is important to understand that one cannot always guarantee that the algorithm finds
the global minimum. There are essentially two reasons for this. First, it turns out that
solving the resulting semi-definite program is a difficult numerical problem and the solver
might fail to find a solution (see Waki et al. (2006) for a extensive discussion of this problem
and some possible remedies). More importantly, to use SparsePOP one needs to specify the
degree of relaxation (the parameter ’param.relaxOrder’ ), which is a bound on d/2 where
d is the degree of the polynomial p in Equation (7). As explained above, one cannot say a
priori how large this should be. In the examples, below I try the values 3, 4, 5 and 6. Large
values generally lead to severe numerical problems. Obviously, even if there exist γ and
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polynomials r and u such that p can be written as the sum of squares, it is not guaranteed
that it will be of degree 8 or less.

However, the output of the algorithm is always a lower bound on the true value of the
minimization problem. For my purposes, it is irrelevant what the true value of the problem
is. In order to determine if the error set E is empty for a given δ, one actually does not
have to solve the maximization problem (6). It suffices that δ provides an upper bound for
the problem. So if the software package finds a γ < δ for which the problem can be written
as a sum-of-squares, existence of a robust equilibrium within δ of the candidate equilibrium
is proven. If the software package does not find such a γ, nothing can be said about the
robustness of the candidate solution.

Note that this is a numerical algorithm, i.e. an approximate numerical solution is
computed using floating point arithmetic and rounding errors could potentially lead to
problems. Peyrl and Parrilo (2008) develop an algorithm that computes an exact algebraic
solution if coefficients are rational.

4.2.2 Practical Considerations

As I will explain in the next section, it is important to formulate the optimization problem
so that the degree of the polynomials is relatively low and it is important to find good
bounds on the variables. For many interesting economic applications, this might not always
be possible and it might not be feasible to use existing implementations of these methods to
solve the polynomial optimization problem. From a practical perspective, the insights from
this section are useful nevertheless. There are various efficient methods to find local minima
to the optimization problem (6) and, while this obvious cannot lead to a guarantee that
the computed approximation is close to an exact equilibrium, it can be a useful necessary
check. In particular, independently of the economy being semi-algebraic, the maximization
problem can be viewed as a programming problem with equilibrium constraints. There is a
large literature on these problems (see e.g. Luo et al. (1996)) and reliable software to solve
large-scale problems (see e.g. Su and Judd (2008) for an application of these methods to
economics).

5 Example: Stochastic overlapping generations

In this section, I illustrate the method using a simple stochastic olg economy. This is the
natural extension of the model considered in Section 2 in an environment with uncertainty.
Agents live for three periods, there is a single good, a single agent per generation and
a Markov chain determines endowments over the life cycle. I assume that there is no
production and that financial markets are incomplete3 and that there is a single bond

3In an earlier version of the paper, I considered the case of complete markets. This makes the analysis

slightly easier. Results are similar and available upon request.
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available for trade. The main purpose of this section is to illustrate the theoretical results
above. Clearly there is a trade-off between the model and notation being extremely simple
and the model being interesting, i.e. somewhat realistic or similar to models used in other
applications.

At each date-event a single individual commences his economic life; he lives for three
periods. An individual is identified by the date event of his birth, σ = (st). The age of
an individual is a = 1, 2, 3; he consumes and has endowments at all nodes st−1+a � st,
a = 1, 2, 3. An agent’s individual endowments are a function of the shock and his age alone,
i.e. for all a = 1, 2, 3, es

t
(st−1+a) = ea(st−1+a) for some function ea : S → R+.

The agent has an intertemporal time-separable expected utility function.

Uσ(c) =
3∑

a=1

∑
st−1+a�σ

π(st−1+a|σ)ua
(
c(st−1+a), st−1+a

)
The Bernoulli utility u depends on the age and the current shock alone.

At each st, there is a single risk-free bond in zero net supply available for trade. Its
price is denoted by q(st) ∈ R+ and agent σ’s bond-holding is θσ(st) ∈ R. Agents might face
a borrowing constraint of the form θσ(st) ≥ b, for some b < 0.

At the root node, s0, there are individuals of all ages s−1, s−2 with initial wealth
θs
−a

(s−1). These determine the ‘initial condition’ of the economy.
It will turn out to be useful to write ca(st) and θa(st) to denote consumption and

portfolios of the agent born at st−1+a.
A competitive equilibrium is a collection of prices and choices of individuals such that

markets clear and agents optimize, i.e. a sequence (q(st), (θa(st), ca(st))a=1,2,3)st∈Σ such
that for all nodes st ∈ Σ the following holds:

• Market clearing:
3∑

a=1

θa(st) = 0

• At each st, individual σ = st maximizes utility:

(cσ, θσ) ∈ arg max
c≥0,θ

Uσ(c) s.t.

c(st)− e1(st) + q(st)θ(st) ≤ 0, θ(st) ≥ b

c(st+1)− e2(st+1) + q(st+1)θ(st+1)− θ(st) ≤ 0, θ(st+1) ≥ b

c(st+2)− e3(st+2)− θ(st+1) ≤ 0

for all st+1 � σ and all st+2 � st+1

Optimality conditions for initially alive agents, s−1 and s−2 are analogous.

18



As in the deterministic example in Section 2, the natural endogenous state space of
this economy consists of beginning of period bond-holdings of the middle aged. Define
c = (c1, c2, c3) to be consumption across agents alive in the current period, θ = (θ1, θ2) to
be new portfolio choices and κ = (κ1, κ2) ∈ R2

+ to be the multipliers associated with the
borrowing constraint, as well as θ− to be the beginning of period wealth of the middle aged
and the old. Let z = (θ−, q, c, θ, κ) denote the vector of endogenous variables in a given
period.

It is well known that under the assumption that Uh is differentiable, strictly increas-
ing, strictly quasi-concave and satisfies an Inada-condition, the first order conditions are
necessary and sufficient for agent optimality. As in Section 2, the equilibrium equations
consist of the first order conditions, budget equations, market-clearing and the equations
that determine cash-at-hand in the next period, given choices today.

In this example, the state space does not depend on the shock. Note that if b = −∞
and there are no constraints on trades, the set Θ is completely endogenous. Therefore, the
previous analysis has to be slightly modified. One can view a recursive ε-equilibrium of an
economy without constraints that is given by ρ̂s : Θ̂ → RM−D as an ε-equilibrium of an
economy where the young agent faces the constraint θs ∈ Θ̂, but the constraint is simply
never binding. Through the error set, one then needs to verify that this ε-equilibrium is
close to an exact equilibrium with the same constraints in which these constraints are also
never binding. In practice, I therefore check if a δ-strip around the computed ε-equilibrium
is a robust ε-equilibrium set for the economy with constraints and then show that in the
exact equilibrium these constraints are never binding.

In order to apply the main result of the paper, Theorem 1, one first needs to establish
existence of truncated equilibria with terminal conditions. To prove existence of competitive
equilibria in these models, one typically first proves that an equilibrium exists for all finitely
truncated economies and then takes the limit. The result needed here is very similar.

5.1 Existence of truncated equilibrium

In this section, I prove that in the olg model truncated equilibria with initial conditions Z
always exist if the set Z contains the graph of a continuous approximate policy function. Let
ρ̂q denote the approximate pricing function and ρ̂θ the approximate policy function of the
middle aged. Let c > 0 denote a lower bound of an agents’ consumption in any equilibrium.
This is some positive number determined by the fact that endowments are strictly positive
and that agents are finitely lived and their utility satisfies an Inada condition.

As mentioned above, the existence of a truncated equilibrium is shown for a slightly
modified economy where all agents face additional trading constraints of the form θ ≥ b. By
market clearing, this implies b ≤ θ1 ≤ −b and one obtains a compact state space Θ̂ = [b,−b].

In this setup, one obtains the following lemma.
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Lemma 2 Suppose ρ̂ is continuous and that for any s ∈ S and any θ− ∈ Θ̂, e2(s) + θ− −
ρ̂q(θ−, s) · ρ̂θ(θ−, s) > c. Then for all initial conditions s0, θ−(s0) ∈ Θ̂ and for any T , there

exists a T -truncated competitive equilibrium with terminal condition ρ̂.

Although the proof of the lemma is a standard application of Kakutani’s theorem (see
e.g. Kubler and Polemarchakis (2004)), I present a detailed outline. The only difficulties lie
in making assumptions that ensure that agents’ budget sets are non-empty and in modifying
the problems of agents alive at T − 1 and T ; I discuss these in detail.

Fix initial conditions s0, θ−(s0) ∈ Θ̂. Each agent in the T horizon economy who is not
active at T takes prices as given and a standard argument shows that his best response is
continuous for strictly positive prices. At each node st, t < T , there is a price player that
takes choices at the node as given and solves

max
(p,q)∈∆2

η

p(c1(st) + c2(st) + c3(st)− e1(st)− e2(st)− e3(st)) + q(θ1(st) + θ2(st)),

where ∆2
η = {(p, q) : p+q = 1, p ≥ η, q ≥ η} denotes the two dimensional truncated simplex.

His choices are upper-hemi continuous and convex valued in choices of all agents.
Given choices of all agents, let q̄(sT ) = ρ̂q(θ1(sT−1)) and let θ̄(sT ) = ρ̂θ(θ1(sT−1)).

Clearly this is continuous and non-empty for all admissible choices of agents.
Finally, all agents born at period T − 1 at node sT−1, take as given q̄(sT ) and θ̄(sT ), as

well as prices at sT−1. Define their consumption at T as a function of savings at T − 1 as

c(θ) = max
(

(1 +
θ

2b
)
c

4
, e2(sT ) + θ − q̄(sT ) · θ̄(sT )

)
.

This definition ensures that, independently of (q̄(sT ), θ̄(sT )), positive consumption is always
feasible. It is then standard to show that best responses are continuous and non-empty since
the budget sets are continuous and non-empty in prices and in q̄, θ̄. Kakutani’s theorem
ensures the existence of a fixed point of the Cartesian product of the best-responses – it
is standard to show that for sufficiently small η > 0, this is a T-truncated equilibrium
according to the above definition. In particular, at the fixed point, it is guaranteed that
cs
T−1

(sT ) = e2(sT ) + θ(sT−1)− q̄(sT ) · θ̄(sT ) by the definition of c and the assumptions on
ρ̂.

The main insight of the proof is that, if for a given T -horizon economy one can show
that agents’ choices are continuous in prices, if one imposes a continuous policy function
at T which allows for positive consumption at some values of the specified state space, and
if one imposes constraints on trades that ensure that agents’ actions will never result in a
state outside of the specified space Θ̂, then the only modification of the standard existence
proof consists of the assumption that agents take choices at T as given. The method of
proof can be applied to a large variety of models where competitive equilibrium exists.
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5.2 Examples

As explained in the introduction, this paper is not about how to compute approximate
equilibrium. For the simple model in this section, there are several reliable methods to do so.
I use the time-iteration algorithm which is explained in detail in Kubler and Krueger (2004)
for a model with overlapping generations and production. I first revisit the deterministic
example from Section 2 and then consider an example with uncertainty. Throughout, I
assume that for each a and s, ua(c, s) = −βac1−σ, β > 0, i.e. preferences exhibit constant
relative risk aversion with a coefficient of relative risk aversion of σ > 1.

5.2.1 Example 1: A deterministic economy

To fix ideas, I first reconsider the example from Section 2. Inspecting the equilibrium equa-
tions (1), one notices that, in order to solve the constrained maximization problem (6), one
does not need to know the entire policy function but in fact only the consumption policies.
It is therefore useful to approximate these separately, i.e. instead of plugging the portfolio-
and pricing functions into the budget constraints, and so obtaining an approximating poly-
nomial for consumption, it makes more sense to approximate consumption directly, solve
the constrained maximization problem using only this function and then ask what it implies
for portfolios and prices. Concretely, for the two specifications it turns out that consump-
tion policies are actually better behaved then portfolios and can be well approximated by
polynomials of degree 3.

In order to verify that a candidate solution is close to an exact equilibrium one now
has to go through several steps: (1) Given a policy function of the middle aged, ρ̂c(.), the
constrained maximization problem to determine if this can be part of a robust ε-equilibrium
is as follows.

max
ε,θ−∈Θ̂,q,θ

±(e2 + θ− + q · θ − ρ̂c(θ−)) s.t.

−q̃1/3(ε+ ρ̂c(θ)) + β1/3(e1 − q̃3θ) = 0,
−q̃1/3(e3 − θ) + β1/3(e2 + q̃3θ + θ−) = 0,
θ ∈ Θ̂, q ≥ 0, −δ ≤ ε ≤ δ,

(8)

where ± indicates that, firstly, the positive objective function is maximized and, secondly,
the negative objective function is maximized.

Note that it is useful to substitute in budget constraints and to write the system using
q̃ = q1/σ. In its original formulation, the system of constraints would contain the term
q(ε+ ρ̂c(θ))3 – with ρ̂c being a polynomial of degree 3 that would result in a polynomial of
degree 7 and potentially cause numerical problems. Note also that, although in its original
formulation, the example did not include constraints on trades, I add the constraint θ ∈ Θ̂.
Since the polynomial function ρ̂c is defined on all of R, but only makes sense on Θ̂, this
cannot be avoided. For candidate solution (1) and δ = 10−4, SparsePOP returns an upper
bound of 4.3×10−5 for the problem. As a next step, (2), one has to check what a deviation
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of 10−4 in the consumption policy implies for prices and portfolios. For this, one can use
SparsePOP to solve maxε,θ−∈Θ̂,q,θ ±(θ− ρ̂θ(θ−)) and maxε,θ−∈Θ̂,q,θ ±(q− ρ̂q(θ−)) subject to
the same constraints as above. For Solution (1), SparsePOP returns an upper bound of
3.2× 10−4. Finally, in step (3), one now has to verify that, if portfolios stay in this region,
the additional superficial constraint θ ∈ Θ̂ never binds, i.e. in this case, for Solution (1), one
needs to check that for all θ− ∈ [−6, 0], ρ̂(θ−)−3.2×10−4 > −6 and ρ̂(θ−) + 3.2×10−4 < 0
– which is the case.

In comparison, for Solution (2), Steps (1) and (2) above also yield good results. In this
case, one obtains that the portfolio policy is within 10−2 of ρ̂(θ−). However, with this, Step
(3) fails since ρ̂(θ−) + 10−2 lies outside of Θ̂ at θ− = −5.4. The method fails to verify that
this approximate solution is close to an exact equilibrium - as I show in Appendix A it is
not.

5.2.2 Example 2: Endowment uncertainty

The introduction of uncertainty potentially causes numerical problems. If one continues to
use the consumption policy-function for CRRA utility and an economy with S exogenous
shocks, one has to solve s = 1, ..., S problems of the form

max
(ε1,...,εS),θ−∈Θ,q,θ

±(e2(s) + θ− + qθ − ρ̂c(θ−)) s.t.

−q 1
(e1(s)−qθ)σ +

∑S
s′=1 π(s′|s)β 1

(εs′+ρ̂c1 (θ,s′))σ = 0,

−q 1
(e2(s)+qθ+θ−)σ +

∑S
s′=1 π(s′|s)β 1

(e3(s)−θ)σ = 0

q ≥ 0, θ ∈ Θ̂ and − δ ≤ εs′ ≤ δ, for all s′ ∈ S.

In this formulation, the equilibrium constraints are not polynomial but, of course, if σ is
rational, one can obtain polynomial expressions by multiplying out. Even for very simple
examples with σ = 3 and two shocks, if the approximate consumption function is cubic this
leads to polynomials of degree 13. This is not feasible for SparsePOP. Instead, for a given
current shock s, it is useful to consider the functions

ρ̂m1(θ−) =

(
S∑

s′=1

π(s′|s)β 1
ρ̂c2(θ−, s′)σ

)− 1
σ

,

ρ̂m2(θ−) =

(
S∑

s′=1

π(s′|s)β 1
(e3(s′)− θ−)σ

)− 1
σ

.

In the example below, it turns out that these functions can be extremely well approximated
by low degree polynomials. Now one has to work with relative errors, since maximal relative
consumption errors translate one-to-one to maximal relative errors in ρ̂m2 . With this, the
equilibrium constraints of the maximization problem can be trivially written as

−q̃(1 + ε)ρ̂m1(θ) + (e1(s)− q̃σθ) = 0,

−q̃(1 + ε)ρ̂m2(θ) + (e2(s) + q̃σθ + θ−) = 0.
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Since the objective function now involves the ratio of actual consumption and approxi-
mate consumption policy, one has to verify, in addition to Steps 1-3 above, that the poly-
nomial approximation ρ̂m1 is sufficiently good, given the polynomial approximation for
consumption.

To illustrate this, I consider a very simple numerical example. Suppose S = 2, shocks
are iid with π = 1/2, endowments are given by

e1 = (e1(1), e1(2)) = (1, 2), e2 = (4, 2), e3 = (0.5, 0.5),

and suppose β = 1 and σ = 3.
In the computed approximate equilibrium, it turns out that the endogenous state can be

chosen to be Θ̂ = [−0.2,−0.05] and the approximate consumption functions can be chosen
to be the quadratic functions ρ̂c1(θ−, 1) = 1.6369 + 0.2350θ− − 0.0055θ2

− and ρ̂c1(θ−, 2) =
1.2187 + 0.3227θ− − 0.0362θ2

−. With these specifications, a cubic polynomial leads to an
excellent approximation for ρ̂m and it turns out that for a = 1, 2

max
θ−∈[−0.2,−0.05]

∣∣∣∣∣∣∣
ρ̂ma(θ−)(∑S

s′=1 π(s′|s)β 1
ρ̂ca (θ−,s′)σ

)− 1
σ

− 1

∣∣∣∣∣∣∣ < 10−8.

With this in place, one can now repeat the steps from above and verify that there
is an exact equilibrium for which the approximation exhibits a relative error of less than
10−4: For δ = 10−4, the optimal value of the maximization problem in Step 1 is around
4.7 × 10−5, so even an additional error resulting from the approximation of ρ̂m does not
destroy robustness.

The simple example illustrates the method - the technique can easily handle examples
with 6 or more states and risk aversion of 4 or 5.

6 Conclusion

This paper develops a computationally feasible test to verify that a computed candidate
equilibrium is close to a competitive equilibrium of a dynamic stochastic economy. The
result has both practical and theoretical relevance.

In practice, researchers often want to argue that their computations of dynamic equi-
libria are accurate. Reporting relative errors in Euler-equations can certainly be useful for
this, but only provides a necessary condition. The method in this paper can be used to give
a bound on the exact deviation between computed function and actual equilibrium. The
computation is relatively efficient and can be used for interesting small problems. I also
argue that the method suggests an error analysis that is feasible for large-scale models.

Theoretically, it is known that the assumption of semi-algebraic preferences and tech-
nology allows for an arbitrarily good approximation of all equilibria of a finite economy (see
e.g. Kubler and Schmedders (2010a)). The papers in the recent book edited by Brown and
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Kubler (2008) explore other implications of semi-algebraic fundamentals in finite economies.
In this paper, I show how to extend the ideas from real algebraic geometry to infinite
economies.

Appendix

I show that for the example in Section 2 there is no equilibrium close to the candidate
Solution (2). The method from Kubler and Schmedders (2010b) proves that there is a
unique steady state which is associated with candidate Solution (1). To understand better
the dynamics of the model close to the approximate solution, it is useful to identify the pairs
of beginning of period bond-holding and consumption of the middle aged, (θ−, c), which lead
to constant portfolios and those that lead to constant consumption. If portfolios are constant
at some θ̄ = θ = θ−, the budget constraint and the first order condition of the middle aged
imply as a necessary condition that there is a price q such that qθ̄ = c − e2 − θ̄, qc−3 =
(e3− θ)−3. Rewriting these equations as polynomials and using Gröbner bases to eliminate
q (as in Kubler and Schmedders (2010b)), one finds that constant portfolios arise if (θ−, c)
satisfy the following polynomial equation.

320θ4
−+(−320c+2904)θ3

−+(480c−4836)θ2
−+(−320c3−240c+2498)θ−+(40c−423) = 0. (9)

If consumption remains constant, there must be a θ and a q such that the budget
constraint of the middle aged and both first order conditions hold, i.e.

qθ = c− e2 − θ−, qc−3 = (e3 − θ), q(e1 + e2 + e3 − c− (e3 − θ−))−3 = c−3.

Rewriting as polynomials and using Gröbner bases to eliminate (q, θ), one obtains

256000c4 + (−384000θ− − 4252800)c3 + (128000θ2
− + 2771200θ− + 14927120)c2 + (10)

(192000θ2
− + 4444800θ− + 25724280)c+

(−64000θ3
− − 2222400θ2

− − 25724280θ− − 99252847) = 0

These two polynomial equations (9) and (10) define curves in (θ−, c) space and one can
easily determine the dynamics above and below these curves. Figure 2 shows the two curves,
with θ− on the x-axis and c on the y-axis in the region close to consumption of the second
Candidate solution.

The arrows indicate the dynamics of c and θ. There are 4 relevant regions labeled 1-4.
While it is not apparent from the figure, one can easily verify that the two curves do not
intersect in this region. Therefore, there can be no equilibrium with consumption close to
the one in candidate solution 2. Any such (θ−, c) pair leads to a dynamical system that
must leave Region 1 for either Region 2 or Region 3 and eventually must end up in Region 4
where consumption of the middle aged goes to infinity and therefore consumption of the old
or of the young must become negative. This cannot be part of any competitive equilibrium.
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