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Abstract

This paper introduces a dynamic stochastic integrated model of
climate and economy (DSICE), and a numerical dynamic programming
algorithm for its solution. More specifically, we solve an example with
annual time periods, a six hundred year horizon, and shocks to the
economic and climate system. Our dynamic programming methods
solve such models on a laptop in about an hour, and do so with good
accuracy. This decisively refutes the pessimism one often hears about
the possibility of solving such models.
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1 Introduction

There is great uncertainty about the future of the climate and the impact of
economic activity on the climate. There is always great uncertainty about
future economic conditions. Therefore, any analysis of how society should
respond to possible climate change must consider the uncertainties any deci-
sion maker faces when choosing policies. This paper demonstrates that there
is no difficulty in adding uncertainty and risk to basic IAM models.

We use Nordhaus’ DICE2007 model as a starting point for our model. It
is well-known in the IAM community and widely used in the IAM literature.
Furthermore, it is well-documented. We extend it by adding both economic
and climate shocks to the framework of DICE2007.

The TAM community, despite numerous attempts, has so far not been
able to produce a stochastic IAM flexible enough to represent uncertainty in
a quantitatively realistic manner. In particular, the representation of time
should be compatible with the natural frequencies of both the natural and
social processes related to climate change. Kelly and Kolstad (1999) is one
among only a few models implementing risk. However, the methodological
approach in Kelly and Kolstad (1999) makes it very difficult to extend the
analysis to a higher-dimensional space and time frequency. Our approach
here is to formulate the general problem and implement it with software
and algorithms that can handle a wide rage of problems. Furthermore, we
are following standard modern economic notions of uncertainty in terms
of time period length and the frequency of shocks, and thus, we use a far
more realistic specification of uncertainty. In general, models that assume
long time periods, such as ten years, represent neither social nor physical
processes because nontrivial dynamics and feedbacks may occur in either
system during a single decade.

Dynamic stochastic general equilibrium (DSGE) models in economics use
relatively short time periods, always at most a year. DICE2007 instead uses
a ten-year time period. Ten year time periods are too long for serious, quan-
titative analysis of policy questions. For example, if one wants to know how
carbon prices should react to business cycle shocks, the time period needs
to be at most a year. No one would accept a policy that takes ten years to
respond to current shocks to economic conditions. Cai, Judd and Lontzek
(2012a) shows that annual time periods produce a significantly different car-
bon price with the numbers given by DICE2007 (Nordhaus, 2008). Cai, Judd
and Lontzek (2012b) develops DICE-CJL, an extension of DICE2007 that
can handle any time period length, and then demonstrate that many sub-
stantive results depend critically on the time step, strongly supporting our
contention that short time periods are necessary for quantitatively reliable
analysis.

We then take the DICE-CJL and add economic and climate shocks. We
solve it using dynamic programming (DP) methods. In particular, we use



the methods presented in Judd (1998), Cai (2009), and Cai and Judd (2010,
2012a, 2012b, 2012c).

There are many different types of uncertainty that are discussed in the
IAM literature. First, many people examine parametric uncertainty, because
we do not know with precision the value of key parameters. Second, economic
models have substantial amounts of intrinsic uncertainty, meaning that even
if one knew the parameters, there would still be uncertainty due to random
exogenous events.

DSICE is a model that focuses on intrinsic uncertainty, as is done in the
DSGE literature in economics. However, the speed of our DSICE solution
algorithm is fast enough that we could also do wide-ranging parameter sweeps
to address parameter uncertainty.

We demonstrate the performance of DSICE in a few examples. Those ex-
amples show that our algorithm is fast (about an hour on a single-processor
laptop to solve a one-year, 600-period stochastic model with eight state vari-
ables), and passes basic accuracy tests.

The results show decisively that climate change issues can be examined
with the same complexity used in standard dynamic stochastic models in
economics.

2 DICE-CJL

DICE2007 (Nordhaus, 2008) maximizes social welfare with tradeoffs between
CO9 abatement, consumption, and investment. In all versions of DICE,
the time interval of one period is 10 years, i.e., governments could only
have one chance per decade to adjust their economic and climate policy.
Moreover, a 10-year time difference is too large in the finite difference method
for discretizing the continuous time differential system.

Cai, Judd and Lontzek (2012b) extends DICE2007 to DICE-CJL models
that can handle any time period length. Here we summarize and reformulate
the annual version of the explicit DICE-CJL model. First, the annual social
utility function at year ¢ is

(ce/l) 7 =1
L=y
where v = 2 and ¢; is the consumption. We assume that labor supply I; is

inelastic and equals the world population in millions of people, which evolves
according to

u(e, ly) = l,

I; = 6514e7093% 1 8600(1 — 70035, (1)

for any t = 0,...,599. Therefore, the total discounted utility over the first

600 years is
599

Z e Puler, 1y),

t=0



where p = 0.015 is the discount rate.

Second, the production side of DICE and DICE-CJL is a basic optimal
growth model. Output at year ¢ is produced from capital, k; (measured in
trillions of 2005 U.S. dollars), and labor supply I; according to the production
function

filkoe, 1) = Ak,

where o = 0.3 is the capital share, and A; is a total productivity factor
defined by
Ay = Agexp (0.0092(1 — e *%1") /0.001) . (2)

Global average atmospheric temperature, 7T (measured in degrees Celsius
above the 1900 temperature), reduces output by a factor

1
1+ mTAT 4+ mo(TAT)2

Q

where m; = 0 and o = 0.0028388. Abatement efforts can reduce CO2
emissions at some cost. Therefore, net output at year ¢ is
1— 7/}151_6201,15#02

k TAT — A kall—a
yt( ty L¢ 7/145) ].—|—7T1TAT—|—7T2(TAT)2 t t )

where 0y = 2.8, 1, is the participation rate assumed to be equal to 1, y; €
[0, 1] is the emission control rate, and

11704 (1 + e~ 0-00%)

is the adjusted cost for backstop, where oy is the technology factor following
the path

014 =

or = ogexp (—0.0073(1 — e~29%) /0.003) .
Thus, the next-year capital is
Fyr = (1= 0) ke + Ve (ke, T, ) —

where 0 = 0.1 is the annual rate of depreciation of capital.
Industrial production processes cause CO2 emissions

EP (ke ) = 00(1 = ) fi (e, 1),
so the total carbon emissions (billions of metric tons) at year t is
Eu(key ) = 001 — ) Akl = + EF*™,

where
Eg_;and — 1.16_0'01t (4)

is the annual carbon emissions from biological processes.



DICE2007 and DICE-CJL use a simple box model for the carbon cycle.
The CO2 concentrations for the carbon cycle are modeled by a three-layer

model,
M, = (MtAT7MtUP7MtLO)T7

representing carbon concentration (billions of metric tons) in the atmosphere
(MAT), upper oceans (MUYF) and lower oceans (M}FC). The transition sys-
tem of the CO2 concentration from year t to year ¢ + 1 is

M1 = MM, + (& (ki 1) ,0,0)

where
1—¢12 1201 0
oM = P12 1 — Q1201 — P23 P32 ;
0 $23 1 — ¢a3p2

where ¢12 = 0.0190837 and ¢o3 = 0.005403 are calibrated in Cai, Judd and
Lontzek (2012b), ¢1 = MAT/MUP and ¢y = MUP /MO, where MAT =
587.473, MUY = 1143.894 and MO = 18340 are the preindustrial equilib-
rium states of the carbon cycle system.

The COqo concentrations impact the surface temperature of the globe
through the radiative forcing (watts per square meter from 1900):

Fi (MAT) = nlogy (MAT/M{E™) + FFX. (5)

where 7 = 3.4145 is calibrated in Cai, Judd and Lontzek (2012b), and Ff*X
is the exogenous radiative forcing;:

t =

EX —0.06 4+ 0.0036¢, if ¢t < 100,
0.3, otherwise.

DICE2007 and DICE-CJL use a simple box model for the climate. The
global mean temperature is represented by a two-layer model,

T, = (TtAT7 TtLO)T7

representing temperature (measured in degrees Celsius above the 1900 tem-
perature) of the atmosphere (TAT) and lower oceans (T}*?). The transition
system of the global mean temperature from year ¢ to year ¢ + 1 is

Ty =TT, + (F (MAT),0)",

where

T _ | L=&m/3-6& &&
€4 1-6& |’
and & = 0.04217, &5 = 0.2609, and &4 = 0.0048 are calibrated in Cai, Judd
and Lontzek (2012b).



Therefore, the annual explicit DICE-CJL model is

599
—pt —600p7"
max § e Pule, i) + e PV (keoo, Meoo, Teoo)
st
=0

s.t. kt+1 = (1 — 5)]{516 + yt (kt7 EAT7 /.Lt) — Ct,
M = MM, + (& (Ke, pt) , 0, O)T )
T =®"Ty + (4F (M) ,0)

where V(kz, M, T) is the terminal value function defined in Cai, Judd and
Lontzek (2012b).

3 DSICE

We add two stochastic shocks to DICE-CJL, one representing an economic
shock and the other representing a climate tipping point event that occurs
at some random time. The economic shock, denoted by (;, is a continuous
stochastic productivity shock corresponding to economic fluctuations and its
transition function from stage ¢ to ¢t + 1 is (441 = gC(Ct,wf ) where wf is a
random process. The other novel shock, denoted by Jy, is a jump process that
initially equals 1 but then may fall at some future time with the hazard rate
of decline related to the contemporaneous temperature, and its transition
function from stage t to t + 1 is Jiy11 = g7 (Ji, Tt,wy), where w; is another
random process independent of wtc . See Lontzek, Cai, and Judd (2012) for
a more complete discussion of the details.

Our expected total discounted utility over 600 years is

599
E {Z e_ptu(ct, lt)}
t=0

where E {-} is the expectation operator, and labor supply [; is defined in the
formula (1) of the DICE-CJL model. Our stochastic production function is
dependent on both the economic shock and the climate shock:

(1 - ¢3_9291,tuf2) Ji

ke, TAT g, G, Jy) = Ak, 6
Velke, T pus G Jt) 1+7T1T;5AT+7T2(TtAT)2<t thy'ly (6)

where the total productivity factor A; and the adjusted cost for backstop
61, are respectively defined in the formulas (2) and (3) of the DICE-CJL
model. Thus, the next-stage capital is

kiv1 =1 —=0)ki+ Vs (kt77}AT7Mta Gt Jt) - Ct-



The annual total carbon emissions (billions of metric tons) during year ¢
is stochastic and dependent on the economic shock:

Er (ke ity &) = o(1 — pe) GAKR > + Epand, (7)

where E#1d is the rate of emissions from biological processes defined in the
formula (4). Therefore, the carbon cycle and temperature transition system
becomes

Mt+1 = ‘I’MMt + (gt (kta Ht, Ct) aOa O)T )
T
Ty = ®TT+ (fl]:t (MtAT) 70) )

where F; (M AT) is the annual radiative forcing defined in the formula (5),
and ®M and ®7T are respectively the carbon cycle transition matrix and the
climate temperature transfer matrix per year, which are also the same with
the annual explicit DICE-CJL model.

Therefore, the stochastic IAM model, called DSICE, becomes

Ct, it

599
max E {Z e Pu(cr, 1) + e 5%V (g0, Meoo, Teo0, JGOO)}
=0

s.t. kt+1 = (1 — 5)kt + yt(ktaTtATa e, Ct’ Jt) — Cg,

M1 = MM, + (& (ke g1, ) ,0,0) "

Tyyy = 1T, + (67 (MAT),0)

Ct-i—l - gc(ctthc)7
Jt-‘rl = QJ(JtaTuWi])v

where V(k,M,T,J) is a terminal value function, which will be given in
Section 8.
The DP model for DSICE is
Vi(k, M, T,(,J) =max  u(c,ly) + e PE{V, 1 (KT, MT, T (T, J)}
it
st kT = (1= 0k + Vilk, TAY, 11, ¢, ) —
M* = MM + (& (k,1,¢) ,0,0) ",

T+ = 7T + (6.F (MA7),0) ",

¢t =g (¢ wd),
Jt=g7(J,T,07),

where V; is value function at year t < 600 and the terminal value func-
tion is V, consumption ¢ and emission control rate p are two control vari-
ables, (k,M,T,(,J) is 8-dimensional state vector at year ¢ (where M =
(MAT, MYP MYO)T is the three-layer COg concentration and T = (TAT, T7t0) T
is the two-layer global mean temperature), and (K™, M™*, T+ ¢t JT) is its
next-year state vector.



4 Numerical Methods for DP

Before discussing examples of DSICE, we summarize the numerical meth-
ods we used to solve the dynamic programming problem. In DP problems, if
state variables and control variables are continuous such that value functions
are also continuous, then we have to use some approximation for the value
functions, since computers cannot model the entire space of continuous func-
tions. We focus on using a finitely parameterized collection of functions to
approximate value functions, V (z,0) ~ V(x, 6;b), where  is the continuous
state vector (in DSICE, it is the 7-dimensional vector (k, M, T, ()), € is the
discrete state vector (in DSICE, it is J), and b is a vector of parameters.
The functional form V may be a linear combination of polynomials, or it may
represent a rational function or neural network representation, or it may be
some other parameterization especially designed for the problem. After the
functional form is fixed, we focus on finding the vector of parameters, b,
such that V(x, 0;b) approximately satisfies the Bellman equation (Bellman,
1957). Numerical DP with value function iteration can solve the Bellman
equation approximately (Judd, 1998).
A general DP model is based on the Bellman equation:

Vi(z,0) = max  w(z,a)+ BE{Vipi(at,0%) |6},

a€D(x,0,t)
st. o7 = f(x,0,a),
0+ = g(xu 07("))7

where V;(x, 6) is the value function at time ¢t < T (the terminal value function
Vr(z,0) is given), (z,07) is the next-stage state, D(z, 6,t) is a feasible set
of a, w is a random variable, § is a discount factor and u(z, a) is the utility
function at time ¢. The following is the algorithm of parametric DP with
value function iteration for finite horizon problems.

Algorithm 1. Numerical Dynamic Programming with Value Function Iter-
ation for Finite Horizon Problems

Initialization. Choose the approximation nodes, X; = {CL‘Zt 1 <i < my}
for every t < T, and choose a functional form for V(x,ﬁ b), where
0 € ©. Let V(z,0;br) = Vip(x,0). Then fort =T —1,T —2,...,0,
iterate through steps 1 and 2.

Step 1. Mazximization step. Compute
v = max u (s, a;5) + E{ 0 b 0}
I ai,j€D(4,05,t) (s l]) v (ZJ J ) |
S.t. x?:j = f(xi,ﬁj, aZ-,j),
9}" = g(z4,60;,w),

foreach 0; € ©, x; € Xy, 1 <@ < my.



Step 2. Fitting step. Using an appropriate approximation method, compute
the by such that V (x,0;;by) approzimates (x;,v; ;) data for each 0; €
0.

There are three main components in numerical DP: optimization, approxi-
mation, and numerical integration. In the following we focus on discussing
approximation and omit the introduction of optimization and numerical in-
tegration. Detailed discussion of numerical DP can be found in Cai (2009),
Judd (1998) and Rust (2008).

5 Approximation

An approximation scheme consists of two parts: basis functions and approx-
imation nodes. Approximation nodes can be chosen as uniformly spaced
nodes, Chebyshev nodes, or some other specified nodes. From the view-
point of basis functions, approximation methods can be classified as either
spectral methods or finite element methods. A spectral method uses globally
nonzero basis functions ¢;(z) such that V (z;c) = > j=0Ci®j(z) is a degree-n
approximation. Examples of spectral methods include ordinary polynomial
approximation, ordinary Chebyshev polynomial approximation, and shape-
preserving Chebyshev polynomial approximation (Cai and Judd, 2012c¢). In
contrast, a finite element method uses local basis functions ¢;(x) that are
nonzero over sub-domains of the approximation domain. Examples of finite
element methods include piecewise linear interpolation, shape-preserving ra-
tional function spline interpolation (Cai and Judd, 2012b), cubic splines, and
B-splines. See Cai (2009), Cai and Judd (2010), and Judd (1998) for more
details.

5.1 Chebyshev Polynomial Approximation

Chebyshev polynomials on [—1,1] are defined as Tj(z) = cos(j cos™1(z)),
while general Chebyshev polynomials on [a,b] are defined as T;((2z — a —
b)/(b—a)) for j = 0,1,2,.... These polynomials are orthogonal under the

weighted inner product: (f,g) = f: f(z)g(z)w(z)dr with the weighting func-
~1/2
tion w(x) = (1 —((2r—a—10)/(b— a))2) . A degree n Chebyshev poly-

nomial approximation for V'(x) on [a, b] is
. 1 = 2c—a—1»
Vo) = oo+ Dot (), ®)
‘]:

where ¢; are the Chebyshev coefficients.
If we choose the Chebyshev nodes on [a, b]: x; = (z;+1)(b—a)/2+a with
zi = —cos ((2i — 1)w/(2m)) for i = 1,...,m, and Lagrange data {(x;,v;) :



i =1,...,m} are given (where v; = V(x;)), then the coeflicients ¢; in (8)
can be easily computed by the following formula,

2 — .
cj:%ZwTj(zi), j=0,...,n. (9)
i=1

The method is called the Chebyshev regression algorithm in Judd (1998).

It is often more stable to use the expanded Chebyshev polynomial in-
terpolation (Cai and Judd, 2012a), as the above standard Chebyshev poly-
nomial interpolation gives poor approximation in the neighborhood of end
points. That is, we use the following formula to approximate V' (z),

. 1 & 20 —a—b
V(z;c) = 5¢0 + chTj (U) 7 (10)
j=1

b—a

where @ = a—0 and b = b+ with § = (21 +1)(a— b)/(221). Moreover, if we
choose the expanded Chebyshev nodes on [a, b]: x; = (2;4+1)(b—a)/2+a, then
the coefficients ¢; can also be calculated easily by the expanded Chebyshev

regression algorithm (Cai, 2009), which is similar to (9).

5.2 Multidimensional Complete Chebyshev Approximation

In a d-dimensional approximation problem, let the domain of the approxi-
mation function be

{x=(x1,...,2q) : a; <x; < b, i=1,...d},

for some real numbers a; and b; with b; > a; for : = 1,...,d. Let a =
(a1,...,aq) and b = (by,...,bq). Then we denote [a,b] as the domain. Let
a = (ai,...,aq) be a vector of nonnegative integers. Let T, (z) denote the

product Ty, (21) - -+ T, (24) for z = (21,..., 24) € [-1,1]%. Let

Z(x) = <2x1—a1—blj.”’2azd—ad—bd>

by — a1 bg — aq

for any = (z1,...,xq) € [a,b].
Using these notations, the degree-n complete Chebyshev approximation
for V(z) is

Val(z;c) = Z caTo (Z(2)),

0<]a|<n

where |a] = Zgzl «; for the nonnegative integer vector o = (o, ..., aq). So
the number of terms with 0 < |o| = 2?21 a; < nis (";d) for the degree-n
complete Chebyshev approximation in RY.

Let
(k) — (zikl), A z((jkd)> € [-1, 1]d,

10



where k = (k1,...,kq), zgki) = —cos((2k; — 1)w/(2m)) for k; = 1,...,m,
and 7 =1,...,d. Let

X, . —(Z,L( +1)(b,~—ai)/2—|—ai,

fori=1,...,d, and then
z*) = (xgkl), .. ,mgkd)>

is a d-dimensional Chebyshev node in [a,b]. These z(*) (for all k; = 1,...,m
and i = 1,...,d) forms the set of the d-dimensional Chebyshev nodes with
m nodes in each dimension. For each 2%, let v*) = V(2(®)) be computed by
solving the Bellman equation at z(®). Then the coefficients of the degree-n
complete Chebyshev approximation on [a, b] are computed as

od
Ca=rg 2. vwTalz),

1<k;<m,1<i<d

where d = Z?Zl 1o, >0 With 14,50 as the indicator

1 . 1, if a; >0,
*=0 700, ifa; =0,

for all nonnegative integer vectors o with 0 < || < n.

We can easily extend this multidimensional complete Chebyshev approx-
imation and the formula to compute the Chebyshev coefficients to its ex-
panded version over [a, b].

6 Discrete-Time Bounded Process of Continuous
Economic Shock

An economic shock process usually has a mean-reverting property: when it
is higher than its long-run mean, it tends to drift down; when it is lower
than its long-run mean, it tends to drift up; and the tendency will be higher
if it is more away from its long-run mean. A simple discrete-time AR(1)
mean-reverting process 1 is:

Yir1 = (1 = Ny + V2N — X2z,

where 0 < A < 1 is the rate of reversion and z; is a normal random variable
with zero mean and unit variance, and the z; process is i.i.d. Therefore,
Yt is a normal random variable with long-run zero mean and long-run unit
variance, and unbounded.

11



Figure 1: Difference between standard normal random variable y and its
transformed bounded random variable ¢

T T T
— — -Standard normal random variable y -
— Bounded transformed random variable { -

-6 L L L L L
-6 -4 -2 0 2 4 6
standard normal random variable y

However, an economic shock should be bounded. We will use the fol-
lowing function to transform the standard normal random variable y to a
bounded random variable (:

1—e "
14+ e*“yy

¢ , (1)
where v and k are two parameters. We see that ¢ is bounded in (—v,v) and
its mean is zero as the transformation function is an odd function of . Once
we choose a number of v, we would like to choose a corresponding  so that
the variance of ¢ is one. For example, if we set v = 4, then we will choose
Kk = 0.532708.

Figure 1 shows the difference between the standard normal random vari-
able and its transformed bounded random variable using the formula (11)
with v = 4 and k = 0.532708. We see that when the standard normal
random variable y has a value in (—2,2) having up to 95% probability, its
transformed bounded random variable ( is close to y. Figure 2 shows the
probability density function of ¢ which tells us that it is bounded within
(—4,4) and symmetric at its mean 0.

Now we can generate a discrete-time bounded mean-reverting process for
the economic shock (; using the following function:

- 1l—e

G=C+ Trer’” (12)

12



Figure 2: Probability density functions of standard normal random variable
y and its transformed bounded random variable ¢

probability density function
0.4 T

o= T
\

0.35

0.25
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0.15

0.1
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random variable y
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random variable {

-1 0 1

so that its long-run mean is ¢, its reverting rate is ), its long-run variance
is 02, and it is bounded in (f —vo,( + 1/0). In our examples, we will have
¢ =1, and we should have ( —vo > 0 to guarantee that the economic shock
(¢ is always positive.

7 Choosing Domains of Value Functions

In our examples, (k, M, T, () is the 7-dimensional vector of continuous states,
and J is one discrete state. All of our examples assume that we solve a 600-
year horizon problem. As is assumed in DICE, we believe that this solution
of the first few centuries are a good approximation of the solution of the first
few centuries to the infinite horizon problem in the model description.

It is important to set an appropriate domain for approximating the value
functions. We use the solution of DICE-CJL to tell us how to construct
the domain of the value function at each time. Over these 600 years, the
optimal solution of the annual DICE-CJL tells us that the minimal capital
is 137, and the maximal capital is 70138 along the optimal path of capital.
Therefore, if we use a fixed domain along the time path, then the domain
will be too large. The problem becomes more difficult when we include the
stochastic states, particularly the tipping point shock, in DSICE.

To overcome this difficult problem, we let the domains vary along the time
path. We use the optimal solution of DICE-CJL to generate the domains

13



of the value functions along years, and keep the optimal state variables of
DICE-CJL at around the center of the domain. When there is a tipping
point shock in the model, the optimal state variables of the adjusted DICE-
CJL should also be around the center of the domain, where the adjusted
DICE-CJL assume that the tipping point happens at the first year.

To choose the domains with the above properties, we set the range of
capital k; along year t to be

0.75 min {Chi ), 1.2 mex {Ckis}, (13)

where k;J is the optimal capital path of adjusted DICE-CJL with the pro-
duction function Y (k¢, TAT, pg, 1, J) for a fixed tipping level .J over the 600-
year horizon. The ranges of the other continuous states are defined in the
following way:

Mt+1 = ‘I’MMt + (Etv 0, O)Tv
My = MM, +(E,,0,0)7,
It+1 = ‘I’Tlt + (flEta 0)T7
T = ®TT+ (6F,0)7,

where M, and T, are the lower bounds of M; and T respectively, M; and
T, are the upper bounds of M; and T; respectively,

F, = nlogy (MtAT/M(?T) + FtEX>

—AT
Fy = 77108§2<Mt /M(¢T)+FtEXa

and E, and E; are the lower and the upper bounds of the emission, & (ki, ut, (),
at year t.

8 Terminal Value Function in DSICE

Assume that at the terminal time, the capital is k, the three-layer COq
concentration is M, the two-layer global mean temperature is T. We assume
that h =1 for the dynamic system after the terminal time (the 600th year).
For any time after the terminal time, we assume that the population is
l; = 8600, the total production factor and the adjusted cost for backstop
will be the same with the numbers at the terminal time respectively, i.e.,
Ay = 1.7283 and 01 = 0.00386. DSICE assumes that at the terminal time,
the world reaches a partial equilibrium: after the terminal time, capital
will be the same, and the emission control rate will always be 1 so that
the emission of carbon from the industry will always be 0, i.e., k; = k and
ue = 1, for any year t > 600. Moreover, the economic shock disappears,

14



and the tipping point event will never happen after the terminal time, i.e.,
(¢ =1 and Jy = J where J is the tipping level at the terminal time. Thus,
the dynamics of the climate system become

Mt+1 = @MMt_‘_(EtLandvovo)Tv
Ty = T+ (64F,0)7,

for any year t > 600, where Mggg = 1\71, Tgo0 = ’i‘, and
F; = nlog, (MtAT/M(/)XT) +0.3.
To keep the above partial equilibrium, the consumption is
¢t = Vilky, TAT 1,1, 0) — 6k

Therefore, we have our terminal value function:

V(k, M, T, J) = > e =000y, 1y).
t=600

To compute the terminal value function, we will use the summation of dis-
counted utilities over 800 years from ¢ = 600 to ¢t = 1399 with one year as the
time interval for each period instead. It will be a very good approximation
of the summation of the infinite sequence, because e 3% ~ 6.1 x 1076 is
small enough. That is,

1399
V(];I, M, T, j) ~ Z efp(tfﬁoo)u(ct, lt)
t=600

It would be too time-consuming to use the terminal value function of the
above formula in optimizers to compute optimal solutions, so we will use its
approximation to save computational time. In our examples, for each possi-
ble value of J, we will use a complete Chebyshev polynomial approximation,
V(k,M,T, J), over the terminal domain of the 6-dimensional continuous
state space of (k, M, T), which is chosen by the approach discussed in Sec-

tion 7.

9 Accuracy Test

An accuracy test is very important for any numerical algorithm. A numerical
algorithm should not be trusted if we have not examined its accuracy. Here
again the DICE-CJL model helps us. It will be a natural way to compare
the solutions given by the numerical DP algorithm and the solutions given
by the GAMS code using a large-scale nonlinear optimizer for DICE-CJL in
Cai, Judd and Lontzek (2012b), because DICE-CJL are degenerated cases
of DSICE.
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Our Fortran code of the numerical DP algorithm (the deterministic ver-
sion of Algorithm 1 with six continuous state variables and a degenerated
economic shock) is applied to solve DICE-CJL. In the maximization step
of DP, we use NPSOL (Gill et al., 1994), a set of Fortran subroutines for
minimizing a smooth function subject to linear and nonlinear constraints.
For each dimension of the continuous state space, we choose 5 expanded
Chebyshev nodes, and then use the tensor rule to generate all points. In our
examples, the number of points is 5° = 15,625. Therefore, for each value
function iteration, we compute 15,625 values of the value function at these
points, and then compute Chebyshev coefficients of a degree-4 expanded
complete Chebyshev polynomial to approximate the value function.

After computing the Chebyshev coefficients for all stages along the 600
years using the backward value function iteration method, we generate the
optimal path with the given initial state in the GAMS code by the forward
iteration method. That is, given the current stage’s state, since we have
the approximation of the next-stage value function, we can use the Bellman
equation to compute the optimal consumption and emission control so that
we can get the optimal next-stage state, and then go on until the terminal
stage.

Now we use the solution of DICE-CJL from the GAMS code in Cai, Judd
and Lontzek (2012b) to verify the accuracy of the optimal path computed
from the numerical DP algorithm. Table 1 lists the relative errors of the op-
timal paths of states, (k¢, MAT, TAT), and control variables, (c;, u1t), over the
first 400 years and the running time of the numerical DP algorithm, which are
run on a laptop. The relative errors of the other states, (MUP, MO, TTO),
are even smaller so they are omitted in the table. The errors are computed
in the following formula:

* *
Ti.DP — T¢,GAMS

max
t<400

I

*
Ty GAMS

where azz"DP is the optimal path at year ¢ from our numerical DP algorithm,
and z} oo 18 the optimal solution at year ¢ of the GAMS code for the annual
explicijt DICE-CJL model. When we use the degree-4 complete Chebyshev
polynomial as the approximation method in the DP algorithm, the relative
errors are small, varying from O(10%) to O(107®). When we increase the
degree to 6, the accuracy is up to O(107°) or O(1077).

However, the running time of numerical DP with the degree-4 complete
Chebyshev polynomial is only 8.5 minutes, while the running time of numer-
ical DP with the degree-6 complete Chebyshev polynomial is up to 2.7 hours,
about 19 times more time, on the same laptop. The main reason of this big
difference of running times is that we need to compute values at 76 = 117, 649
points for degree-6 complete Chebyshev polynomial approximation while the
degree-4 one has only 5% = 15,625 points, so the degree-6 one needs to com-
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Table 1: Relative Errors and Running Time of the Numerical DP Algorithm
’ degree ‘ k ‘ MAT ‘ TAT ‘ c ‘ I ‘ Time
4 6.4(—4) | 5.7(=5) | 7.2(=5) | 2.0(—4) | 8.5(—5) | 8.5 minutes
6 6.6(—6) | 6.2(—7) | 4.5(=7) | 1.7(=5) | 2.0(—6) | 2.7 hours
Note: a(—n) means a x 10~".

pute about 7.5 times more points than the degree-4 one. The second reason
is that the degree-6 complete polynomial has (626) = 924 terms, while the
degree-4 complete polynomial has only (426) = 210 terms, so that in the ob-
jective function of the maximization step of Algorithm 1, the running time
of next-stage value function approximation in degree-6 complete polynomial
takes about 4 times more time than the degree-4 one.

The numerical DP algorithm with the degree-6 complete polynomial is
much more time-consuming than the one with the degree-4 one to solve
DICE-CJL. Furthermore, the degree-4 one has enough accuracy. Therefore,
we will keep using the degree-4 complete Chebyshev polynomial approxima-
tion in the numerical DP algorithm in the stochastic examples shown later.
At this state we would like to point out, that the prime objective of this
study is to demonstrate the ability of our numerical algorithm to deal with
higher-dimensional stochastic problems. We abstain here from an in-depth
analysis of, e.g., the carbon tax for which one would need to analyze alter-
native calibrations and sensitivity to different utility functions.

10 DSICE Results

In this section we apply numerical DP algorithms in our Fortran code to
solve DSICE. For each discrete state value, we choose the degree-4 expanded
complete Chebyshev polynomials to approximate the value functions. More-
over, we compute the values of the value function on the multidimensional
tensor grids with 5 expanded Chebyshev nodes on each dimension in the
continuous state ranges, and then compute the Chebyshev coefficients.
After computing these Chebyshev coefficients on all discrete state values
for all stages along the 600 years using the backward value function iter-
ation method, we use a simulation method to generate the optimal paths
by the forward iteration method. That is, when the state at the current
stage is given, since the next stage value function approximation has been
computed by the previous numerical DP algorithm, we can apply the op-
timization solver to get the optimal policy and the next-stage continuous
state (k, M, T). Then we simulate to get the next stage stochastic state. We
start this process with the given initial continuous state in the GAMS code
and (o, Jo) = (1,1), and run it until the terminal time. In the following
examples, we will compute 1000 optimal paths by simulation method, and
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then plot their distribution.

10.1 DSICE with an Economic Shock

In this example, we consider the economic shock (; in the model. Let (; be
a discrete-time bounded mean-reverting process with long-run mean ¢ = 1,
reverting rate A = 0.1, and long-run standard deviation o = 2%.

Figures 3-6 show the numerical results of DSICE. Figure 3 shows the
distribution of optimal paths of capital over the first 200 years. The solid
line is the average optimal capital along time ¢, the dotted lines are the
minimal or maximal optimal capital, the dashed line is the median optimal
capital, the dash-dot lines are the 25% or 75% quantile of the 1000 optimal
paths, and the marked lines are the lower bounds or the upper bounds of
the range of capital for the value function approximation which are given
by the formula (13). Figures 4, 5 and 6 plot the distribution of optimal
paths of carbon concentration in the atmosphere, surface temperature and
carbon tax respectively. From Figures 3, 4 and 5, we see that all of 1000
simulated paths are located inside and around the center of the correspond-
ing wide approximation ranges for capital, atmospheric carbon and surface
temperature (this is also true for the other three state variables). This tells
us that our optimal solutions of capital are not binding on the bounds of the
approximation range and then the value function approximation is smooth
without kinks so that it enables the reliable implementation of the numerical
DP algorithm (Algorithm 1).

We see that the economic shock has a significant impact on both the
capital stock and the carbon tax, but little impact on either carbon concen-
tration or temperature. This happens because in this example the economic
shock is not irreversible, in this example. Moreover, when we have more
money from the economic shock with {; > 1, we will spend more money to
reduce CO9 emissions, and when we have less money with (; < 1, we will
spend less money in reducing CO9 emissions.

10.2 DSICE with a Tipping Point

In this example, we consider a tipping point shock J; in DSICE. Let J; be a
discrete Markov chain with 2 possible values of 1.0,0.9, and its probability
transition matrix at time ¢ is
1—pt pt
0 1|’

where its (7, 7) element is the transition probability from state i to j for Jy,

and ( AT )
h(TH —1
= 0,min{1, —+——~
Dt max { , Mmin { s 100 }} ,
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where h is the length of time step size in years (in this example, h = 1
year). So the probability p; is dependent on the surface temperature at
time ¢, higher surface temperature implies higher probability to have an
irreversible damage, as the transition probability of J; from state 2 to 1 is
0. See Lontzek, Cai and Judd (2012) for a more detailed discussion about
DSICE with tipping points.

Figure 7 shows the distribution of optimal paths of capital over the first
200 years. The solid line is the average optimal capital along time ¢, the
dotted lines are the minimal or maximal optimal capital, the dashed line is
the median optimal capital, the dash-dot lines are the 25% or 75% quantile
of the 1000 optimal paths, and the marked lines are the lower bounds or the
upper bounds of the range of capital for the value function approximation
which are given by the formula (13). Figures 8, 9 and 10 plot the distribution
of optimal paths of carbon concentration in atmosphere, surface temperature
and carbon tax respectively. From Figures 7, 8 and 9, we see that all of 1000
simulated paths are located inside and around the center of the correspond-
ing wide approximation ranges for capital, atmospheric carbon and surface
temperature (this is also true for the other three state variables). This tells
us that our optimal solutions of capital are not binding on the bounds of the
approximation range and then the value function approximation is smooth
without kinks so that it enables the reliable implementation of the numerical
DP algorithm (Algorithm 1).

From these figures, we see that among these 1000 optimal paths, the
tipping point has a significant impact on all of these state variables and
control variables. Once the tipping event happens, carbon concentration
and temperature increase dramatically, the emission control rate exhibits a
big jump, and capital will stop growing in the first years and then start
growing at a much smaller speed.

10.3 DSICE with an Economic Shock and a Tipping Point

Our last example considers the combination of an economic shock and a
tipping point shock in the above two examples. Figure 11 shows the distri-
bution of optimal paths of capital over the first 200 years. The solid line is
the average optimal capital along time ¢, the dotted lines are the minimal or
maximal optimal capital, the dashed line is the median optimal capital, the
dash-dot lines are the 25% or 75% quantile of the 1000 optimal paths, and
the marked lines are the lower bounds or the upper bounds of the range of
capital for the value function approximation which are given by the formula
(13). Figure 12 plots the distribution of optimal paths of the carbon tax.
The distribution of carbon concentration in the atmosphere and the surface
temperature are similar to the previous example of DSICE with a tipping
point. From Figurell, we see that all of 1000 simulated paths are located in-
side and around the center of the corresponding wide approximation ranges
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Table 2: Running Time of the Numerical DP Algorithm for DSICE

Time
DSICE with an Economic Shock 2.0 hours
DSICE with a Tipping Point 17.5 minutes
DSICE with an Economic Shock and a Tipping Point 4.1 hours

for capital (this is also true for the other five state variables). This tells us
that our optimal solutions of capital are not binding on the bounds of the
approximation range and then the value function approximation is smooth
without kinks so that it enables the reliable implementation of the numerical
DP algorithm (Algorithm 1).

From the figures, we see that a tipping point has a significant impact
on the state and control variables, and the economic shock also affects the
capital and carbon tax significantly. Particularly for the carbon tax (Figure
12), we see that the dotted line with maximal carbon tax is not at the same
path with the dash-dot or dashed lines before the tipping event happens, but
they are the same in Figure 10. This difference is caused by the impact of
economic shock.

10.4 Running Times

Table 2 lists the running times of the numerical DP algorithm with 600
value function iterations for solving the previous examples of DSICE, which
are run on a single-core laptop. We see that the problem of DSICE with a
tipping point takes only 17.5 minutes, while the maximal time is also only
4.1 hours for solving the problem of DSICE with both an economic shock and
a tipping point. The reason that the problem with an economic shock takes
much more time than the one with only a tipping point is that the economic
shock is a continuous state variable and the tipping point is a discrete state
variable with only two values. The small running times in Table 2 tell us
that the numerical DP algorithm is fast in solving the stochastic IAMs even
with one year as the time step.

10.5 Longer Step Size

Climate and economy are both continuous-time systems. The mutual inter-
action between these two systems forms the core of any Integrated Assess-
ment Model. Nevertheless, it is common practice in the IAM literature to
specify the climate-economy in discrete time, typically assuming very long
discrete time-steps of 5 or 10 years (or even much longer in many stochastic
[AMs). If TAMs use e.g. decadal time steps, it would be highly desirable
that they properly represent the true continuous time dynamics of the un-
derlying system and address the appropriate policies to cope with adverse
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effects of climate change. The insights obtained from IAMs are frequently
used by policy makers to design and evaluate various climate policies, such
as carbon taxes and global warming targets. For example the United States
government (Interagency Working Group on Social Cost of Carbon, 2010)
has recently engaged in determining the social costs of carbon, the dollar
value on damages from one more ton of carbon emissions. The DICE model
was one the three models used for this analysis.

However, as we show in Cai, Judd and Lontzek (2012a, 2012b), the de-
terministic DICE or DICE-CJL model with a step size longer than one year
gives an irreliable solution. Here we also show that if we choose a long step
size of 5 or 10 years for the DSICE model, then the optimal solutions are not
reliable too, even when one uses the best numerical methods like Algorithm
1.

Figure 13 shows that the mean of the optimal carbon tax path over the
1000 simulation paths for DSICE with 1-year, 5-year and 10-year time step
sizes. We see that the 1-year carbon tax is always a lot smaller than 5-year
or 10-year numbers. In particular, at year 2015, the optimal carbon tax of
1-year step size is $142, but the number of 5-year step size is $159 which is
12% higher, and the number of 10-year step size is $171 which is 20% higher
than the one of 1-year step size.

11 Conclusion

We have described DSICE;, a basic dynamic stochastic extension of DICE2007.
We have shown that it is quite feasible to combine annual (even sub-annual)
time periods with economic and climate uncertainty. The speed of the al-
gorithms means that we can do an extensive exploration of the parameter
space to determine the sensitivity of conclusions for parameters about which
we have limited information. The accuracy tests indicate that the algorithms
are reliable as well as fast. This paper has focused on describing the basic
model and addressing basic issues relating to the feasibility of such a model.
We have clearly refuted the pessimism one often hears about the possibility
of such analyses.
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Figure 3: Capital in DSICE with an Economic Shock
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Figure 4: Atmospheric Carbon in DSICE with an Economic Shock
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Figure 5: Surface Temperature in DSICE with an Economic Shock
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Figure 6: Carbon Tax in DSICE with an Economic Shock
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Figure 7: Capital in DSICE with a Tipping Point
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Figure 8: Atmospheric Carbon in DSICE with a Tipping Point
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Figure 9: Surface Temperature in DSICE with a Tipping Point
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Figure 10: Carbon Tax in DSICE with a Tipping Point
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Figure 11: Capital in DSICE with

an Economic Shock
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Figure 12: Carbon Tax in DSICE with an Economic Shock and a Tipping

Point
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Figure 13: Carbon Tax of DSICE with Different Time Steps
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