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Abstract
We apply the stochastic simulation algorithm, described in Judd,

Maliar and Maliar (2009), and the projection cluster-grid algorithm,
developed in Judd, Maliar and Maliar (2010a), to solving a collec-
tion of multi-country models. Four techniques help us reduce the
cost in high-dimensional problems: an endogenous grid enclosing the
ergodic set, linear approximation methods, fixed-point iteration and
efficient integration methods such as non-product monomial rules and
Monte Carlo simulation combined with regression. We show that ac-
curacy in intratemporal choice is crucial for the overall accuracy of so-
lutions and offer two novel approaches, precomputation and iteration-
on-allocation, that can solve for intratemporal allocations accurately
and fast. We also propose a hybrid solution algorithm that combines
the perturbation and accurate intratemporal-choice methods.
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1 Introduction

In the present paper, we show how to apply two ergodic-set algorithms to
solving a collection of multi-country real business cycle models, proposed
in Den Haan, Judd and Juillard (2010) (henceforth, DJJ) in the context of
the current JEDC project. One of these algorithms is the stochastic simula-
tion algorithm (SSA) described in Judd, Maliar and Maliar (2009, 2010b).12

The other is the projection cluster-grid algorithm (CGA) developed in Judd,
Maliar and Maliar (2010a) (henceforth, JMM). The studied models include
up to 10 countries (i.e., 20 state variables) and feature heterogeneity in funda-
mentals (preferences and technologies) and endogenous labor-leisure choice,
as well as complete markets, adjustment costs, continuously valued state
variables, and non-additively separable preferences and technologies.
Both the SSA and CGA build on strategies that allow us to reduce the

cost of finding global solutions in high-dimensional applications. The first
and most important distinctive feature of these two methods is that they op-
erate on domains that enclose the ergodic set. The SSA computes a solution
on a grid composed from simulated points, whereas the CGA constructs a
grid by clustering simulated data. Focusing on the ergodic set allows us to
avoid the costs associated with computing solutions in those areas of the state
space that are never visited in equilibrium. Second, we parameterize deci-
sion rules by a polynomial with additively separable terms, which allows us
to estimate the polynomial coefficients using linear approximation methods.
Such methods have low cost, are numerically stable and allow us to find the
decision rules of all countries at once rather than on a country-by-country ba-
sis. Third, we compute fixed-point values of the polynomial coefficients rules
using a fixed-point iteration method, the cost of which does not increase sig-
nificantly with the dimensionality of the problem. Fourth, we evaluate condi-
tional expectations using integration methods that are particularly suitable
for high-dimensional applications: Namely, the SSA combines Monte Carlo
simulation and regression in a manner that makes it possible to compute

1JMM (2009) present the SSA in the context of a one-country model. In a more recent
version of this paper, JMM (2010b) extend the results to include the case of a multi-country
model similar to Model 1 in the JEDC project.

2The SSA is similar to other stochastic simulation methods such as the simulation-
based version of the parameterized expectations algorithm (PEA) by Marcet (1988), and
Den Haan and Marcet (1990), the rules-of-thumb algorithm by Smith (1991); see JMM
(2010b) for a discussion.
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expectations (integrals) in all simulated points simultaneously, whereas the
CGA performs numerical integration using inexpensive non-product mono-
mial rules and a product Gauss-Hermite rule with small numbers of nodes
(including the rule with one node).
The models studied in JMM (2010a, 2010b) are more challenging in the

dimensional aspect than those considered in the current JEDC project since
they include up to 200 countries; however, these models abstract from the
labor-leisure choice. The presence of an endogenous labor-leisure choice com-
plicates the solution procedure since one of its consequence is that intratemporal-
choice variables (i.e., the control variables determined by a given law of mo-
tion for state variables) cannot be expressed analytically in terms of state
variables and must be approximated using numerical methods. In our numer-
ical experiments, the accuracy of the intratemporal choice plays an important
role in the overall accuracy of the solutions. For example, in the context of a
two-country model, we show that approximating at least one intratemporal-
choice variable (e.g., consumption of the first country) with a polynomial
function of the same (second) degree as that used to approximate the capital
decision functions results in much larger errors in the intratemporal-choice
conditions than in the intertemporal-choice conditions (Euler equations). In-
sufficient accuracy with regards to intratemporal choice drives down the over-
all accuracy of solutions. The importance of the intratemporal choice for
accuracy is also seen from Table 6 of the comparison paper by Kollmann,
Maliar, Malin and Pichler (2010) (henceforth, KMMP).
In the present paper, we describe two novel approaches to the prob-

lem of solving for intratemporal choice that enable us to attain a high de-
gree of accuracy. Our first approach, called iteration-on-allocation, relies
on a numerical solver that implements fixed-point iteration directly on the
intratemporal-choice variables, i.e., the intratemporal-choice functions are
never constructed explicitly! This approach allows us to achieve effectively
zero errors in all intratemporal-choice conditions, including the budget con-
straint, so that the only source of errors for us is Euler-equation errors.3

The iteration-on-allocation solver does not require derivatives (Jacobian and
Hessian), and its cost does not increase significantly with dimension. More-
over, this approach can work with vectors and matrices, which makes it very
fast when used in vectorized applications.

3This approach was originally proposed in the context of the PEA in Maliar and Maliar
(2004) and was later implemented for the SSA and CGA.
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Our second approach, called precomputation, separates the intertemporal
and intratemporal choices, precomputes the intratemporal-choice functions
on an appropriately chosen grid of points outside the main iterative cycle
and uses the constructed functions to interpolate the intratemporal choice
inside the main iterative cycle as if a closed-form solution was available.4 Like
iteration-on-allocation, this approach can work with vectors and matrices and
yields very accurate intratemporal allocations in the examples considered.
One feature of the present analysis that merits a separate discussion is

that our choice of which decision functions to parameterize affects the speed
of the SSA and CGA. In the present paper, we parameterize a law of motion
for capital stock in terms of the economy’s state variables. An advantage of
this parameterization is that we can construct the whole equilibrium path for
capital without solving for the intratemporal-choice variables (consumption
and labor). For a given capital path, the problem of finding intratemporal
choices can be vectorized: we can compute all consumption and labor alloca-
tions at once rather than on a point-by-point basis. This makes it possible to
exploit vectorized versions of the iteration-on-allocation and precomputation
approaches.
The accuracy and speed of the SSA and CGA in the context of the given

project are assessed in the comparison paper of KMMP (2010). In the present
paper, we report a few additional experiments that demonstrate how the ac-
curacy and speed of the CGA depend on the specific integration method,
approximating polynomial function and approach used to solve for the in-
tratemporal choice.
We find that the product Gauss-Hermite rule (with more than one node in

each dimension) and non-product monomial formulas deliver essentially the
same accuracy of solutions; in our experiments, solution errors are identical
up to the fourth digit. Furthermore, a one-node Gauss-Hermite rule leads
to solution errors that are no more than 20% larger than those produced
by more accurate integration formulas. This is an important finding, since
a low-cost one-node formula can be used to solve problems of a very high
dimensionality. Finally, in the two-country examples, going from a second-
to third-degree polynomial increases accuracy (i.e., decreases solution errors)
by about an order of magnitude. The above three regularities are parallel to

4Maliar and Maliar (2005) introduce the precomputation approach in the context of the
standard neoclassical growth model for computing labor-leisure choice outside the iterative
cycle. Maliar and Maliar (2007) implement this approach in the context of the current
JEDC project.
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those reported by JMM (2010a) for a model with non-valued leisure.
We report the following new findings in the context of models with val-

ued leisure. First, the Smolyak polynomial used in the Smolyak collocation
algorithm by Malin, Krueger and Kubler (2010) (henceforth, MKK) is also a
useful choice for the CGA. The Smolyak polynomial is composed of a com-
plete second-degree polynomial and selected polynomial terms up to degree
four. It has only four times more terms than the usual second-degree polyno-
mial but can achieve nearly the same degree of accuracy as the third-degree
complete polynomial. Second, the method’s accuracy is more dependent on
how accurately we compute the intratemporal choice in simulation procedure
when we test accuracy than on how accurately we compute the intratempo-
ral choice in the solution procedure. By recognizing this, we end up with a
higher degree of accuracy. Finally, our results on the importance of accuracy
in the intratemporal choice led us to propose a hybrid approach that com-
bines a standard perturbation method and our accurate intratemporal-choice
methods. Specifically, we use a decision rule for capital delivered by a log-
linearization method, and we solve for the consumption and labor accurately
using the iteration-on-allocation method. The hybrid solutions we obtain
are more than an order of magnitude more accurate than those produced by
the original log-linear decision rules. This hybrid approach can be useful for
solving problems of very high dimensionality.
The rest of the paper is as follows: Section 2 presents the model and

derives the first-order conditions. Section 3 describes how we address the
challenges of high-dimensional problems. Section 4 develops two approaches
for computing intratemporal-choice variables. Section 5 describes the steps
of the SSA and CGA. Section 6 outlines the implementation of the SSA
and CGA in the context of the current JEDC project. Section 7 presents the
numerical results and introduces the hybrid of the perturbation and accurate
intratemporal-choice methods. Finally, Section 8 concludes.

2 The model

We consider a model with a finite number of countries, N , in which each coun-
try is populated by a representative consumer. A social planner maximizes a
weighted sum of the expected lifetime utilities of the countries’ representative
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consumers subject to the aggregate resource constraint, i.e.,
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In equations (4)−(6) and hereafter, notation of type Fxm stands for the first-
order partial derivative of a function F (..., xm, ...) with respect to a variable
xm.
As part of the present JEDC project, eight models are considered. Models

1, 2, 3 and 4 have the same preferences and technologies as do Models 5, 6, 7
and 8, respectively, however, the former models assume identical preferences
and technologies parameters for all countries, while the latter models have
different parameters across countries. Models 1 and 5 do not have an en-
dogenous labor-leisure choice, while the other models do have such a choice.
A description of the models studied in the project, including the choice of
the models’ parameters, is provided in Juillard and Villemot (2010).

Intertemporal versus intratemporal choices For our numerical meth-
ods, it is convenient to make a distinction between intertemporal and in-
tratemporal choices. In both of our algorithms, we parameterize a future
capital stock, kjt+1, by a function of the current state variables,

kjt+1 = Kj (kt,at) , j = 1, ..., N. (7)

where kt ≡
¡
k1t , ..., k

N
t

¢
and at ≡

¡
a1t , ..., a

N
t

¢
. We call kjt+1 an intertemporal-

choice variable because it captures dynamic aspects of the social planner’s
choice: it defines an equilibrium law of motion of the countries’ capital stock.
Once N future capital stocks kt+1 are fixed, we are left in each period t
with the static problem of finding a solution to a system of 2N optimality
conditions (i.e., one resource constraint (2), N − 1 conditions (4) and N
conditions (5)) with 2N unknowns -N consumption choices,

¡
c1t , ..., c

N
t

¢
≡ ct,

and N labor choices,
¡
c1t , ..., c

N
t

¢
≡ `t. From this system, we need to find a

solution in the form:

cjt = Φj (kt,at,kt+1) and cjt = Θj (kt,at,kt+1) , j = 1, ..., N. (8)

We refer to consumption ct and labor `t as intratemporal-choice variables be-
cause under our representation, such variables are determined within period
t if the state (kt,at) and intertemporal choice kt+1 are given. For Model 1,
the intratemporal choice can be expressed analytically, while for Models 2-8,
it must be approximated numerically.
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3 Addressing challenges of high dimensions

The high-dimensional models described in DJJ (2010) pose four challenges
for numerical methods designed to find a global solution: (i) the large size of
the domain on which the solution is computed, (ii) the large number of poly-
nomial coefficients in an approximating polynomial function, (iii) the large
number of integration nodes for approximating the conditional expectation
function, and (iv) the high cost of solving for the intratemporal choice.
JMM (2010a, 2010b) show how to address the first three challenges in the

context of the CGA and SSA methods, respectively. The problems that are
solved in JMM (2010a, 2010b) are of larger dimensionality than those that
are included in the current JEDC project as they include up to 200 countries;
however, these problems are also simpler in the structure of their intratem-
poral choice, which can be characterized analytically. The strategies used by
JMM (2010a, 2010b) to address challenges (i), (ii) and (iii) are discussed in
Sections 3.1, 3.2 and 3.3, respectively, and the coordination of these strate-
gies is described in Section 3.4. The last challenge, (iv) which is concerned
with the intratemporal choice in high dimensions, is not studied in JMM
(2010a, 2010b). In the present paper, solving accurately for intertemporal
choice proved to be crucial for the overall accuracy of solutions. We address
the intratemporal-choice challenge in a separate section, Section 4.

3.1 Multi-dimensional domain

To make a numerical method suitable for high-dimensional applications, we
should restrict attention to a relatively small set of grid points in the multi-
dimensional space.5 Both the SSA and CGA achieve this goal by focusing
on the ergodic set of points realized in equilibrium. In Figure 1a, we show
the ergodic set constructed from a simulated series of 10, 000 observations,
which are produced by a standard representative-agent neoclassical stochastic
growth model. The SSA computes the solution on the given set of simulated
points and keeps the number of simulated points fixed at T = 10, 000 inde-
pendently of the number of countries N ; see JMM (2009) for details. The
CGA chooses a more efficient representation of the ergodic set; namely, it

5The literature commonly considers a multi-dimensional hypercube domain composed
from the tensor product of discretized state variables. In this case, the total number of
grid points and the cost of finding a solution grows exponentially with the dimensionality
of the state space (the curse of dimensionality).
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replaces a large number of closely situated simulated points with relatively
few representative points. The CGA transforms correlated variables into un-
correlated principal components (denoted PC1

t and PC2
t ) using a principal

components (PCs) decomposition (see Figure 1b); normalizes principal com-
ponents to zero mean and unit variance (see Figure 1c); and constructs I
clusters using a clustering algorithm. It subsequently uses the centers of the
constructed clusters as a grid for projections; see JMM (2010a) for details.
(Note that the CGA does not compute different solutions in each cluster,
but a global solution on the entire cluster grid). Making the domain endoge-
nous to the model allows the SSA and CGA to compute a solution only in
the relevant area of the state space (an ellipsoid area shown in Figure 1a)
and thus allows us to eliminate an enormously large number of grid points
that are never visited in equilibrium. For example, for a model with 100
state variables, our endogenous ergodic set domain is only about a 2 · 10−70
fraction of a multi-dimensional hypercube which encloses the ergodic set; see
JMM (2010a) for a further discussion.

3.2 Multi-dimensional polynomials

If we use complete polynomials for parameterizing decision rules, the number
of polynomial terms in the first-, second- and third-degree polynomial grows
linearly, quadratically and cubically, respectively, with the dimensionality of
the problem; see Table 1 in JMM (2010a) for formulas and estimates of the
number of polynomial terms in multi-dimensional complete polynomials.
To reduce the cost of finding polynomial coefficients in high dimensional

problems, the SSA and CGA rely on three complementary techniques. First,
both SSA and CGA parameterize decision rules by an additively separable
polynomial function. For example, parameterizing the next-period capital
stock of country j by a such a function of degree one yields:

kjt+1 = vj0 + vj1k
1
t + ...+ vjNk

N
t + vjN+1a

1
t + ...+ vj2Na

N
t , (9)

where
¡
vj0, v

j
1, ..., v

j
N , v

j
N+1, ..., v

j
2N

¢0 ≡ vj ∈ R(2N+1)×1 is country’s j vector
of the polynomial coefficients. Additive separability of the polynomial func-
tion allows the SSA and CGA to estimate polynomial coefficients using the
fast and numerically stable linear approximation methods described in JMM
(2009, 2010b) including the least-squares method using SVD and QR factor-
ization, Tikhonov regularization, least-absolute deviation methods and prin-
cipal components method. Second, as noted in JMM (2010b), the additive
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separability of the polynomial function and linear approximation methods
taken together allow an approximation of the decision rules of all N coun-
tries simultaneously rather than on a country-by-country basis. Finally, both
the SSA and CGA find fixed point values of the polynomial coefficients us-
ing fixed-point iteration; this is a simple derivative-free iteration method
for which cost does not increase considerably with the dimensionality of the
problem.6

JMM (2010a, 2010b) evaluate how the cost of the CGA and SSA methods
depends on the degree of the polynomial in the context of a multi-country
model, which is similar to Model 1 of the current JEDC project. With
regards to the CGA, JMM (2010a) report that complete first- and second-
degree polynomials are feasible for models with up to N = 200 and up to
N = 40 countries, respectively. With regards to the SSA, JMM (2010b) find
that such polynomials are feasible for the models with up to N = 200 and
up to N = 30 countries, respectively.

3.3 Multi-dimensional integration

Finding a solution requires the calculation of integrals that represent con-
ditional expectation functions in the Euler equations. The SSA employs
a Monte Carlo type of integration combined with regression, as is used in
den Haan and Marcet (1990). The SSA integration procedure is efficient in
the sense that a regression step makes it possible to infer expectations (to
compute integrals) simultaneously in all T simulated points. If the length
of simulations T is held fixed, the cost of this integration procedure does
not grow substantially with dimensionality, though accuracy may decrease
as more polynomial coefficients must be identified.
The CGA is a projection method, and it relies on deterministic methods

of integration. The specific choice of integration method depends on the di-
mensionality of the problem. In a model with just one shock, integrals can be
computed accurately using the Gaussian quadrature approach (as is done, for
example, in Judd’s (1992) Galerkin algorithm). For a given weighting func-
tion w (ε), Gaussian quadrature approximates an integral (conditional ex-

6Gaspar and Judd (1997) provide arguments in favor of fixed-point iteration over al-
ternative iterative schemes, such as time iteration or Newton methods, for large-scale
models.
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pectation) by E [g (ε)w (ε)] =
R
R g (ε)w (ε) dε ≈

HX
h=1

whg (εh) for some nodes

{εh}h=1,...,H and weights {wh}h=1,...,H . One can extend the Gaussian quadra-
ture approach to a model with N exogenous shocks using a product rule.
However, product rules are not feasible in high-dimensional problems due
to the curse of dimensionality: the total number of integration nodes HN

increases exponentially with dimension. To reduce the cost of numerical in-
tegration in economic applications of high dimensionality, Judd (1998, p.271
and p.331) proposes to use non-product monomial integration formulas; a
large collection of such formulas is available in Stroud (1971).
JMM (2010a) elaborate the monomial formulas for a heterogeneous-agent

model similar to the one studied in the present paper, illustrate the use of
such formulas by way of examples and provide an exhaustive comparison of
the CGA’s accuracy and cost under different integration strategies. Such
strategies include the product Gauss-Hermite rule with 1, 2 and 3 nodes in
each dimension (referred to as Q (1), Q (2) and Q (3), respectively) and non-
product monomial rules with 2N and 2N2+1 nodes (referred to as M1 and
M2, respectively). Using second-degree polynomials, JMM (2010a) find that
the integration formulas Q (3), Q (2), M2, M1 and Q (1) are feasible for the
models with up to N = 6, N = 8, N = 12, N = 20 and N = 40 countries,
respectively. Using first-degree polynomials, JMM (2010a) find that the for-
mulas M1 and Q (1) are feasible for the models with up to N = 100 and
N = 200 countries, respectively. In the same spirit, the present paper builds
the integration step of the CGA using non-product monomial formulas and
compares the results to those obtained under the product Gausse-Hermite
rules.

3.4 Coordinating computational strategies

As is argued in JMM (2010a), making a numerical method cost-efficient re-
quires proper coordination between the approximation and integration strate-
gies. For example, if a polynomial approximation of a given degree can deliver
accuracy (measured in terms of unit-free Euler equation errors) of no more
than 10−4, it would be inefficient to compute integrals with accuracy of 10−10,
since doing so would increase costs without improving the overall accuracy
of the solutions. It is therefore important to identify combinations of the
approximation and integration strategies that are well matched in terms of

11



accuracy.
JMM (2010a) identifies the following regularities: For a first-degree poly-

nomial, all integration methods lead to the same level of accuracy, including
the one-node Gauss-Hermite quadrature rule. For a second-degree polyno-
mial, the two- and three-node Gauss-Hermite rule and the monomial formulas
lead to the same level of accuracy (up to the fourth digit), while the one-node
Gauss-Hermite rule leads to Euler-equation errors that are 5 − 10% larger
than those calculated with more accurate integration methods. JMM (2010a)
give an example of coordination between the approximation and integration
strategies, which involves combining a second-degree polynomial with a low-
cost, one-node Gauss-Hermite integration rule. This coordination makes it
possible to increase N from 20 to 40 at a relatively low cost to accuracy.
In the presence of an endogenous labor-leisure choice, the approximation

and integration strategies should be properly coordinated not only with each
other, but also with the intratemporal-choice strategy. The numerical results
in Section 7.1 show that insufficient accuracy in the intratemporal choice can
drastically reduce the overall accuracy of solutions; the same result is also
seen in Table 6 of the comparison paper by KMMP (2010).

4 Intratemporal choice

In Section 4.1, we discuss intratemporal-choice approaches that currently ex-
ist in the literature. In Sections 4.2 and 4.3, we present two novel approaches,
iteration-on-allocation and precomputation, that allow us to solve for the in-
tratemporal choice with a high degree of accuracy at a relatively low cost.
Finally, in Section 4.4, we show for some of the models studied, combin-
ing the iteration-on-allocation and precomputation approaches can produce
additional gains.

4.1 Standard intratemporal-choice approaches

Existing literature provides two approaches to computing the intratemporal
choice. First, for a given kt, at and kt+1, one can solve a system of 2N
equations, (2), (4) and (5), with respect to 2N unknowns

©
cjt
ªj=1,...,N

and©
cjt
ªj=1,...,N

using a standard (quasi-)Newton method. This can be done both
accurately and quickly for a one-country case. However, as dimensionality
N increases, the cost of solving for the intratemporal choice can increase
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rapidly. This is because one should in general find a solution to the 2N-
dimensional system of equations on each grid point and/or integration node
within an iterative cycle. The prohibitively high cost of this approach makes
it unsuitable for high-dimensional applications.
Second, one can treat the intratemporal choice in the same way as the

intertemporal choice, i.e., one can approximate the decision rules for the
intratemporal-choice variables, cjt = Cj (kt,at) and cjt = Lj (kt,at), inside
the main iterative cycle to satisfy the corresponding optimality conditions
(2), (4) and (5). Note that we need not include kt+1 as an argument of
the intratemporal-choice functions Cj (kt,at) and Lj (kt,at) because such
functions are defined for the equilibrium intertemporal choice kt+1 deter-
mined by the state (kt,at) (in contrast, the intratemporal choice functions
Φj (kt,at,kt+1) and Θj (kt,at,kt+1) in (8) are defined for any kt+1). In
our experiments, this approach did not produce sufficiently accurate re-
sults. Specifically, when we used a polynomial of the same (second) degree
to approximate at least one intratemporal-choice function, as we do for ap-
proximating the intertemporal-choice (capital) functions, the intratemporal-
choice errors were larger than the intertemporal-choice (Euler-equation) er-
rors, which drove down the overall accuracy of solutions. Moreover, simul-
taneous iterations on the intertemporal- and intratemporal-choice functions
both reduced numerical stability and decreased the speed of convergence.

4.2 Iteration-on-allocation

The first intratemporal-choice approach we use relies on a numerical solver
called (fixed-point) iteration-on-allocation. This method’s name emphasizes
its application of fixed-point iteration to the intratemporal-choice allocations
and distinguishes it from a different fixed-point iteration procedure, described
in Section 5, that is applied to the coefficients of a polynomial approximating
function. Iteration-on-allocation was first proposed by Maliar and Maliar
(2004) in the context of the current JEDC project.
The iteration-on-allocation approach proceeds as follows:

• Step 1. Re-write conditions (2), (4) and (5) to define a function Γ that
explicitly and uniquely maps a set of values zt = (ct, `t) into a new

set of values ezt = ³ect, èt´. This is possible for all of the eight models
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studied by the current JEDC project):

ezt = Γ (zt) . (10)

• Step 2. Use some initial guess on zt and calculate ezt via mapping (10).
• Step 3. Use partial updating (damping) to compute an input for the
next iteration as (1− ς)zt + ςezt, where ς ∈ (0, 1) is a damping para-
meter.

Iterate until a fixed point is found such that zt = Γ (zt) with a given
degree of accuracy, i.e.,

1

ς · T

TX
t=1

°°°°ezt − ztzt

°°°° < 10−θ. (11)

where θ > 0, and k·k is some vector norm.

On the initial iteration, we can assume that zt is equal to a steady state
value. Typically, we need not iterate on all 2N unknown elements of ct and ct
since there are explicit closed-form expressions relating these variables, and
fixing one or a few of them allows us to analytically find the values of all the
intratemporal-choice variables. As an example, we describe how to construct
a mapping of type (10) for Model 5; the mappings for the other models are
given in Appendix A.

Example 1 (Model 5). There is no labor-leisure choice, so condition (5)
is absent. The remaining conditions (4) and (2) can be written in a form
suitable for iteration-on-allocation as follows:

ecjt = h¡c1t¢−1/γ1 τ 1/τ ji−γj , j = 2, ..., N, (12)

ec1t = NX
j=1

⎡⎣kjt + ajtA
¡
kjt
¢α − φ

2
kjt

Ã
kjt+1

kjt
− 1
!2
− kjt+1

⎤⎦− NX
j=2

ecjt , (13)

where {γj}j=1,...,N are the utility-function parameters, and A is a normalizing
constant. For given kt, at and kt+1, equations (12) and (13) define a mapping
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ec1t = Γ (c1t ). We iterate on consumption of the first country, c
1
t , as follows:

Assume some value for c1t ; compute
©ecjtªj=2,...,N from (12); obtain ec1t from

(13); if c1t 6= ec1t , compute the input for the next iteration as (1− ς) c1t + ςec1t .
Iterate until convergence.

Iteration-on-allocation has two distinct advantages over the standard,
Newton-type optimization methods. First, iteration-on-allocation does not
require computing derivatives (such as Jacobian or Hessian) but instead per-
forms direct calculations; as a result, its cost does not increase considerably
with the dimensionality of the problem. Second, iteration-on-allocation can
operate on a time series or on all grid points simultaneously while standard
Newton-type methods compute a solution on a point-by-point basis and is
thus more difficult to vectorize.
Convergence of fixed-point iteration is not in general guaranteed (for for-

mal results about convergence of fixed-point iteration, see Judd 1998 p.165-
166). However, damping can often be used to force convergence. In particu-
lar, by choosing an appropriate damping parameter ς, we are able to achieve
convergence in all eight models of the current JEDC project. Below, we
discuss the issue of convergence using Model 5 as an example.

Example 2 (Model 5). Conditions (12) and (13) together imply that

c1t = Γ
¡
c1t
¢
≡ ct −

NX
j=2

∙
τ 1

τ j
¡
c1t
¢−1/γ1¸−γj

, (14)

where ct is aggregate consumption that is given. Note that if {γj}j=1,...,N are
of the same sign, then Γ0 (c1t ) < 0. There is a unique fixed-point value c1t
that satisfies c1t = Γ (c1t ) (at this point, Γ (c

1
t ) crosses the 45

o line). However,
convergence to this fixed point does not necessarily result from applying Γ it-
eratively to some initial guess c1t , i.e., Γ (...Γ (Γ (c

1
t ))). Depending on whether

Γ0 is larger than, smaller than or equal to minus one, the result will be con-
vergence, divergence or cycling, respectively. (Note that slope of Γ depends
on the model’s parameters and welfare weights, as well as on the specific way
in which Γ is constructed). Figures 2a and 2b demonstrate cases of fixed-
point iteration convergence and divergence, respectively. Figures 2c and 2d
illustrate fixed-point iteration with damping (1− ς) c1t + ςΓ (c1t ). In particu-
lar, Figure 2d shows that a sufficiently small damping parameter ς can help
restore convergence.
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4.3 Precomputation

The second intratemporal-choice approach we use is precomputation, which
consists of constructing intratemporal-choice functions outside of the main
iterative cycle using either analytical derivations, numerical computations or
a combination of both. This approach was originally proposed by Maliar
and Maliar (2005) for constructing a labor-choice function outside the main
iterative cycle in the standard neoclassical growth model. Maliar and Maliar
(2007) introduced the precomputation approach in the context of the current
JEDC project. In the present paper, we give a more elaborate description of
the precomputation approach.
A general version of the precomputation approach, which we apply to the

model (1) − (3), consists of constructing the intratemporal-choice functions
Φj (kt,at,kt+1) and Θj (kt,at,kt+1) in (8) as follows:

• Step 1. Outside of the main iterative cycle, choose a grid of P values©
kp,ap,k

0
p

ª
p=1,...,P

for kt, at, kt+1. For each grid point p = 1, ...P ,
solve equations (2), (4) and (5) using a numerical solver with respect
to consumption cjp and labor c

j
p for j = 1, ..., N .

• Step 2. Extend the constructed set functions to the relevant domain
using a preferred interpolation scheme (a global polynomial approxi-
mation, piecewise linear polynomial approximation, splines, etc.), such
that

cj = bΦj (k,a,k0) and cj = bΘj (k,a,k0) , j = 1, ..., N, (15)

where bΦj and bΘj are the precomputed consumption and labor functions
of a country j, and (k,a,k0) ∈ R3N .

• Step 3. In the main iterative cycle, use the precomputed functionsbΦj (k,a,k0) and bΘj (k,a,k0) to find the intratemporal choice given the
state (kt,at) and the intertemporal choice kt+1.

Many applications provide enough structure to further simplify the pre-
computation approach in two ways. First, we might not be necessary to
precompute all of the intratemporal-choice functions because some of these
functions are constructed analytically. Second, it may be possible to precom-
pute the intratemporal choice in terms of a set of arguments that is smaller
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than kt, at, kt+1 or is given by some function of kt, at, kt+1. We illustrate
these two points by way of example of Model 5 described in Maliar and
Maliar (2007). In this case, we precompute a single function, consumption
of country 1, c1t , in terms of one argument, aggregate consumption, ct.

Example 3 (Model 5). Outside the main iterative cycle, take P values
{cp}p=1,...,P for aggregate consumption ct. For each cp, use a numerical solver
to find a solution c1p to (4), presented in a form suitable for precomputation:

c1p +
NX
j=2

∙
τ 1

τ j
¡
c1p
¢−1/γ1¸−γj

= cp. (16)

Interpolate the constructed set function to a continuous domain to obtainbc1 (c). Inside the main iterative cycle, for each t, given kt, at, kt+1, compute
ct from budget constraint (2), use the precomputed function to find consump-
tion of country 1, c1t = bc1 (ct) and compute consumption of the other countries
as cjt =

h
τ1

τj
(c1t )

−1/γ1
i−γj

, j = 2, ..., N .

As with Model 5, precomputing a single intratemporal choice function is
sufficient for Models 2 and 6. For Models 3, 4, 7 and 8, we can precompute
N labor functions and find the consumption allocations using the formulas
provided in Appendix A. (Note that we cannot precompute N consumption
functions and find the labor allocations analytically; there is a closed-form
expression for consumption given labor but there is no closed-form expression
for labor given consumption).7

With regards to the domain, we can precompute the intratemporal choice
in Model 2 in terms of two composed arguments (see Appendix B for details).
For the remaining models - Models 3, 4, 6, 7 and 8 - the intratemporal-choice
functions must be precomputed in terms of 3N arguments kt, at, kt+1. To
make the precomputation approach feasible for high-dimensional problems,
we precompute the intratemporal choice on the same grid of values for the
state variables kt and at as the grid on which the capital decision functions
are computed which is the ergodic set realized in equilibrium (augmented

7This fact was pointed out and exploited by Maliar and Maliar (2005) to compute the
intratemporal choice in the standard neoclassical growth model.
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appropriately to include the future capital stocks, kt+1).8 For the SSA, the
domain for precomputation is a set of simulated points; for the CGA, it is a
set of the clusters’ centers obtained from simulated points. Section 5 provides
additional discussion of the SSA’s and CGA’s domains.
[maybe needed: Note that we cannot use kt+1 obtained from the equilib-

rium law of motion since in equilibrium, polynomial terms constructed using
kt, at and kt+1 are linearly dependent. We therefore use a different set of
values for kt+1, which is independent of kt and at].

4.4 Combining iteration-on-allocation and precompu-
tation

For Models 3, 4, 7 and 8, the iteration-on-allocation approach requires it-
erating simultaneously on allocations of N countries

©
cjt
ªj=1,...,N

(see Ap-
pendix A). In turn, the precomputation approach requires approximating
the intratemporal choice of each country as a function of 3N arguments kt,
at, kt+1. We now show that under the assumption of additively separable
production across countries, we can combine iteration-on-allocation and pre-
computation into a single method that precomputes the labor functions in
terms of three arguments and iterates on one allocation.9 This is possible
because conditions (4) and (5) implicitly define the intratemporal choice of
each country j in terms of its own capital kjt , its own productivity level a

j
t

and aggregate consumption ct; i.e., c
j
t = Ωj

¡
kjt , a

j
t , ct

¢
and cjt = Λj

¡
kjt , a

j
t , ct

¢
,

j = 1, ..., N . Model 2 is an example of an economy in which such functions
can be constructed analytically (see Appendix B); generally, however, such
functions must be precomputed numerically.10

We combine the iteration-on-allocation and precomputation methods as
follows:

8To construct the domain for the intratemporal-choice functions, one can use a tensor-
product grid of 3N arguments kt, at, kt+1. However, the number of grid points will grow
exponentially with dimensionality, and the precomputation method will not be feasible for
even a modestly large number of countries.

9Combining iteration-on-allocation and precomputation is also possible for Models 2
and 6, but does not provide any advantages over the pure iteration-on-allocation method
described in Section 4.2.
10Maliar and Maliar (2001, 2003a) construct the intratemporal-choice functions analyti-

cally for certain classes of heterogeneous-agent economies and use these functions to derive
non-Gorman aggregation results.
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• Step 1. Outside the main iterative cycle, for each country j, choose
a grid of P values

©
kjp, a

j
p, cp

ª
p=1,...,P

for kjt ,a
j
t , ct. For each grid point

p = 1, ...P , solve equations (4) and (5) using a numerical solver with
respect to cjp and cjp for j = 1, ..., N .

• Step 2. Interpolate the constructed labor function to the relevant do-
main,

cj = bΩj
¡
kj, aj, c

¢
and cj = bΛj

¡
kj, aj, c

¢
, j = 1, ..., N, (17)

where bΩj and bΛj are the precomputed consumption and labor functions
of a country j, and (kj, aj, c) ∈ R3.

• Step 3. Substitute the precomputed labor functions bΛj (kj, aj, c) for
j = 1, ..., N in budget constraint (2) to define the mapping of the formect = Γ (ct),

ect = NX
j=1

⎡⎣ajtf j ³kjt , bΛj
¡
kjt , a

j
t , ct

¢´
− φ

2
kjt

Ã
kjt+1

kjt
− 1
!2
+ kjt − kjt+1

⎤⎦ .
(18)

Inside the main iterative cycle, compute aggregate consumption ct using
the iteration-on-allocation approach. For each t, given kt, at, kt+1,
assume some value for ct and calculate ect from (18); if ct 6= ect, compute
an input for the next iteration equal to (1− ς) ct + ςect. Iterate until
convergence.

Like the pure iteration-on-allocation and precomputation methods, the
above combination of iteration-on-allocation and precomputation allows one
to solve for the intratemporal allocations (including aggregate consumption
ct) with a high degree of accuracy.

5 Two ergodic-set algorithms

To solve the model (1)−(3), we use two ergodic-set algorithms: the stochastic-
simulation algorithm (SSA) and the cluster-grid algorithm (CGA). While
both algorithms find a solution on the ergodic set, the way in which they use
information on the ergodic set differs: The SSA uses information on both
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the density function and its support, while the CGA disregards the density
function and uses information on the support only. For both methods, we re-
write the Euler equation (6) in a form suitable for parameterizing the capital
decision rule kjt+1 = Kj (kt,at):

kjt+1 = Et

(
β
ujc
¡
cjt+1, c

j
t+1

¢
ujc
¡
cjt , c

j
t

¢
ωj
t

£
πjt+1 + ajt+1f

j
k

¡
kjt+1, c

j
t+1

¢¤
kjt+1

)
(19)

' Ψj
¡
kt,at;v

j
¢
,

where Ψj (kt,at;v
j) is a flexible functional form used to parameterize the

capital decision rule, and vj is a vector of coefficients.11 The matrix of the
polynomial coefficients for all countries is denoted by v≡

¡
v1, ...,vj, ...,vN

¢
.

We assume that Ψj is given by a complete set of ordinary polynomials,
i.e., Ψj (kt,at;v

j) ≡ Xtv
j, where Xt is a row vector composed of t-period

monomial terms of the state variables (kt,at). For the polynomial function
in example (9), we have Xt =

¡
1, k1t , ..., k

N
t , a

1
t , ..., a

N
t

¢
∈ R1×(2N+1), and¡

vj0, v
j
1, ..., v

j
N , v

j
N+1, ..., v

j
2N

¢0 ≡ vj ∈ R(2N+1)×1.
We emphasize here that capital is the only variable we parameterize in

terms of state variables kt and at. The remaining variables (consumption
and labor) are computed either by the iteration-on-allocation solver or by
precomputation of the intratemporal-choice functions shown in form (8).
Properly separating the intertemporal and intratemporal choices is crucial

to ensuring the speed of the SSA and CGA. Parameterizing the next-period
capital decision rules in terms of the state variables, as in (19), has an impor-
tant advantage over parameterizing other variables such as consumption and
leisure. Namely, the equilibrium capital decision rule coincides with the equi-
librium capital law of motion kjt+1 = Kj (kt,at) , j = 1, ..., N ; this implies
that we can first construct a path for state variables {kt,at}t=0,...,T , then sub-
sequently select the corresponding intratemporal choice {ct, `t}t=1,...,T . This
feature allows us to increase the speed of our computations, because the
iteration-on-allocation and precomputation methods can work with vectors
and even matrices and can thus find the intratemporal choice for all periods
or grid points at once instead of a slower, point-by-point basis.

11This kind of parameterization was originally used by Den Haan (1990) as a device
to implement the simulation-based parameterized expectations algorithm in a model with
more than one Euler equation.
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5.1 Stochastic simulation algorithm

The stochastic simulation algorithm (SSA) simultaneously computes the er-
godic distribution of state variables, its support and the associated decision
rules. The SSA proceeds as follows:
Select and fix the simulations length T and initial condition (k0,a0).

Draw and fix for all simulations a sequence of productivity levels {at}t=1,...,T
using equation (3). If precomputation is used, construct the intratemporal-
choice functions of type (8) as described in Sections 4.3 and 4.4.

• Step 1. For an iteration s, fix some vector of coefficients v (s). For
each country j = 1, ..., N , use the assumed capital decision rule kjt+1 =
Xtv

j to recursively calculate a sequence of capital stocks {kt}t=1,...,T+1
corresponding to a given sequence of productivity levels {at}t=0,...,T .

• Step 2. Given {kt,at,kt+1}t=0,...,T , calculate {ct, `t}t=0,...,T using a vec-
torized version of either iteration-on-allocation or precomputation or
the combination of the two methods, as described in Section 4.

• Step 3. For each country j = 1, ..., N , compute

yjt ≡ β
ujc
¡
cjt+1, c

j
t+1

¢
ujc
¡
cjt , c

j
t

¢
ωj
t

£
πjt+1 + ajt+1f

j
k

¡
kjt+1, c

j
t+1

¢¤
kjt+1 (20)

for t = 0, ..., T − 1, which is the integrand of (19).

• Step 4. Run a linear regression of the constructed variable yjt on a set
of the explanatory variables Xt for j = 1, ..., N , using the numerically
stable approximation methods described in JMM (2009, 2010b),

yjt =Xtv
j + �jt , (21)

where �jt is a t-period approximation error corresponding to country j.
Let the vector of coefficients estimated on iteration s be called bv (s).

• Step 5. Compute the vector of coefficients for the subsequent s + 1
iteration using fixed-point iteration:

v (s+ 1) = (1− ξ)v (s) + ξbv (s) , (22)

where ξ ∈ (0, 1) is a damping parameter.
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Iterate on Steps 1− 5 until a fixed point is found such that for ϑ > 0:

1

T ·N

TX
t=1

NX
j=1

¯̄̄̄
¯kjt+1(s)− kjt+1(s+ 1)

kjt+1(s)

¯̄̄̄
¯ < 10−ϑξ, (23)

where kjt+1 (s) and kjt+1 (s+ 1) are the j-th country capital stocks obtained
on iterations, s and s+ 1, respectively, and |·| denotes the absolute value.

5.2 Cluster-grid algorithm

The cluster-grid algorithm (CGA) is a projection method that computes a
solution on a grid constructed from clusters of simulated points. Let us
represent the expression inside the conditional expectation in (19) as a new
function Gj (kt,at, εt+1),

β
ujc
¡
cjt+1, c

j
t+1

¢
ujc
¡
cjt , c

j
t

¢
ωj
t

£
πjt+1 + ajt+1f

j
k

¡
kjt+1, c

j
t+1

¢¤
kjt+1 ≡ Gj (kt,at, εt+1) . (24)

where εt+1 ≡
¡
ε1t+1, ..., ε

N
t+1

¢
and εjt+1 ≡ et+1 + ejt+1. The CGA method then

proceeds as follows:
Make an initial guess about the capital decision rule kjt+1 = Xtv

j, j =
1, ..., N . Given initial condition (k0,a0), draw a sequence of productivity lev-
els {at}t=1,...,T using (3), and simulate the time series solution {kt}t=1,...,T+1.
Construct I clusters on simulated data {ki,ai}i=1,...,I , so that the centers of
these clusters can be used as a grid for projections; see JMM (2010a) for a de-
scription of clustering methods and illustrative examples. If precomputation
is used, construct the intratemporal-choice functions of type (8) as described
in Sections 4.3 and 4.4.

• Step 1. On an iteration s, fix a vector of coefficients v (s). For each
country j, use the assumed capital decision rule to calculate the next-
period capital stock in all grid points,

¡
kji
¢0 ≡X iv

j for i = 1, ..., I.

• Step 2. Given {ki,ai,k0i}i=1,...,I , calculate {ci, `i}i=1,...,I using a vector-
ized version of iteration-on-allocation, precomputation or the combina-
tion of the two methods as described in Section 4.

• Step 3. For each country j, use a numerical integration method (such
as non-product monomial rules or a product Gauss-Hermite rule) to
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approximate the conditional expectations of equation (24). Call the

result
³bkji´0, i.e., ³bkji´0 ≡ E

£
Gj (ki,ai, ε)

¤
, (25)

where E is computed with respect to ε ≡
¡
ε1, ..., εN

¢
. To calculate

the next-period intratemporal choice {c0i, `0i}i=1,...,I , for each integra-
tion node, use a vectorized version of either iteration-on-allocation or
precomputation or their combination as described in Section 4.

• Step 4. Run a linear regression of the constructed variable
³bkji´0 on a

set of the explanatory variables Xi for j = 1, ..., N , using the numeri-
cally stable approximation methods described in JMM (2009, 2010b),³bkji´0 =X iv

j + �ji , (26)

where �ji is an i-grid approximation error corresponding to country j.
Let the resulting vector of coefficients be called bv (s).

• Step 5. Compute the coefficients for the subsequent s + 1 iteration
using fixed-point iteration:

v (s+ 1) = (1− ξ)v (s) + ξbv (s) , (27)

where ξ ∈ (0, 1] is a damping parameter.

Iterate on Steps 1− 5 until a fixed point is found, such that for ϑ > 0:

1

I ·N

IX
i=1

NX
j=1

¯̄̄̄
¯̄̄
¡
kji
¢0 − ³bkji´0¡
kji
¢0

¯̄̄̄
¯̄̄ < 10−ϑ, (28)

where
¡
kji
¢0
and

³bkji´0 are the next-period capital stocks on the grid before
and after an iteration, respectively.
After achieving convergence, it is best to re-run the CGA using the ob-

tained decision rule for capital as an initial guess for simulation. Doing so
controls for the possibility that the initial guess for the capital decision rule
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was imprecise, and the simulated series (and consequently, our cluster grid)
thus did not adequately represent the true ergodic set. Re-running the CGA
a few additional times and updating the cluster gird as necessary can help
correct for any errors created by a poor initial guess.

6 Methodology

In Section 6.1, we describe the baseline implementation of the SSA and CGA
that is used to generate the results presented in the comparison paper by
KMMP (2010). In Section 6.2, we discuss alternative implementations of
these algorithms that are not included in KMMP (2010). Calibration of the
models’ parameters is provided in Juillard and Villemot (2010).

6.1 Baseline implementation of the SSA and CGA

Below, we describe the methodological details of the baseline implementa-
tion of our methods, as well as the solution-output, hardware, software and
measures of accuracy and cost.

Stochastic simulation algorithm The SSA computes solutions using the
first-degree ordinary polynomial (9). To start the iterative process, we use
an (arbitrary) initial guess: kjt+1 = 0.9kjt + 0.1a

j
t for all j = 1, ...N . Since

the steady state levels of capital and productivity are normalized to one, this
guess matches the steady state level of capital. In terms of the vector of
coefficients vj, this guess implies that vjj = 0.9, v

j
N+j = 0.1, j = 1, ...N , and

that the remaining coefficients in vj are equal to zero. Initial capital and
productivity level are set at their steady-state values: kj0 = 1 and aj0 = 1 for
all j = 1, ..., N . The simulation length is T = 10, 000.
To estimate the coefficients in the linear regression (21), we use a least-

squares truncated QR factorization method (see JMM (2009) for a discus-
sion). We set the damping parameter in (22) to be the largest values of ξ
that lead to convergence: ξ = 0.05 for Models 1 and 5, and ξ = 0.03 for the
remaining models. We target seven digits of accuracy in the simulated data
by fixing ϑ = 7 in the convergence criterion (23). To rule out explosive and
implosive behavior on initial iterations, we restrict the simulated series for
capital using moving bounds as described in Maliar and Maliar (2003b); in
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most cases, however, the artificial bounds were not necessary as the initial
guess led to a stationary simulated series.

Cluster grid algorithm The CGA computes solutions using a second-
degree ordinary polynomial. To start the iterative process, we use the first-
degree polynomial solution computed by the SSA as an initial guess. The
SSA solution was used both to compute an initial matrix of coefficients v
and to construct 500 clusters. The clusters were constructed by applying
the hierarchical clustering algorithm with Ward’s linkage to the principal
components of the simulated data (see JMM, 2010a, for a description of the
clustering methods and illustrative examples). The outcome of the clustering
process for a model with two state variables is illustrated in Figure 1d .
To estimate the regression equation (26), we again use a least-squares

truncated QR factorization method. We set the damping parameter in (27)
at ξ = 0.1 for Models 1 and 5, and ξ = 0.05 for all other models. We use
ϑ = 7 for the convergence criterion (28). We solve the model twice: first
by computing the solution using a low-cost non-product monomial rule M1
with 2N nodes, and then again using a more costly product Gauss-Hermite
rule Q(2) with two nodes in each dimension and 2N total nodes (see JMM
(2010a) for a description of these integration methods).

Iteration-on-allocation In the baseline versions of both the SSA and
CGA, we solve for the intratemporal choice using the iteration-on-allocation
approach. We use the damping parameter ς = 0.01 in all cases except for
Models 1 and 5 under the CGA in which we use ς = 0.05. To start itera-
tions under the SSA, we assume that consumption and labor are equal to
their steady-state values. Under the CGA, we compute an initial guess for
consumption and labor using a time series solution produced by the SSA.
We would like to direct particular attention to an important aspect of

the implementation of iteration-on-allocation. Finding consumption and la-
bor allocations with a high degree of accuracy during each iteration requires
a high computational cost and is of minimal use, since on the next itera-
tion, we would re-compute consumption and labor allocations for a different
vector of coefficients v. We thus do not target any accuracy criteria in con-
sumption and labor allocation for each iteration on v, but instead perform
10 subiterations on mapping (10) as described in Section 4 (except for Mod-
els 1 and 5 under the CGA in which we perform 3 subiterations). We store
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in memory consumption and labor allocations obtained after each round of
subiterations and use these allocations as inputs for the next round of the
iteration-on-allocation process. Thus, as the decision function for capital
(characterized by v) is refined along the iterations, so do our consumption
and labor allocations.
To enhance the numerical stability on initial iterations when the solution

is inaccurate, we impose fixed upper and lower bounds (equal to 150% and
50% of the steady state level, respectively) on consumption in Model 5 and
on labor in Models 6, 7 and 8. This trick is similar to the moving bounds used
to restrict simulated series for capital under the SSA. With the imposition
of bounds, the iteration-on-allocation procedure was numerically stable and
converged to a fixed point at a good pace in all of our experiments. Finally,
in the convergence criterion for consumption and labor allocations (11), we
use θ = 7.

Solution-output delivered to the testing bench of Juillard and Ville-
mot (2010) When the iteration-on-iteration approach is used, the SSA and
CGA do not deliver explicit decision rules for consumption and labor. The
only solution-output they produce is a matrix of the polynomial coefficients
for the capital decision rules (laws of motion) of N heterogeneous countries,
v =

¡
v1, ...,vj, ...,vN

¢
. Thus, in addition to the polynomial coefficients v, we

supply to the the testing bench of Juillard and Villemot (2010) four iteration-
on-allocation routines (one per each asymmetric model and its symmetric
counterpart) that allow to find the intratemporal choice in simulation.12

The simulation of our solutions includes two steps: First, the capital
laws of motion, kjt+1 = Ψj (kt,at;v

j) , j = 1, ...N are used to generate the
capital path {kt+1}t=0,...,T . Then, given {kt,at,kt+1}t=0,...,T , the correspond-
ing intratemporal choice {ct, `t}t=0,...,T is calculated using the iteration-on-
allocation method described in Section 4.2 and Appendix A. To begin the
iteration-on-allocation process, we set consumption and labor equal to their
steady state values; we use the damping parameter ς = 0.01, and we perform
iterations until the results satisfy convergence criterion (11) with θ = 10.

12Using the iteration-on-allocation routines in simulation plays a key role in the overall
accuracy of the SSA and CGA because it allows us to solve for the intratemporal choice
with essentially zero errors; see Table 4.3 in the comparison by KKMP (2010). This would
not be possible if we constructed and supplied the standard explicit consumption and/or
labor functions in terms of the state variables.
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Software, hardware, accuracy and cost Our programs are written in
Matlab, version 7.6.0.324 (R2008a). We use a desktop computer with a
Quad processor Intel(R) Core(TM) i7 CPU920 @2.67GHz, RAM 6,00GB
and Windows Vista 64 bits. For each model studied, we report the running
time in seconds: for the SSA, the running time is defined as the time needed
to compute a first-order solution starting from a given initial guess, and for
the CGA, the running time is defined as the time to compute a second-order
solution starting from an initial guess consisting of a first-order SSA solution.
Accuracy tests are performed using the testing bench of Juillard and Villemot
(2010), and the results of these tests are described in KMMP (2010).

6.2 Exploring alternative implementations

The current JEDC project was launched in 2003, and since then, we have
implemented many versions of the studied methods. We now compare our
baseline implementation of the SSA and CGA to several alternative im-
plementations that have been explored, some of which are illustrated with
numerical results in Section 7).

Stochastic simulation algorithm At an early stage of the project, Maliar
and Maliar (2004, 2007) implemented a stochastic simulation approach us-
ing a simulation-based version of the parameterized expectation algorithm
(PEA) by Den Haan and Marcet (1990). Under the PEA, decision rules
are parameterized by an exponentiated polynomial and are estimated us-
ing non-linear least-squares regression methods. The least-squares problem
is typically ill-conditioned, which leads to numerical problems. Moreover,
non-linear regression methods require a good initial guess and involve costly
computations of the Jacobian and Heissian matrices. Finally, such meth-
ods cannot be easily vectorized to estimate the decision rules of all coun-
tries simultaneously, which is critical to ensure adequate calculation speed
in multi-country settings; see JMM (2010b) for an extensive discussion of
this problem. In the present paper, we rely on the numerically stable sto-
chastic simulation approaches described in JMM (2009): we use a linear
regression model, normalize the data and employ a least-squares truncated
QR factorization method that is suited for use with ill-conditioned problems.
This approximation method (implemented in Matlab with backslash oper-
ator) use the original data and delivers the standard OLS estimator in the
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absence of ill-conditioning but removes highly collinear principal components
in the presence of ill-conditioning.
We submitted for comparison the first-degree polynomial approximation

because it was more accurate than the second-degree polynomial approx-
imation. This somewhat surprising results is explained in JMM (2010b):
The accuracy of the Monte Carlo type of integration employed by the SSA
depends on how long the simulation length T is relative to the number of
polynomial coefficients in v. The higher is the polynomial degree and/or
dimensionality of the problem N , the larger is the number of the coefficients
in v, and the longer the simulation length is needed to appropriately iden-
tify of the coefficients. In a model similar to Model 1 of the current JEDC
project, JMM (2010b) find that T should be increased from 10, 000 to 50, 000
to make the second-degree polynomial approximation more accurate than the
first-degree polynomial approximation for the model with up to N = 4; if N
is increased to 6, T should be increased to 100, 000. Since running a very
lengthy simulation is costly both in terms of time and memory, in the present
paper, we use T = 10, 000 for the analysis in the present paper; this is suf-
ficient to accurately identify the coefficients of the first-degree polynomial.
As follows from the comparison in KMMP (2010), even the linear solutions
delivered by the SSA are sufficiently accurate. This is because the SSA fits
a polynomial exclusively in the relevant area of the state space (the ergodic
set) and also because the SSA solves accurately for the intratemporal choice
using the iteration-on-allocation method.

Cluster-grid algorithm In the case of the CGA, we submitted for com-
parison the second-degree polynomial approximation. The CGA relies on
accurate numerical integration methods, and the second-degree polynomial
approximation is considerably more accurate than the first-degree one. The
third-degree polynomial approximation is even more accurate. In particular,
JMM (2010a) find that an increase in the polynomial degree used in the CGA
increases accuracy roughly by an order of magnitude in the examples consid-
ered. In Section 7, we compare the accuracy of the CGA in the context of
the current JEDC project using the first-, second- and third-degree ordinary
polynomials as well as under alternative Smolyak polynomials.
In addition to comparing the use of different polynomial degrees, we also

test the sensitivity the CGA solutions are to the way in which the cluster grid
is constructed. To do so, we first initialized the CGA using a linear solution

28



delivered by a log-linearization method instead of one delivered by the SSA.13

We then constructed clusters using an alternative K-means clustering algo-
rithm with different linkages instead of the baseline hierarchical algorithm
with Ward’s linkage. These modifications do not visibly affect the accuracy
and speed of the CGA. As far as the number of clusters is concerned, JMM
(2010a) find that oversampling (when there are more grid points than the
polynomial coefficients) increases the accuracy and numerical stability of the
CGA compared to collocation (when the number of grid points is identical
to the number of polynomial coefficients). In line with this finding, we chose
to oversample and use 500 clusters to identify between 15 to 231 polynomial
coefficients in models with N ranging from 2 to 10, respectively.
To implement numerical integration, we tried to choose the most accurate

integration strategy feasible for problems of given dimensionality, N ≤ 10.
To this purpose, we designed a two-step integration procedure that combined
a low-cost monomial rule with 2N nodes (step one) and a costly monomial
(quadrature) rule with 2N nodes (step two). Our results indicate that in the
studied models, any accuracy gains from the above integration procedure
are small relative to the gains obtained by using only less costly integration
alternatives. We investigate the relationship between the specific integration
method used and the accuracy and cost of the CGA in Section 7.

Intratemporal-choice approaches In addition to our baseline iteration-
on-allocation procedure, we explored several alternative approaches to solv-
ing for the intratemporal allocations. For all eight models studied, we com-
puted the consumption and/or labor functions in terms of the state variables
within the main iterative cycle (as described in Section 4.1), and we im-
plemented a general version of the precomputation approach presented in
Section 4.3. Furthermore, for Model 5, we implemented the precomputation
approach as described in Example 3, and for Models 6 and 7, we combined
the precomputation approach and a numerical solver as described in Section
4.4.
To generate the comparison results presented in KMMP (2010), we opt

for the most accurate method, which is iteration-on-allocation. Our pre-
computation approach is however faster than iteration-on-allocation and was

13In JMM (2010a), the CGA is initialized using the CGA itself: A solution was first
computed on an arbitrary grid of points, then used to simulate the model and to construct
the clusters.
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adopted by Pichler (2010) for his solution method. In Section 7, we com-
pare the performance of alternative intratemporal-choice approaches in the
context of Model 5.

7 Additional numerical results

Accuracy and speed of the SSA and CGA under the baseline implemen-
tation is assessed in KMMP (2010). In this section, we provide additional
numerical results for the CGA only, which demonstrate the dependence of its
accuracy and speed on the specific intratemporal-choice approach, approx-
imating polynomial function and integration method used. To assess the
accuracy of solutions, we implement a test (described in Juillard and Ville-
mot, 2010) that computes the average and maximum solution errors along a
stochastic simulation of 10, 000 observations.

7.1 Comparison of intratemporal choice approaches

To illustrate the role of the specific intratemporal-choice approach in deter-
mining the accuracy of solutions, we use a two-country version of Model 5.
We allow an intratemporal-choice approach used in the solution procedure
differ from that used in the simulation procedure. We report the results
obtained using the second-degree polynomial approximation; the tendencies
under the first-order polynomial approximation are similar.
In the solution procedure, we consider four alternative intratemporal-

choice approaches: (i) parameterize consumption of both countries 1 and 2
with a polynomial of the state variables and compute the polynomials coef-
ficients inside the main iterative cycle; (ii) parameterize and compute only
consumption function of country 1 inside the main iterative cycle and find
consumption of country 2 from closed-form expression (12); (iii) precom-
pute the consumption function of country 1 outside the main iterative cycle
in terms of aggregate consumption as described in Example 3, and find con-
sumption of country 2 from (12); (iv) solve for consumption of both countries
using the iteration-on-allocation approach, as described in Example 1.
In the simulation procedure, we solve for the intratemporal choice using

four approaches that are parallel to those used in the solution procedure: (a)
use the solution to construct consumption functions for both countries 1 and
2 in terms of the state variables (if not constructed by the solution method
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used); (b) use the solution to construct consumption function of country 1 in
terms of the state variables (if not constructed by the solution method used)
and find consumption of country 2 from (12); (c) find consumption of country
1 using the consumption function precomputed by the solution method (iii)
and find consumption of country 2 from (12); (d) solve for consumption of
both countries using the iteration-on-allocation approach.
To implement the precomputation approach given by approach (iii), we

consider an interval for aggregate consumption equal to ±20% of the steady-
state value, and we split this interval into 300 equally spaced points. Out-
side the main iterative cycle, for each value of aggregate consumption cp, we
compute c1p numerically from (16), p = 1, ..., 300. Inside the main iterative
cycle, we compute aggregate consumption ct from (2) and find the corre-
sponding c1t using a piecewise linear polynomial interpolation. In addition,
we tried other interpolation schemes such as a piecewise cubic polynomial
interpolation, splines, etc., and found that piecewise low-order polynomial
interpolation schemes lead to more accurate solutions (though at a higher
cost) than high-order global polynomial approximations.
In Table 1, we present the results of combining methods (i)-(iv) in the so-

lution procedure with methods (a)-(d) in the simulation procedure (all errors
that are less than 10−10 are replaced by −∞). As Table 1 indicates, for both
the solution and simulation procedures, approximating a consumption func-
tion using a second-degree polynomial of state variables results in accuracy
is a low degree of accuracy (namely, the errors in the intratemporal-choice
conditions including the budget constraint are large). If we solve for con-
sumption very accurately in the solution procedure (using precomputation
and iteration-on-allocation), then solve less accurately for consumption in
simulation using second-degree polynomials of state variables, the result is
also a low degree of accuracy . Finally, if we solve less accurately for con-
sumption in the solution procedure using second-degree polynomials of state
variables, then solve accurately for consumption in simulation using precom-
putation and iteration-on-allocation, high levels of accuracy are obtained.
These results lead us to conclude that solution accuracy is less dependent on
the computational method used to determine the intratemporal choice in the
solution procedure than in it is on the computational method used to solve
for the intratemporal choice in simulation.
We would like to highlight two additional findings about accuracy that

are demonstrated in Table 1. First, accuracy does not depend significantly
on whether we approximate one or multiple intratemporal-choice variables
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using second-degree polynomials of state variables; in both cases, we suffer
approximately the same degree of accuracy loss. Second, the methods that
solve accurately for the intratemporal choice accurately lead to considerably
larger Euler-equation errors than those solving for the intratemporal choice
less accurately.
Finally, Table 1 also shows TCPU , the amount of time needed to run

each test on a stochastic simulation of 10, 000 observations. When the pre-
computation approach is used, TCPU is only slightly larger than it is when
the standard approach constructing the intratemporal-choice functions in
terms of state variables is used; when the iteration-on-allocation approach is
used, TCPU is almost 20 times larger.The iteration-on-allocation approach
performs slowly in the test because our testing procedure is not is not vector-
ized along the time dimension; i.e., we use the iteration-on-allocation solver
10, 000 times to compute c1t and c2t in a period-by-period fashion.

7.2 Costs of iteration-on-allocation

We now quantify the benefits of vectorizing the iteration-on-allocation ap-
proach along the time dimension. In Table 2, we compare the time necessary
to simulate a time series solution of length T under two alternative simula-
tion procedures: one in which the intratemporal choice is computed using the
standard explicitly-defined intratemporal decision functions represented by
second-degree polynomials of state variables (CPU1) and the other in which
the intratemporal choice is computed using the iteration-on-allocation solver
(CPU2). As an initial guess for allocations in the latter procedure, we use
the series obtained in the former procedure.
Since our simulation routines are written in a vectorized form, the cost of

iteration-on-allocation depends dramatically on the simulation length. When
we simulate only one period entry (i.e., T = 1), the iteration-on-allocation ap-
proach is about 67 and 362 times more costly for Models 1 and 4, respectively,
than the standard explicit decision rules. However, as T increases, the rela-
tive cost of iteration-on-allocation decreases; in particular, for T = 10, 000,
the iteration-on-allocation approach is about 4% and 250% more costly for
Models 1 and 4, respectively, then the standard explicit decision rules. The
latter is an upper bound. In other cases, the relative cost of iteration-on-
allocation is even lower.
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7.3 Approximating functions and integration methods

In Table 3, we assess the effect of the specific approximating function and in-
tegration method on the accuracy of the CGA in the context of two-country
versions of Models 5-8. For each model studied, we consider four alterna-
tive approximating functions: the first-, second- and third-degree ordinary
polynomials, as well as Smolyak polynomials used in MKK (2010). We also
consider five alternative integration methods: the product Gauss-Hermite
rule with 1, 2N , 3N nodes, denoted Q (1), Q (2) and Q (3), respectively; and
the monomial formulas with 2N and 2N2 + 1 nodes, denoted M1 and M2,
respectively.
The results shown in Table 3 demonstrate that all of the integration

rules considered, except for the one-node Gauss-Hermite rule Q (1), deliver
solutions of virtually the same accuracy, with errors that are identical to the
fourth digit. The Q (1) rule produces errors that are slightly larger; however,
this rule has a substantially lower cost than the other integration methods
and thus allows the computation of models with much higher dimensions.
In particular, JMM (2010a) use the Q (1) rule to compute first- and second-
degree polynomial solutions to a model (similar to Model 1 of the current
project) with up to N = 200 and N = 40 countries, respectively.
Furthermore, the results shown in Table 3 demonstrate that when solu-

tions are computed using ordinary polynomials, increasing the polynomial
degree from one to two raises accuracy by more than an order of magnitude;
increasing the polynomial degree from two to three further increases accuracy
by slightly less than an order of magnitude. However, increasing the degree
of a complete polynomial in high-dimensional problems carries substantial
costs. As Table 3 shows, the Smolyak polynomial is a useful alternative for
the CGA: It leads to as nearly as accurate a solution as the third-degree
complete polynomial, but its number of terms grows quadratically instead
of cubically with dimension (independently of dimension, the Smolyak poly-
nomial has only four times more terms than the complete second-degree
polynomial; see MKK, 2010 for details).
Table 4 shows the results of our investigation of the relationship between

the specific integration method used and the accuracy of the CGA. To obtain
these results, we recompute the solutions to Models 5-8 under four alternative
integration methods: Q(1), Q(2), M1 and M2. The accuracy results in our
Table 4 are analogous to those reported in Table 5 of KMMP (2010); however,
our testing procedure uses random draws, which are different from those used
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by Juillard and Villemot (2010). As Table 4 shows, the errors we found are
very close to those shown in Table 5 of KMMP (2010). Furthermore, all of
the integration methods considered continue to lead to solutions with similar
levels of accuracy, with the exception of theQ(1) rule (which produces slightly
less accurate solutions).
The key finding of the results shown in Table 4 relates to the issue of

computational cost. Specifically, we see that the CGA can compute solu-
tions of the same accuracy as those submitted for comparison of KMMP
(2010), but at a much lower cost. For example, we reduce the computational
time for Model 5 with N = 10 countries from about 35 hours (reported in
Table 3 of KMMP, 2010) to 7 minutes (reported in our Table 4) without a
visible loss in accuracy by replacing our costly, two-step baseline integration
procedure with just its first step, which is based on the M1 monomial rule
with 2N nodes.14 We can further reduce the time needed to solve a ten-
country version of Model 5 to about 2 minutes using the Q(1) rule, at the
cost of a modest loss in accuracy. In Models 6-8, the low-cost integration
rules reduce the computational time by roughly the same proportion as in
Model 5. However, Models 6-8 are generally more costly to run than Model 5
due to the higher costs associated with solving for the intratemporal choice.
The computational time for these models may be reduced by combining the
iteration-on-allocation and precomputation approaches, as described in Sec-
tion 4.3. In addition, we can decrease the computational time for all models
by reducing the number of clusters; see JMM (2010a) for the corresponding
experiments.

7.4 Hybrid of perturbation and accurate intratempo-
ral choice methods

In Section 7.1, we show that using accurate intratemporal-choice approaches
in simulation can increase the accuracy of solution methods even when these
methods’ own intratemporal choices are not sufficiently accurate. A promi-
nent example of such a method is perturbation, which produces small errors
in the Euler equations but large errors in the intratemporal-choice conditions

14At the moment of submission of our solutions for comparison of KMMP (2010), we did
not have a reliable accuracy test, and we submitted the solutions obtained under the most
accurate integration procedure feasible for the CGA, which is a two-step combination of
the M1 and Q(2) rules.
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- especially in the budget constraint; see Table 6 of KMMP (2010) for the
accuracy, by equation, for the first- and second-order perturbation methods
by Kollmann, Kim and Kim (2010) (referred to as PER1 and PER2, respec-
tively). Consequently, there are potential benefits to be derived from con-
structing a hybrid of the standard perturbation method (used as a low-cost
method for computing capital decision rules), and accurate intratemporal-
choice methods (used to solve for consumption and labor after capital is
computed).
To verify the above conjecture, we present a hybrid method that takes

the capital decision rules produced by the standard log-linearization method
for two-country versions of Models 5-8 and solves for consumption and labor
in simulation using an accurate iteration-on-allocation method. In Table 5,
we compare the accuracy of this hybrid method with that of the SSA, CGA,
PER1 and PER2 methods, as reported in Table 5 of KMMP (2010).
As Table 5 indicates, our hybrid method is far more accurate (by more

than an order of magnitude) than the PER1. It is even more accurate than
the PER2 and is only slightly less accurate than the SSA. On the other hand,
the hybrid method is considerably less accurate than the CGA. When com-
paring the hybrid method against the CGA, however, we should take into
account that the latter uses the second-degree polynomial, while the for-
mer uses the first-degree polynomial. The second-order hybrid perturbation
method is likely to be more accurate than the first-order one.
Finally, to construct the hybrid perturbation method, we can use any

numerical procedure that can accurately solve the system of intratemporal-
choice conditions with respect to consumption and labor; e.g., a standard
Newton-type solver. However, as we previously noted, the iteration-on-
allocation solver has advantages over other solvers. Thus, it is one of the
better candidates for a fusion with perturbation.

8 Conclusion

In this paper, we offer a mix of techniques that, when taken together, allows
us to address the challenges of solving high-dimensional problems. First, the
SSA and CGA operate on the ergodic-set domain which, in high-dimensional
problems, is normally a tiny fraction of the standard hypercube domain used
by other methods.
Second, it is critical to vectorize computations for speed. Concerning
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the capital decision functions, we combine linearly-additive polynomials, lin-
ear approximation methods and fixed-point iteration to solve for the poly-
nomial coefficients of all countries at once rather than on a country-by-
country basis. Concerning consumption and labor allocations, we separate
the intertemporal- and intratemporal-choice problems, solve for the state
variables and find the control variables in all grid points / integration nodes
/ time periods at once rather than on a one-by-one basis using a vectorized
(fixed-point) iteration-on-allocation solver.
Third, proper selection and coordination of the integration, approxima-

tion and intratemporal-choice strategies is critical for accuracy, speed and
numerical stability of our solution methods. We use integration rules that
have low cost in high dimensional problems, namely, a Monte Carlo type
of integration combined with regression under the SSA, and non-product
monomial rules and the Gauss-Hermite rule with one node under the CGA.
We implement the approximation step using efficient and numerically-stable
linear regression approaches described in JMM (2009). We solve for the
intratemporal choice using accurate iteration-on-allocation method (this is
important for the overall accuracy of our solutions). We also show that other
polynomial families (such as Smolyak polynomials studied in MKK, 2010)
can help increase accuracy and speed of our solution methods relative to our
baseline ordinary-polynomial family.
Finally, in addition to our main SSA and CGA methods, we construct

a hybrid method that combines perturbation (used to compute the capital
decision rules) and accurate intratemporal choice methods (used to solve
for consumption and labor). We find that such a hybrid method delivers
solutions that are more than an order of magnitude more accurate than
those delivered by the pure perturbation method. This hybrid perturbation
method can be useful for solving problems of very high dimensionality.
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9 Appendix

In this section, we present some supplementary results.

9.1 Appendix A

This section describes howwe implement the iteration-on-allocation approach
in Models 6-8 (and in the corresponding symmetric models, Models 2-4).

Model 6 Combining FOCs (4) and (5) gives

ecjt =
"
ajt
¡
kjt
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τ 1b1
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t )
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τ jbj

# ηj
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FOC (5) and budget constraint (2), respectively, can be written as
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(31)
where {γj, ηj, bj}j=1,...,N are the utility-function parameters, and α is the
share of capital in production. For given kt, at, kt+1, equations (29)− (31)
define a mapping ec1t = Γ (c1t ). We iterate on labor of the first country, ec1t ,
as follows: Assume some initial c1t ; compute

necjtoj=2,...,N from (29); find©ecjtªj=1,...,N from (30); obtain ec1t from (31); if c1t 6= ec1t , compute the next-
iteration input as (1− ξ) c1t + ξec1t . Iterate until convergence.
Model 7 Conditions (5) and (4), respectively, are

ecjt = ψ
¡
Le − cjt

¢
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, (32)
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(33)
where {γj}j=1,...,N and ψ are the utility-function parameters, α is the share
of capital in production, and Le are the labor endowment of the repre-
sentative agent. The resource constraint is given by (31) and determinesec1t . For given kt, at, kt+1, equations (31), (32) and (33) define a map-

ping
necjtoj=1,...,N = Γ

³©
cjt
ªj=1,...,N´

. We iterate on labor of all countries,necjtoj=1,...,N , as follows: Assume some initial ©cjtªj=1,...,N , find ©ecjtªj=1,...,N
from (32); compute

necjtoj=2,...,N and ec1t from (33) and (31), respectively; if

cjt 6= ecjt for j = 1, ..., N , calculate the next-iteration input as (1− ξ) cjt + ξecjt .
Iterate until convergence.

Model 8 Conditions (5), (4) and (2), respectively, are
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¢μj´1/μj−1

bj

⎤⎥⎥⎦
χj ¡

Le − cjt
¢
,

(34)

ecjt = Le −

⎡⎢⎣ 1
bj

Ã
u1c,tτ

1¡ecjt¢−1/χj τ j
! 1−1/χj

1/χj−1/γj

−
¡ecjt¢1−1/χj

bj

⎤⎥⎦
1

1−1/χj

, j = 2, ..., N,

(35)

ec1t =
⎡⎣Ã f1t

a1tA (1− α)1/μ
1

!μj

− α (k1t )
μ1

1− α

⎤⎦ 1
μ1

, (36)

where {χj, μj, bj}j=1,...,N are the utility-function parameters; α is the share
of capital in production; u1c,t and f1t are, respectively, the t-period marginal
utility of consumption and output of country 1, defined as

u1c,t ≡
h¡ec1t¢1−1/χ1 + b1

¡
Le − c1t

¢1−1/χ1i 1/χ1−1/γ11−1/χ1 ¡ec1t¢−1/χ1 ,
40



f1t ≡
NX
j=1

⎡⎣ecjt + kjt+1 − kjt +
φ

2
kjt

Ã
kjt+1
kjt
− 1
!2⎤⎦

−
NX
j=2

ajt+1A
³
α
¡
kjt
¢μj
+ (1− α)

¡
cjt
¢μj´1/μj

.

For given kt, at, kt+1, equations (34)− (36) define a mapping
necjtoj=1,...,N =

Γ
³©

cjt
ªj=1,...,N´

. We iterate on labor of all countries,
necjtoj=1,...,N , as fol-

lows: Assume some initial
©
cjt
ªj=1,...,N

; find
©ecjtªj=1,...,N from (34); computenecjtoj=2,...,N and ec1t using (35) and (36), respectively; if cjt 6= ecjt for j = 1, ..., N ,

calculate the next-iteration input as (1− ξ) cjt+ξecjt . Iterate until convergence.
9.2 Appendix B

This section describes how to use the precomputation approach for Models
2. Since all agents are identical in preferences and have identical welfare
weights, τ j = 1 for j = 1, ..., N , the ratio of marginal utilities of any two
agents in (4) is equal across agents. As a result, cjt = ct/N for all j. From
the intratemporal FOC (5), we get

cjt =

"
c
1/γ
t N−1/γb

(1− α)Aajt
¡
kjt
¢α
#− η

1+αη

. (37)

Substituting (37) into budget constraint (2), we obtain

ct = c
− η(1−α)
γ(1+αη)

t qt + dt, (38)

with variables qt and dt being defined as

qt =

PN
j=1

h
Aajt

¡
kjt
¢αi1+η(1−α)

1+αη

h
N−1/γb
(1−α)

iη(1−α)
1+αη

, dt = −
φ

2
kjt

Ã
kjt+1

kjt
− 1
!2
+ kjt − kjt+1.

(39)
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We can use equation (38) to precompute consumption ct in terms of two
variables qt and dt.
Outside the main iterative cycle, take a grid of P values {qP , dP}p=1,...,P

for qt and dt. For each grid point p = 1, ..., P , use a numerical solver to find a
solution cp to equation (38) represented in a form suited for precomputation.
Interpolate the constructed set function to continuous domain to get bc (q, d).
Inside the main iterative cycle, for each t, given kt, at, kt+1, compute qt and
dt from (39), use the precomputed function to find aggregate consumption,
ct = bct (qt, dt), and compute individual labor cjt from (37) for j = 1, ..., N .
Note that if welfare weights were not assumed identical but were deter-

mined endogenously from a lifetime budget constraint, we could still express
the individual intratemporal choice in terms of aggregate variables (even
though individual and average consumption are not equal any more). This
result is shown by Maliar and Maliar (2001, 2003b) who use non-Gorman
aggregation to solve large-scale macroeconomic models.

9.3 Appendix C

In this section, we provide the Euler equation (19) corresponding to Models
5-8.

Model 5

kjt+1 = Et

⎧⎨⎩β

¡
cjt+1

¢−1/γj¡
cjt
¢−1/γj

ωj
t

h
θjt+1 + αajt+1A

¡
kjt+1

¢α−1i
kjt+1

⎫⎬⎭ . (40)

Model 6

kjt+1 = Et

⎧⎨⎩β

¡
cjt+1

¢−1/γj¡
cjt
¢−1/γj

ωj
t

h
θjt+1 + αajt+1A

¡
kjt+1

¢α−1 ¡
cjt+1

¢1−αi
kjt+1

⎫⎬⎭ . (41)

Model 7

kjt+1 = Et

⎧⎪⎪⎪⎨⎪⎪⎪⎩β

(cjt+1)
ψ
(Le−cjt+1)

1−ψ 1−1/γj

cjt+1

(cjt)
ψ
(Le−cjt)

1−ψ 1−1/γj

cjt
ωj
t

h
θjt+1 + αajt+1A

¡
kjt+1

¢α−1 ¡
cjt+1

¢1−αi
kjt+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

(42)
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Model 8

kjt+1 = Et

(
β
ujc,t+1

ujc,tω
j
t

∙
θjt+1 + αajt+1A

¡
kjt+1

¢μj−1 ³
α
¡
kjt+1

¢μj
+ α

¡
cjt+1

¢μj´1/μj−1¸
kjt+1

)
,

(43)
where ujc,t is defined as

ujc,t ≡
h¡
cjt
¢1−1/χj

+ bj
¡
Le − cjt

¢1−1/χji 1/χj−1/γj1−1/χj ¡
cjt
¢−1/χj

.
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Figure 2a. Iteration-on-allocation: convergence without damping.
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Figure 2b. Iteration-on-allocation: divergence without damping.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

c1

Γ(
c1 )

Figure 2d. Iteration-on-allocation: convergence with damping.
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Figure 2c. Iteration-on-allocation: convergence with damping.
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Table 1. Accuracy and test time under alternative intratemporal-choice approaches for Model 5.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Remark: Ɛmean and Ɛmax are, respectively, the average and maximum errors in the corresponding optimality conditions (in log10 
units) in test on stochastic simulation of 10,000 observations; and TCPU is running time of test (in seconds). Abbreviations 
“Euler”, “BC” and “Intrat” denote the average errors in the Euler equations, budget constraint and the intratemporal optimality 
conditions, respectively. See Juillard and Villemot (2010) for a definition of errors.  

Intratemporal choice in the simulation procedure 
(a) Two functions  
of state variables 

(b) One function  
of state variables 

(c) Precomputation 
method 

(d) Iteration-on- 
-allocation method 

Intratemporal  
choice in  

the solution  
procedure 

Equation

Ɛmean Ɛmax TCPU Ɛmean Ɛmax TCPU Ɛmean Ɛmax TCPU Ɛmean Ɛmax TCPU

(i) Euler -6.14 -4.55 15 -6.02 -4.55 15 -5.68 -4.29 17 -5.73 -4.29 226 

Two functions BC -4.93 -3.48  -4.54 -3.09  -5.89 -5.61  - ∞ - ∞  

of state variables Intrat -4.64 -3.22  - ∞ - ∞  - ∞ - ∞  - ∞ - ∞  

(ii) Euler -5.98 -4.57 15 -6.06 -4.57 15 -5.68 -4.29 17 -5.72 -4.28 226 

One function BC -4.68 -3.60  -4.54 -3.09  -5.89 -5.61  - ∞ - ∞  

of state variables Intrat -4.69 -3.17  - ∞ - ∞  - ∞ - ∞  - ∞ - ∞  

(iii)  Euler -5.98 -4.42 14 -5.91 -4.42 14 -5.69 -4.35 16 -5.74 -4.35 231 

Precomputation BC -4.66 -3.63  -4.43 -3.17  -5.89 -5.61  - ∞ - ∞  

method Intrat -4.65 -3.28  - ∞ - ∞  - ∞ - ∞  - ∞ - ∞  

(iv) Euler -5.99 -4.42 15 -5.92 -4.42 15 -5.69 -4.35 17 -5.74 -4.35 232 

Iteration-on- BC -4.66 -3.63  -4.42 -3.18  -5.89 -5.61  - ∞ - ∞  

allocation method Intrat -4.65 -3.28  - ∞ - ∞  - ∞ - ∞  - ∞ - ∞  



Table 2. Time for simulating Models 5-8 under two alternative intratemporal-choice approaches: approximating consumption with a 
function of the state variables and using iteration-on-allocation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Remark: CPU1 and CPU2 are, respectively, time for simulating model T periods forward (in seconds) approximating consumption 
with a function of the state variables and using iteration-on-allocation.  

T=1 T=10 T=100 T=1,000 T=10,000 
n 

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2 CPU1 CPU2 CPU1 CPU2 
Model 5 

2 0.0001 0.0071 0.0004 0.0090 0.0030 0.0182 0.0415 0.1038 5.4893 5.7720
4 0.0001 0.0041 0.0004 0.0055 0.0037 0.0144 0.0645 0.1218 22.1597 22.4737
6 0.0001 0.0033 0.0004 0.0046 0.0045 0.0171 0.2483 0.3546 48.7948 49.0005
8 0.0001 0.0028 0.0005 0.0040 0.0055 0.0173 0.5870 0.6553 82.8177 83.3027

10 0.0001 0.0022 0.0006 0.0036 0.0072 0.0184 0.9490 1.0325 124.5969 124.5281
Model 6 

2 0.0001 0.0035 0.0004 0.0056 0.0032 0.0219 0.0416 0.1754 5.4723 6.0610
4 0.0001 0.0019 0.0006 0.0038 0.0041 0.0204 0.0694 0.1941 22.4622 22.9424
6 0.0002 0.0011 0.0006 0.0027 0.0052 0.0167 0.2573 0.3730 49.1699 49.5512
8 0.0002 0.0015 0.0007 0.0033 0.0067 0.0205 0.5774 0.7385 83.1369 83.7333

Model 7 
2 0.0001 0.0302 0.0003 0.0430 0.0033 0.1544 0.0410 1.0800 5.5069 9.8106
4 0.0001 0.0200 0.0004 0.0422 0.0038 0.2006 0.0645 1.3623 22.4296 28.5446
6 0.0001 0.0227 0.0004 0.0506 0.0048 0.2958 0.2525 2.0232 49.0937 58.5057

Model 8 
2 0.0001 0.0381 0.0004 0.0622 0.0033 0.2730 0.0412 2.1903 5.5690 14.0949
4 0.0001 0.0555 0.0004 0.1076 0.0041 0.6396 0.0664 5.1589 22.4694 53.7229
6 0.0002 0.0694 0.0006 0.1595 0.0050 0.9718 0.2472 8.5013 49.2921 101.2122



Table 3. The effect of specific polynomial on accuracy of the CGA under five integration rules for Models 5-8 with N=2 countries. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Remark: Ɛmean and Ɛmax are, respectively, the average and maximum absolute errors across all optimality conditions (in log10 units) in 
test on stochastic simulation of 10,000 observations; and abbreviations 1st, 2nd, 3rd and “SMOL” denote the first-, second-, third-degree 
ordinary polynomials and Smolyak polynomials, respectively. See Juillard and Villemot (2010) for a definition of errors.  

Q(3) Q(2) M2 M1 Q(1) Polyn. 
Ɛmean Ɛmax Ɛmean Ɛmax Ɛmean Ɛmax Ɛmean Ɛmax Ɛmean Ɛmax 

Model 5 
1st -4.90195 -3.13194 -4.90194 -3.13194 -4.90193 -3.13194 -4.90193 -3.13194 -4.88823 -3.13396
2nd -6.38976 -4.34742 -6.38976 -4.34735 -6.38974 -4.34730 -6.38974 -4.34730 -5.86835 -4.30024
3rd -7.15921 -5.15528 -7.15696 -5.15517 -7.15966 -5.15600 -7.15709 -5.15556 -5.89480 -4.96021

SMOL -7.06458 -5.05292 -7.06445 -5.05265 -7.06427 -5.05233 -7.06425 -5.05236 -5.89095 -4.83609
Model 6 

1st -4.82343 -3.02274 -4.82342 -3.02274 -4.82340 -3.02274 -4.82341 -3.02274 -4.75012 -3.03238
2nd -6.27646 -4.30442 -6.27647 -4.30437 -6.27646 -4.30432 -6.27647 -4.30432 -5.70532 -4.23380
3rd -7.15049 -5.15572 -7.15109 -5.15531 -7.15136 -5.15497 -7.15144 -5.15489 -5.72017 -4.78838

SMOL -6.98459 -4.98077 -6.98441 -4.98053 -6.98414 -4.98026 -6.98409 -4.98026 -5.71619 -4.70282
Model 7 

1st -4.77765 -3.03091 -4.77765 -3.03091 -4.77763 -3.03091 -4.77764 -3.03091 -4.73123 -3.03668
2nd -6.07533 -4.24781 -6.07537 -4.24774 -6.07538 -4.24771 -6.07539 -4.24770 -5.65946 -4.20806
3rd -7.06964 -4.99023 -7.07030 -4.99064 -7.07040 -4.99073 -7.07057 -4.99098 -5.67346 -4.75051

SMOL -6.78548 -4.72708 -6.78540 -4.72691 -6.78532 -4.72679 -6.78525 -4.72677 -5.66775 -4.54921
Model 8 

1st -4.58750 -2.80045 -4.58750 -2.80045 -4.58749 -2.80045 -4.58749 -2.80045 -4.53314 -2.80015
2nd -5.87377 -3.83040 -5.87378 -3.83037 -5.87377 -3.83035 -5.87378 -3.83035 -5.52168 -3.79411
3rd -6.81686 -4.38437 -6.81684 -4.38446 -6.81679 -4.38448 -6.81674 -4.38452 -5.57508 -4.27229

SMOL -6.69808 -4.56910 -6.69794 -4.56898 -6.69782 -4.56889 -6.69777 -4.56889 -5.57173 -4.40082



Table 4. Accuracy and speed of the CGA under four integration rules for Models 5-8.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Remark: Ɛmean and Ɛmax are, respectively, the average and maximum absolute errors across all optimality conditions (in log10 units) in 
test on stochastic simulation of 10,000 observations; and CPU is time for computing solution (in seconds). See Juillard and Villemot 
(2010) for a definition of errors.  

 

Q(2) M2 M1 Q(1) N 
Ɛmean Ɛmax CPU Ɛmean Ɛmax CPU Ɛmean Ɛmax CPU Ɛmean Ɛmax CPU 

Model 5 
2 -6.39 -4.35 72 -6.39 -4.35 91 -6.39 -4.35 73 -5.87 -4.30 63
4 -6.44 -4.45 145 -6.44 -4.45 227 -6.44 -4.45 105 -5.70 -4.36 76
6 -6.44 -4.66 575 -6.44 -4.66 661 -6.44 -4.66 161 -5.64 -4.50 94
8 -6.42 -4.76 4319 -6.42 -4.76 1822 -6.42 -4.76 290 -5.62 -4.57 115

10 -6.39 -4.74 144327 -6.38 -4.75 4425 -6.38 -4.75 420 -5.62 -4.56 137
Model 6 

2 -6.28 -4.30 1231 -6.28 -4.30 1417 -6.28 -4.30 1234 -5.71 -4.23 963
4 -6.31 -4.45 2687 -6.31 -4.45 3804 -6.31 -4.45 1781 -5.52 -4.35 1104
6 -6.32 -4.62 8556 -6.32 -4.62 8128 -6.32 -4.62 2207 -5.46 -4.40 1052
8 -6.31 -4.66 38392 -6.31 -4.66 19635 -6.31 -4.66 3864 -5.44 -4.46 1444

Model 7 
2 -6.08 -4.25 759 -6.08 -4.25 912 -6.08 -4.25 768 -5.66 -4.21 614
4 -6.09 -4.21 1842 -6.09 -4.21 2745 -6.09 -4.21 1402 -5.52 -4.16 887
6 -6.09 -4.33 6254 -6.09 -4.33 7723 -6.09 -4.33 2449 -5.46 -4.23 1173

Model 8 
2 -5.87 -3.83 1185 -5.87 -3.83 1400 -5.87 -3.83 1177 -5.52 -3.79 894
4 -5.93 -4.13 3807 -5.93 -4.13 5631 -5.93 -4.13 2913 -5.38 -4.05 1790
6 -5.96 -4.22 13414 -5.96 -4.22 14385 -5.96 -4.22 3869 -5.32 -4.09 1756



Table 5. Accuracy of the hybrid perturbation and other solution methods for Models 5-8 with N=2 countries.  
 

 
 
 
 
 
 
 
 

Remark: Ɛmean and Ɛmax are, respectively, the average and maximum absolute errors across all optimality conditions (in log10 units) 
in test on stochastic simulation of 10,000 observations; the results for the SSA, CGA, PER1 and PER2 are reproduced from 
KMMP (2010).  

 

SSA CGA PER1 PER2 Hybrid Model 
Ɛmean Ɛmax Ɛmean Ɛmax Ɛmean Ɛmax Ɛmean Ɛmax Ɛmean Ɛmax 

5 -4.79 -3.20 -6.39 -4.53 -3.69 -1.70 -5.13 -2.60 -4.50 -2.88
6 -4.79 -3.12 -6.38 -4.50 -3.53 -1.45 -4.84 -2.30 -4.56 -2.84
7 -4.08 -3.08 -6.15 -4.19 -3.05 -1.20 -4.21 -1.90 -4.57 -2.87
8 -4.62 -2.90 -5.98 -4.07 -3.11 -1.25 -4.35 -2.09 -4.36 -2.64


