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Remember our asymmetric first-price auction

Bidder nmaximizes

E(Un|sn) = (Vn − sn)
∏
m,n

Fm[ϕm(sn)]

which, after playing with the FOCs, led to

1
ϕn(s) − s

=
∑
m,n

fm[ϕm(s)]

Fm[ϕm(s)]
ϕ ′
m(s),

or, equivalently (after some algebra)

ϕ ′
n(s) =

Fn[ϕn(s)]

fn[ϕn(s)]

{[
1

(N− 1)

N∑
m=1

1
ϕm(s) − s

]
−

1
ϕn(s) − s

}
.
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In addition, we had two sets of boundary conditions

Left-Boundary Condition on Inverse-Bid Functions:
ϕn(v) = v for all n = 1, 2, . . . ,N.

Right-Boundary Condition on Inverse-Bid Functions:
ϕn(s̄) = v̄ for all n = 1, 2, . . . ,N.
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Why this is interesting

a system of nonlinear differential equations obtain;
no longer an initial value problem (as in symmetric case),
but now a two-point boundary value problem;
s̄ is unkown a priori and determines domain of solutions;
boundary value problem is overidentified;
we know some characteristics that the solutions must
respect (rationality and monotonicity);
Lipschitz condition does not hold at v!
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We considered shooting methods
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Coalition of 3 vs. Coalition of 2
We considered the MMRS (1994) example of coalitions
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Raining on the shooting parade

I was very careful about the example I chose—with uniform
F0(·) the maximum valuations from each coalition imply
asymmetric power distributions (one of the only cases with
closed-form solutions)

Nearly all researchers who used shooting methods noted that
the algorithm was very sensitive and instable

Recently, Fibich and Gavish (forthcoming, GEB) have proven
analytically that the inherent instability is not a technical issue,
but rather an analytic property of backward integration in this
setting

Furthermore, shooting methods are very costly (time wise),
require more advanced programming techniques, and typically
involve a lot of “fiddling”
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Projection methods: an alternative

A projection method is a general strategy to approximating a
true, but unknown, function by a finite number of
approximating functions.

Idea: the true solution is approximated by a finite combination
of simple, known functions.

In our setting this means researchers would first choose a basis
to approximate the solutions to each inverse-bid function.
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Basis-related choices

The full basis for the space of candidate solutions should be
rich (flexible) enough to approximate any function relevant to
the problem (which will be represented and approximated as a
linear combination of basis functions).

The researcher would then fix the flexibility of the
approximation by deciding how many basis elements to
include: in short, the researcher must select the degree of the
approximation.

Fixing the degree transforms an infinite-dimensional problem
into a finite-dimensional one, where only the coefficients of the
basis functions need then to be found; if the basis is a good
choice, larger degrees should yield better approximations.
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Other choices: residual function and norm

The researcher must also decide on an appropriate residual
function to evaluate how closely the approximation represents
the true solution.

The goal of projection methods is to find a set of coefficients
which make some norm of the residual function as close to zero
as possible.

After solving, the researcher can verify the quality of the
candidate solution and choose either to increase the degree of
the approximation or, if that fails, to begin with a different basis.
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Spectral methods

Spectral methods use bases where each element is nonzero
almost everywhere, as with trigonometric bases and orthogonal
polynomials.

In the case of an asymmetric first-price auction problem,
consider approximating each inverse-bid function by a
truncated series expansion

ϕ̂n(s) =

K∑
k=0

αn,kPk(s), s ∈ [v̄, s̄], n = 1, 2, . . . ,N

where Pk(s) is some basis functions (which are typically chosen
to be polynomials) and the αn,ks are referred to as the spectral
coefficients.
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Least-squares problem

For economists, perhaps the most intuitive spectral method is
that of least-squares. It is compelling to us: we have reduced
the problem of solving a functional equation to solving a
nonlinear minimization problem, a problem with which we
have considerable experience.

Consider selecting a large number T of grid points from the
interval [v, s̄].
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Remember our asymmetric IPVP problem

Define

Gn(s; s̄,α) ≡ 1 − [ϕ̂n(s) − s]
∑
m,n

fm[ϕ̂m(s)]

Fm[ϕ̂m(s)]
ϕ̂ ′
m(s)

where α denotes a vector that collects the N× (K+ 1)
coefficients of the polynomials.

Note that once the basis function has been decided, ϕ̂ ′
m(·) are

implied by the choice (literally just take the derivative of each
basis element).
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Ideally...

In an exact solution, Gn(s; s̄,α) should equal zero for all
bidders and at any bid s ∈ [v, s̄] and our boundary constraints

ϕn(v) = v

and
ϕn(s̄) = v̄

will be satisfied for all n = 1, . . . ,N



Review Projection Methods Example Theory Examples Extensions

Bajari (2001, ET)

The problem is to estimate s̄ as well as the αn,ks for all
n = 1, 2, . . . ,N and k = 0, 1, . . . ,K

The system can be evaluated at each grid point and the
parameters can be chosen to minimize the following criterion
function:

H(s̄,α) ≡
N∑
n=1

T∑
t=1

[Gn(st; s̄,α)]
2+

N∑
n=1

[ϕ̂n(v) − v]
2+

N∑
n=1

[ϕ̂n(s̄) − v̄]
2
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Bajari (2001, ET)

In practice, Bajari chose
K = 5
uniformly-spaced grid
ordinary polynomials
used a nonlinear least-squares algorithm to select s̄ and α
by minimizing a modified version of the previous objective

H̃(s̄,α) ≡
N∑
n=1

T∑
t=1

[Gn(st; s̄,α)]
2+T

N∑
n=1

[ϕ̂n(v) − v]
2+T

N∑
n=1

[ϕ̂n(s̄) − v̄]
2

which adds weight to the boundary conditions.



Review Projection Methods Example Theory Examples Extensions

Hubbard and Paarsch (2009, IJIO)

Modified the approach we just discussed by
using Chebyshev points;
using Chebyshev basis;
imposing boundary conditions as constraints;
imposing shape constraints.

Thus, the problem becomes...
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Hubbard and Paarsch (2009, IJIO)

min
{s̄,α}

N∑
n=1

T∑
t=1

[Gn(st; s̄,α)]
2 ,

subject to each of these (for all n = 1, 2, . . . ,N)
1 v 6 s̄ 6 v̄
2 ϕn(v) = v

3 ϕn(s̄) = v̄

4 ϕn(sj−1) 6 ϕn(sj) for uniform grid j = 2, . . . , J
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Hubbard, Kirkegaard, and Paarsch (2011)

HKP take this improved approach and push it farther by
leveraging other information at the critical boundary points

Fibich, Gavious, and Sela (2002) proved the following
properties concerning the high and low types, the first of which
follows directly from the first-order conditions:

1. (v̄− s̄)
∑
m,n fm(v̄)ϕ′

m(s̄) = 1 for all n = 1, 2, . . . ,N.
2. If fn(v) ∈ R++ and ϕn(s) is differentiable at s = v for all
n = 1, 2, . . . ,N, then ϕ′

n(v) = [N/(N− 1)].

Take HP (2009, IJIO) approach and impose these as well to get...
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Hubbard, Kirkegaard, and Paarsch (2011)

min
{s̄,α}

N∑
n=1

T∑
t=1

[Gn(st; s̄,α)]
2 ,

subject to each of these (for all n = 1, 2, . . . ,N)

1 v 6 s̄ 6 v̄
2 ϕn(v) = v

3 ϕn(s̄) = v̄

4
∑
m,n(v̄− s̄)fm(v̄)ϕ′

m(s̄) = 1
5 ϕ′

n(v) = [N/(N− 1)]
6 ϕn(sj−1) 6 ϕn(sj) for uniform grid j = 2, . . . , J
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HKP (2011): sidenote on collocation

Under this approach there are 4N conditions (constraints) in
total and TN points that enter the objective function.

By comparison, there are N(K+ 1) + 1 parameters to be
estimated—the parameters in α plus s̄.

For the number of conditions (boundary and first-order
together) to equal the number of unknowns

N(T + 4) = N(K+ 1) + 1

or
(T + 4) = (K+ 1) +

1
N

.

Since at auctions, N weakly exceeds two, and T and K are
integers, this equality cannot hold for any (T ,K) choice.
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HKP (2011): initial guess

However, when comparing the N(K+ 1) + 1 parameters with
the 4N conditions, note that, if K equals three and all the
conditions are satisfied, then only one degree of freedom
remains.

One criticism of the polynomial approach (and
projection-based methods in general) is that it works well, if the
practitioner has a good initial guess.

When K equals three, the researcher obtains an initial guess that
already satisfies some theoretical properties at essentially no
cost because there is only one free parameter, s̄, to minimize the
nonlinear least-squares objective.
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Hubbard and Paarsch (2009)

HP (2009, IJIO) makes for a nice example of projection methods
as, even if shooting methods could work reliably, they would
not work on this problem

This example involve bid preference programs which is now a
well studied topic, especially among structural economists

Marion (2007, JPubE)
Krasnokutskaya and Seim (forthcoming, AER)

In these programs, bids of preferred firms are typically scaled
by some discount factor which is one plus a preference rate
denoted ρ. Suppose there are N1 preferred bidders and N2
typical (nonpreferred) bidders, where (N1 +N2) equals N.
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HP (2009) example

Under this program, probability of winning for a class 1 bidder,

Pr(win|b1) = (1 − F1[ϕ1(b1)])
N1−1

(
1 − F2

[
ϕ2

(
b1

1 + ρ

)])N2

,

while for a class 2 bidder probability of winning is

Pr(win|b2) = [1 − F1 (ϕ1 [(1 + ρ)b2])]
N1 (1 − F2[ϕ2(b2)])

N2−1
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HP (2009) example
Each firm then chooses its bid b to maximize its

E(Ui|bi) = (bi − Ci)Pr(win|bi)

which yields two FOCs

∂E(U1|b1)

∂b1
= 1 − [b1 −ϕ1(b1)]

[
(N1 − 1)f1 [ϕ1(b1)]ϕ

′
1(b1)

1 − F1 [ϕ1(b1)]
+

N2f2

[
ϕ2

(
b1

1+ρ

)]
1

1+ρϕ
′
2

(
b1

1+ρ

)
1 − F2

[
ϕ2

(
b1

1+ρ

)] ]
= 0

and

∂E(U2|b2)

∂b2
= 1 − [b2 −ϕ2(b2)]

[
N1f1 (ϕ1 [(1 + ρ)b2]) (1 + ρ)ϕ ′

1 [(1 + ρ)b2]

1 − F1 (ϕ1 [(1 + ρ)b2])
+

(N2 − 1)f2 [ϕ2(b2)]ϕ
′
2(b2)

1 − F2 [ϕ2(b2)]

]
= 0
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HP (2009) example

Right-Boundary Conditions (on Inverse-Bid Functions):
for all nonpreferred bidders of class 2, ϕ2(c̄) = c̄;
for all preferred bidders of class 1, ϕ1(b̄) = c̄, where b̄ = c̄
if N1 > 1, but when N1 = 1, then b̄ is determined by

b̄ = argmax
b

[
(b− c̄)

(
1 − F2

[
ϕ2

(
b

1 + ρ

)])N2
]

.

Left-Boundary Conditions (on Inverse-Bid Functions): there
exists an unknown bid b such that

for all nonpreferred bidders of class 2, ϕ2(b) = c;
for all preferred bidders of class 1, ϕ1 [(1 + ρ)b] = c.
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Endogenous changes in preferred behavior
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Endogenous changes in nonpreferred behavior
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Are we comfortable with less control?

While shooting methods have so many issues, a distinct
advantage is that the error tolerance (at v—the point we were
shooting to) can be controlled explicitly. The researcher had to
specify this beforehand.

Of course, whether this could be achieved and whether the
shooting approach would be successful is another issue.

Nonetheless, that control is a nice feature. How do you know
whether a polynomial approximation is sufficient? Should you
select a higher degree polynomial?
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Regardless of the approach, theory tells us more

I mentioned earlier that we had more information concerning
the derivatives of the bid functions at the boundaries.

We can also use theory to inform us about some qualitative
properties of the bid functions. In the projection approach this
can also help inform us about whether we’re capturing
essential features of the solution.

This comes from Hubbard, Kirkegaard, and Paarsch
(2011)—HKP
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Comparing bidder behavior

Define
Dn,m(s) = ϕ̂n(s) − ϕ̂m(s)

Then if K = 3 this becomes

Dn,m(s) = ϕ̂n(s) − ϕ̂m(s) =

[
fn(v̄) − fm(v̄)

fn(v̄)fm(v̄)

] [
s2(s̄− s)

s̄2(v̄− s̄)

]
Proposition:
Assume (i) fn(v) ∈ R++ and (ii) ϕn(s) is a polynomial of
degree K, K > 3, with real coefficients that satisfy Conditions
1a, 1b, 2a, and 2b, for all n = 1, 2, . . . ,N. If fn(v̄) , fm(v̄), then
ϕn(s) and ϕm(s) cross at most (K− 3) times on (v, s̄),
m,n = 1, 2, . . . ,N.
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Example 2
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Example 2: D̂1,2(s) for various K
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Exogenous and endogenous ratios

Let

Pn,m(v) =
Fm(v)

Fn(v)
, v ∈ (v, v̄]

measure bidder n’s strength relative to bidderm at a given v

Let

Rn,m(v) =
Un(v)

Um(v)
, v ∈ [v, v̄]

denote bidder n’s equilibrium pay-off relative to bidder j’s
equilibrium pay-off at a given v; i.e.,

Un(v) = (vn − s)
∏
m,n

Fm [ϕm(s)]
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Properties of the ratios

Ratios vs. Bids

Rn,m(v) T Pn,m(v)⇐⇒ σn(v) T σm(v), for v ∈ (v, v̄].

Endogenous vs. Exogenous Ratios

R′n,m(v) T 0⇐⇒ Rn,m(v) T Pn,m(v), for v ∈ (v, v̄].

Right-Boundary Condition

Rn,m(v̄) = Pn,m(v̄) = 1,

Left-Boundary Condition

lim
v→v

Rn,m(v) =
fm(v)

fn(v)
= lim
v→v

Pn,m(v).
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Implications for approximations

1 Slope:
If Pn,m(v) = R̂n,m(v) (i.e., σ̂n(v) = σ̂m(v)), R̂n,m should be
flat. This is true anytime bids coincide (for any v > v,
including v̄).

2 Location:
Pn,m(v) = Rn,m(v) at most once between any two peaks of
Pn,m. With diminishing wave property they must cross
between any two peaks (not counting v equals v̄).
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Implications for approximations
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Example 2 continued
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Example 3: diminishing wave property satisfied
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Example 3 approximations
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Are good solutions really that important?

Hopefully you see that these graphical “tests” can be used to
evaluate some qualitative features of the approximation

But, really, how important are these small differences in the
approximated (inverse) bid functions?

Well, let’s simulate some auctions and find out...
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Results of a simulation study: one trillion auctions

Order of Expected Proportion of Prop. Wins Prop. Wins
ϕ̂n Revenue Inefficiencies Player 1 Player 2 E(U1) E(U2)

Ex. 2

K = 3 0.3563 0.0193 0.4807 0.5193 0.1553 0.1436
K = 4 0.3473 0.0223 0.5209 0.4791 0.1645 0.1434
K = 5 0.3458 0.0227 0.5089 0.4911 0.1634 0.1459
K = 10 0.3431 0.0337 0.5028 0.4972 0.1635 0.1481
K = 15 0.3432 0.0338 0.5027 0.4973 0.1634 0.1481
K = 20 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
K = 25 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
K = 30 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
SPA 0.3445 0.0000 0.5000 0.5000 0.1555 0.1555

Ex. 3

K = 3 0.3475 0.0721 0.5491 0.4509 0.1568 0.1568
K = 4 0.3452 0.0670 0.5287 0.4713 0.1584 0.1613
K = 5 0.3364 0.0557 0.5041 0.4959 0.1605 0.1678
K = 10 0.3334 0.0704 0.4964 0.5036 0.1632 0.1699
K = 15 0.3330 0.0719 0.4947 0.5053 0.1634 0.1702
K = 20 0.3328 0.0725 0.4944 0.5056 0.1635 0.1703
K = 25 0.3328 0.0726 0.4943 0.5057 0.1635 0.1703
K = 30 0.3328 0.0726 0.4943 0.5057 0.1635 0.1703
SPA 0.3399 0.0000 0.4867 0.5133 0.1601 0.1733

blank
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Results of a simulation study: one trillion auctions

Order of Expected Proportion of Prop. Wins Prop. Wins
ϕ̂n Revenue Inefficiencies Player 1 Player 2 E(U1) E(U2)

Ex. 2

K = 3 0.3563 0.0193 0.4807 0.5193 0.1553 0.1436
K = 4 0.3473 0.0223 0.5209 0.4791 0.1645 0.1434
K = 5 0.3458 0.0227 0.5089 0.4911 0.1634 0.1459
K = 10 0.3431 0.0337 0.5028 0.4972 0.1635 0.1481
K = 15 0.3432 0.0338 0.5027 0.4973 0.1634 0.1481
K = 20 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
K = 25 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
K = 30 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
SPA 0.3445 0.0000 0.5000 0.5000 0.1555 0.1555

Ex. 3

K = 3 0.3475 0.0721 0.5491 0.4509 0.1568 0.1568
K = 4 0.3452 0.0670 0.5287 0.4713 0.1584 0.1613
K = 5 0.3364 0.0557 0.5041 0.4959 0.1605 0.1678
K = 10 0.3334 0.0704 0.4964 0.5036 0.1632 0.1699
K = 15 0.3330 0.0719 0.4947 0.5053 0.1634 0.1702
K = 20 0.3328 0.0725 0.4944 0.5056 0.1635 0.1703
K = 25 0.3328 0.0726 0.4943 0.5057 0.1635 0.1703
K = 30 0.3328 0.0726 0.4943 0.5057 0.1635 0.1703
SPA 0.3399 0.0000 0.4867 0.5133 0.1601 0.1733

Poor approximation⇒wrong revenue ranking
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Results of a simulation study: one trillion auctions

Order of Expected Proportion of Prop. Wins Prop. Wins
ϕ̂n Revenue Inefficiencies Player 1 Player 2 E(U1) E(U2)

Ex. 2

K = 3 0.3563 0.0193 0.4807 0.5193 0.1553 0.1436
K = 4 0.3473 0.0223 0.5209 0.4791 0.1645 0.1434
K = 5 0.3458 0.0227 0.5089 0.4911 0.1634 0.1459
K = 10 0.3431 0.0337 0.5028 0.4972 0.1635 0.1481
K = 15 0.3432 0.0338 0.5027 0.4973 0.1634 0.1481
K = 20 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
K = 25 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
K = 30 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
SPA 0.3445 0.0000 0.5000 0.5000 0.1555 0.1555

Ex. 3

K = 3 0.3475 0.0721 0.5491 0.4509 0.1568 0.1568
K = 4 0.3452 0.0670 0.5287 0.4713 0.1584 0.1613
K = 5 0.3364 0.0557 0.5041 0.4959 0.1605 0.1678
K = 10 0.3334 0.0704 0.4964 0.5036 0.1632 0.1699
K = 15 0.3330 0.0719 0.4947 0.5053 0.1634 0.1702
K = 20 0.3328 0.0725 0.4944 0.5056 0.1635 0.1703
K = 25 0.3328 0.0726 0.4943 0.5057 0.1635 0.1703
K = 30 0.3328 0.0726 0.4943 0.5057 0.1635 0.1703
SPA 0.3399 0.0000 0.4867 0.5133 0.1601 0.1733

E(USP
n ) − E(USP

m) = µn − µm, but not in FPAs here.
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Results of a simulation study: one trillion auctions

Order of Expected Proportion of Prop. Wins Prop. Wins
ϕ̂n Revenue Inefficiencies Player 1 Player 2 E(U1) E(U2)

Ex. 2

K = 3 0.3563 0.0193 0.4807 0.5193 0.1553 0.1436
K = 4 0.3473 0.0223 0.5209 0.4791 0.1645 0.1434
K = 5 0.3458 0.0227 0.5089 0.4911 0.1634 0.1459
K = 10 0.3431 0.0337 0.5028 0.4972 0.1635 0.1481
K = 15 0.3432 0.0338 0.5027 0.4973 0.1634 0.1481
K = 20 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
K = 25 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
K = 30 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
SPA 0.3445 0.0000 0.5000 0.5000 0.1555 0.1555

Ex. 3

K = 3 0.3475 0.0721 0.5491 0.4509 0.1568 0.1568
K = 4 0.3452 0.0670 0.5287 0.4713 0.1584 0.1613
K = 5 0.3364 0.0557 0.5041 0.4959 0.1605 0.1678
K = 10 0.3334 0.0704 0.4964 0.5036 0.1632 0.1699
K = 15 0.3330 0.0719 0.4947 0.5053 0.1634 0.1702
K = 20 0.3328 0.0725 0.4944 0.5056 0.1635 0.1703
K = 25 0.3328 0.0726 0.4943 0.5057 0.1635 0.1703
K = 30 0.3328 0.0726 0.4943 0.5057 0.1635 0.1703
SPA 0.3399 0.0000 0.4867 0.5133 0.1601 0.1733

SPA⇒ bigger pie;
In these: for seller, SPA � FPA, but for bidders, FPA � SPA

(collectively, but not individually)
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Results of a simulation study: one trillion auctions

Order of Expected Proportion of Prop. Wins Prop. Wins
ϕ̂n Revenue Inefficiencies Player 1 Player 2 E(U1) E(U2)

Ex. 2

K = 3 0.3563 0.0193 0.4807 0.5193 0.1553 0.1436
K = 4 0.3473 0.0223 0.5209 0.4791 0.1645 0.1434
K = 5 0.3458 0.0227 0.5089 0.4911 0.1634 0.1459
K = 10 0.3431 0.0337 0.5028 0.4972 0.1635 0.1481
K = 15 0.3432 0.0338 0.5027 0.4973 0.1634 0.1481
K = 20 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
K = 25 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
K = 30 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
SPA 0.3445 0.0000 0.5000 0.5000 0.1555 0.1555

Ex. 3

K = 3 0.3475 0.0721 0.5491 0.4509 0.1568 0.1568
K = 4 0.3452 0.0670 0.5287 0.4713 0.1584 0.1613
K = 5 0.3364 0.0557 0.5041 0.4959 0.1605 0.1678
K = 10 0.3334 0.0704 0.4964 0.5036 0.1632 0.1699
K = 15 0.3330 0.0719 0.4947 0.5053 0.1634 0.1702
K = 20 0.3328 0.0725 0.4944 0.5056 0.1635 0.1703
K = 25 0.3328 0.0726 0.4943 0.5057 0.1635 0.1703
K = 30 0.3328 0.0726 0.4943 0.5057 0.1635 0.1703
SPA 0.3399 0.0000 0.4867 0.5133 0.1601 0.1733

SPA→ FPA⇒ small change in probability of winning
Player 1 wins ≈1% more of the time than player 2 in FPA
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Results of a simulation study: one trillion auctions

Order of Expected Proportion of Prop. Wins Prop. Wins
ϕ̂n Revenue Inefficiencies Player 1 Player 2 E(U1) E(U2)

Ex. 2

K = 3 0.3563 0.0193 0.4807 0.5193 0.1553 0.1436
K = 4 0.3473 0.0223 0.5209 0.4791 0.1645 0.1434
K = 5 0.3458 0.0227 0.5089 0.4911 0.1634 0.1459
K = 10 0.3431 0.0337 0.5028 0.4972 0.1635 0.1481
K = 15 0.3432 0.0338 0.5027 0.4973 0.1634 0.1481
K = 20 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
K = 25 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
K = 30 0.3432 0.0338 0.5026 0.4974 0.1634 0.1481
SPA 0.3445 0.0000 0.5000 0.5000 0.1555 0.1555

Ex. 3

K = 3 0.3475 0.0721 0.5491 0.4509 0.1568 0.1568
K = 4 0.3452 0.0670 0.5287 0.4713 0.1584 0.1613
K = 5 0.3364 0.0557 0.5041 0.4959 0.1605 0.1678
K = 10 0.3334 0.0704 0.4964 0.5036 0.1632 0.1699
K = 15 0.3330 0.0719 0.4947 0.5053 0.1634 0.1702
K = 20 0.3328 0.0725 0.4944 0.5056 0.1635 0.1703
K = 25 0.3328 0.0726 0.4943 0.5057 0.1635 0.1703
K = 30 0.3328 0.0726 0.4943 0.5057 0.1635 0.1703
SPA 0.3399 0.0000 0.4867 0.5133 0.1601 0.1733

SPA→ FPA⇒ bigger change payoff
E(U1) > E(U2) by ≈10% in FPA
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It’s a small world

I think auctions are an area where there’s a lot of back-and-forth
between numerical work, applied work, and theoretical work

Theory informs numerical work

Numerical work motivates new theory

Empirical work relies on theory and numerical work

Theory and numerical work are guided by new empirical
observations
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APVP example

Consider a first-price auction with no reserve price involving
two bidders.

The bidders draw valuations from a joint distribution FV(v1, v2)
which has compact support [v, v̄]2. We employ Sklar’s Theorem
which states that a copula C(F1(v1), F2(v2)) always exists, and is
a unique function linking FV(v1, v2) with F1(v1) and F2(v2).

We assume a Frank copula with dependence parameter θ set
such that Kendall’s τ equals 0.5 which implies non-negligible
statistical dependence between V1 and V2.

Under these conditions, we have a model in the APVP.
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Example 4

Assume further that valuations for bidder 1 have a uniform
marginal distribution

F1(v) ∼ F(v; 1, 1)

while valuations from bidder 2 are distributed via the following
beta-uniform mixture marginal distribution:

F2(v) ∼ γF(v; 1, 1) + (1 − γ)F(v; 2, 2)

with the weight γ equal to 0.1.

Note that F2(v) first-order stochastically dominates F1(v)⇒ in
IPVP, weakness leads aggression holds
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Example 4: asymmetry and affiliation
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Things to take from our discussions

When bidders are ex ante heterogenous at first-price auctions,
closed-form solutions often do not exist and there is a role for
numerical methods

We discussed two of them extensively: backwards shooting
methods and perturbation methods

Theory can be used to provide some validation of the
solution—regardless of the approach taken

There is room for improvements: I will circulate a current
(preliminary) version of a paper I’m working on with Harry
Paarsch in which we try to bring everything in the literature
together and discuss some future directions
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