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Introduction

Repeated games have been used to model dynamic
interactions in:

Industrial organization,
Principal-agent contracts,
Social insurance problems,
Political economy games,
Macroeconomic policy-making.

These problems are difficult to analyze unless severe
simplifying assumptions are made:

Equilibrium selection
Functional form (cost, technology, preferences)
Size of discounting
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Goal

The goal is to examine the entire set of (subgame perfect)
equilibrium values in repeated and dynamic games with
perfect monitoring

Propose a general algorithm for computation that can handle

large state spaces,

flexible functional forms,

any discounting,
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Approach

Computational method based on Abreu-Pearce-Stacchetti
(APS) (1986,1990) set-valued techniques for repeated games.

APS show that set of equilibrium payoffs is a fixed point of a
monotone operator similar to Bellman operator in DP.

APS method not directly implementable on a computer.
Requires approximation of arbitrary sets.

Need a computational procedure that

represents a set parsimoniously on a computer,
preserves the monotonicity of the underlying operator.
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Contributions

Develop a general algorithm that

computes equilibrium value sets of repeated and dynamic
games

provides upper and lower bounds for equilibrium values and
hence computational error bounds.

computes equilibrium strategies.

Based on: Judd-Yeltekin-Conklin (2003),
Sleet-Yeltekin(2003), Yeltekin-Judd (2009)
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Computing Equilibria of Repeated Games

REPEATED GAMES

Sevin Yeltekin ICE 2009 Computing Equilibria of Repeated and Dynamic Games



Introduction
Repeated Games
Dynamic Games

Details, Extensions, References

Computing Equilibria of Repeated Games

Stage Game

Ai – player i ’s action space, i = 1, · · · ,N

A = ×N
i=1Ai – action profiles

Πi (a) – Player i payoff, i = 1, · · · ,N
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Supergame

Supergame, S∞:

×∞i=1A – action space

player i ’s payoff.

(1− δ) Πi (a(1)) + δ

[
(1− δ)

∞∑
t=2

δt−2Πi (a (t))

]
.
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Computing Equilibria of Repeated Games

Assumptions

A1: Ai , i = 1, · · · ,N is a compact subset of Rm for some m.

A2: Πi , i = 1, · · · ,N, is continuous.

A3: The stage game has a pure strategy Nash equilibrium.

Define bounds on average discounted payoffs:

Πi ≡ min
a∈A

Πi (a), Π̄i ≡ max Πi (a)

Then

V ⊂ W = ×N
i=1[Πi , Πi ]

where V is the entire set of SPE payoffs.
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Example 1: Prisoner’s Dilemma

Static game: player 1 (2) chooses row (column)

4, 4 0, 6

6, 0 0, 0

Static Nash equilibrium is (Down, Right) with payoff (0, 0)

Suppose δ is close to 1

S∞ includes (Up, Left) forever with payoff (4, 4)

This is rational if all believe that a deviation causes permanent
reversion to (Down, Right)
This is just one of a continuum of equilibria.
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Static Equilibrium

Static game
b11, c11 b12, c12

b21, c21 b22, c22

where bij (cij) is player 1’s (2’s) return if player 1 (2) plays

i (j).

Let V be the set of Nash equilibrium payoffs in the
supergame, S∞.
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Supergame Equilibrium

In an equilibrium, each stage has the following form:

v(a): continuation value if a is equilibrium, v : A→ V

a∗: the equilibrium action profile, is the equilibrium of the one
shot game (1− δ)π(a) + δ v(a).
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Supergame Equilibrium: Recursive Formulation

Each stage of a subgame perfect equilibrium of S∞ is a static
equilibrium to some one-shot game which is A augmented by
values from δV :

δ∗b11 + δu11, δ
∗c11 + δw11 δ∗b12 + δu12, δ

∗c12 + δw12

δ∗b21 + δu21, δ
∗c21 + δw21 δ∗b22 + δu22, δ

∗c22 + δw22

where δ∗ = 1− δ
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Characterization of Equilibrium

Key to finding V is construction of self-generating sets.

The analysis focusses on the map B defined on convex W :

BP(W ) =
⋃

(a,w)∈A×W

{(1− δ)Π(a) + δw | ∀i ∈ N(ICi )}

B(W ) = co
(

BP(W )
)

ICi : (1− δ)Πi (a) + δwi ≥ (1− δ)Π∗i (a−i ) + δw i

w i ≡ infw∈W wi

co(◦) is the convexification operator

A set W is self-generating if W ⊆ BP(W ).
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Factorization

A value b is in B(W ) iff

there is some action profile, a, and a random continuation
payoff with expected value w ∈ co(W ), such that:

b is the value of playing a today and receiving an expected
value w tomorrow

for each i , player i will choose to play ai because to do
otherwise will yield him the worst possible continuation payoff
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Properties of BP operator

It can be shown that the BP operator is

monotone

preserves compactness.

We alter the supergame by including randomization. Use the
modified operator B.
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Fixed Point

Theorem

Let V be the set of all possible supergame payoffs. V satisfies

co(V ) = B(co(V )) =
⋃

W⊂W
co(W )⊂co(B(W ))

W =
⋃

W⊂W
co(W )=co(B(W ))

W

Proof.

Cronshaw and Luenberger (1990).
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Computation

V is a convex set

We need to approximate both V and the correspondence
B(W )

We use different methods to accomplish different goals.
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Piecewise-Linear Inner Approximation

Suppose we have n points Z = {(x1, y1), ..., (xn, yn)} on the
boundary of a convex set W .

The convex hull of Z , co(Z ), is contained in W and has a
piecewise linear boundary.

Since co(Z ) ⊆ W , we will call co(Z ) the inner approximation
to W generated by Z .
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Inner approximation

8

Piecewise-Linear Inner Approximation of Convex Sets

� Suppose we have n points Z = {(x1, y1), ..., (xn, yn)} on the boundary
of a convex set W .

� The convex hull of Z, co(Z), is contained in W and has a piecewise

linear boundary, as illustrated by the polygon in Figure 1.

� Since co(Z) ⊆ W , we will call co(Z) the inner approximation to W
generated by Z.

Inner approximations
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Piecewise-Linear Outer Approximation

Suppose we have

n points Z = {(x1, y1), ..., (xn, yn)} on the boundary of W , and

corresponding set of subgradients, R = {(s1, t1), ..., (sn, tn)};

Therefore,

the plane six + tiy = sixi + tiyi is tangent to W at (xi , yi ),
and

the vector (si , ti ) with base at (xi , yi ) points away from W .
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Computing Equilibria of Repeated Games

Outer approximation

9

Piecewise-Linear Outer Approximation of Convex Sets

� Suppose we have
� n points Z = {(x1, y1), ..., (xn, yn)} on the boundary of W, and
� the corresponding set of subgradients, R = {(s1, t1), ..., (sn, tn)};

� Therefore,
� the plane six + tiy = sixi + tiyi is tangent to W at (xi, yi), and

� the vector (si, ti) with base at (xi, yi) points away from W .

A convex set and supporting hyperplanes
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Computing Equilibria of Repeated Games

Key Properties of Approximations

Definition

Let B I (W ) be an inner approximation of B(W ) and BO(W ) be an
outer approximation of B(W ); that is B I (W ) ⊆ B(W ) ⊆ BO(W ).

Lemma

Next, for any B I (W ) and BO(W ), (i) W ⊆W ′ implies
B I (W ) ⊆ B I (W ′), and (ii) W ⊆W ′ implies BO(W ) ⊆ BO(W ′).
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Fixed Point

These results together with the monotonicity of the B operator,
implies the following theorem.

Theorem

Let V be the equilibrium value set. Then (i) if W0 ⊇ V then
BO(W0) ⊇ BO(BO(W0)) ⊇ · · · ⊇ V , and (ii) if W0 ⊂ B I (W0)
then B I (W0) ⊂ B I (B I (W0)) ⊆ · · · ⊆ V . Furthermore, any fixed
point of B• is contained in the maximal fixed point of B, which in
turn is contained in the maximal fixed point of BO .
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Computing Equilibria of Repeated Games

Sufficient Condition: Self-Generation

The following property of the B operator provides a way to verify
that a set W contains equilibria.

Theorem

If BO(W ) ⊇W then W ⊆ V .
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Monotone Inner Hyperplane Approximation

Input: Vertices Z = {z1, · · · , zM} such that W = co(Z ).

Step 1: Find extremal points of B(W ):

For each search subgradient h` ∈ H, ` = 1, .., L.

(1) For each a ∈ A, solve the linear program

c`(a) = maxw h` · [(1− δ)Π(a) + δw ]
(i) w ∈W
(ii) (1− δ)Πi (a) + δwi ≥

(1− δ)Π∗i (a−i ) + δw i , i = 1, ..,N

(1)

Let w`(a) be a w value which solves (1).

Sevin Yeltekin ICE 2009 Computing Equilibria of Repeated and Dynamic Games



Introduction
Repeated Games
Dynamic Games

Details, Extensions, References

Computing Equilibria of Repeated Games

Monotone Inner Hyperplane Approximation cont’d

(2) Find best action profile a ∈ A and continuation value:

a∗` = arg max {c`(a)|a ∈ A}
z+
` = (1− δ)Π(a∗` ) + δw`(a∗` )

Step 2: Collect set of vertices Z + = {z+
` |` = 1, ..., L}, and define

W + = co(Z +).
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Computing Equilibria of Repeated Games

The Outer Approximation, Hyperplane Algorithm

Definition of a set:

n ∈ N = state of normals
v ∈ V = list of vertices
W = {w |n · w ≤ n · v ,∀n ∈ N }
w i = minw∈W wi

Outer approximation: Same as inner approximation except
record normals and continuation values z+

`
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Computing Equilibria of Repeated Games

Outer vs. Inner Approximations

Any equilibrium is in the inner approximation

Can construct an equilibrium strategy from V .

There exist multiple such strategies

No point outside of outer approximation can be an equilibrium

Can demonstrate certain equilibrium payoffs and actions are
not possible

E.g., can prove that joint profit maximization is not possible

Difference between inner and outer approximations is
approximation error

Computations actually constitute a proof that something is in
or out of equilibrium payoff set - not just an approximation.

Difference is small in many examples.
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Computing Equilibria of Repeated Games

Error Bounds
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Convergence
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Computing Equilibria of Dynamic Games

DYNAMIC GAMES
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Computing Equilibria of Dynamic Games

Goal

Provide an algorithm for computing all equilibrium payoffs and
strategies for dynamic games.

Method covers a large class of dynamic games in IO, macro,
public finance

Method provides:

two approximations that together provide error bounds,

equilibrium strategies.
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A specific example: Dynamic Oligopoly

Oligopoly game with endogenous productive capacity.

Study the nature of dynamic competition and its evolution.

Study the nature of cooperation and competition.

Specifically:

Is ability to collude affected by state variables?

Do investment decisions increase gains from cooperation?

Does investment present opportunities to deviate from
collusive agreements?
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Computing Equilibria of Dynamic Games

Existing Literature in Dynamic Oligopoly

Existing literature in IO

Two stage games

Firms choose capacities in stage one, prices in stage two

Kreps-Scheinkman (1983), Davidson-Deneckere (1986)

Dynamic games

Firms choose capacities and prices

Benoit-Krishna (1987), Davidson-Deneckere (1990)
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Computing Equilibria of Dynamic Games

Goals revisited

Limiting assumptions in previous work

Capacity chosen at t=0 , OR

No disinvestment, OR

Examine only equilibria supported by Nash reversion, OR

Restrictive functional forms for demand and cost functions

Our goal: Examine full set of pure strategy Nash equilibria
for dynamic games with arbitrary cost and demand functions.
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Computing Equilibria of Dynamic Games

Stage Game

Action space for player i : Ai , i = 1, ...,N

Action profiles: A = A1 × A2 × · × AN

State space: X = ∪K
k=1{Xk}
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Computing Equilibria of Dynamic Games

Assumptions

Assumption 1: Ai , i = 1, ·,N ,compact subset of <m.

Assumption 2: Πi (., x), i = 1, ·N is continuous.

Assumption 3: The game has a pure Nash equilibrium.
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Supergame

Strategy profile for supergame: A∞ ≡ ×∞t=1At

Preferences:
1− δ
δ

Σ∞t=1δ
tΠi (at , xt).

Histories ht :
ht ≡ {as , xs}ts=0

Minimal and maximal payoffs:

Πi ≡ min
(a,x)∈AxX

Πi (a, x)

Πi ≡ max
(a,x)∈AxX

Πi (a, x)
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Computing Equilibria of Dynamic Games

Equilibrium

In the dynamic case the object of interest is a correspondence
that maps a physical state variable to sets of equilibrium
payoffs.

Subgame perfect equilibrium (SPE) payoffs:

Initial state x , strategy profile σ ∈ A∞, payoff v(x , σ)

v(x , σ) ∈ Vx ⊂ W, x ∈ X

where W = ×N
i=1[Πi ,Πi ]

Equilibrium Value Correspondence:

V ≡ {Vx1 , ...,VxK
} ⊆ WK ⊆ {<N}K
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Computing Equilibria of Dynamic Games

Steps: Computing the Equilibrium Value Correspondence

1 Define an operator that maps today’s equilibrium values to
tomorrow’s at each state.

2 Show that this operator is monotone and the equilibrium
correspondence is its largest fixed point.

3 Define an appropriately chosen initial correspondence, apply
the monotone operator until convergence.

4 Additional complexity:

Representing correspondence parsimoniously on computer

Preserving monotonicity of operator
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Set Valued Dynamic Programming

D map:

Let W ⊆ WK

D(W )x : set of possible payoffs consistent with Nash play in
state x today and continuation values from W

D(W )x = ∪(a,x ′,w){(1− δ)Π(a, x) + δw}

subject to:

w ∈ co(Wx ′)

x ′ = g(a, x)

and for each ∀i ∈ N, ∀ãi

(1− δ)Πi (a, x) + δwi ≥ Πi (ãi , a−i , x) + δw̃i ,g(ãi ,a−i ,x)

where w̃i ,x = mini Wx .
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Self-generation

A correspondence W is self-generating if :

GraphW ⊆ GraphD(W ).

An extension of the arguments in APS establishes the following:

Graph of any self-generating correspondence is contained
within Graph(V ),

V itself is self-generating.

V is a fixed point of operator D. It is the largest fixed point
in WK .
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Computing Equilibria of Dynamic Games

Self-generation visually

State 1

State 3 State 4

b2

D(W)(x4)

w2

State 2

W(x4)

W(x1)

W(x2)

D(W)(x2)

D(W)(x3)

D(W)(x1)

W(x1)

W(x3)

D(W)(x4)

W(x2)

v1 v1

v2 v2

v2 v2

v1 v1

V(x3)

V(x3)

V(x1)

V(x2)
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Computing Equilibria of Dynamic Games

Factorization

b ∈ D(W )x if there is an action profile a and continuation payoff
w ∈ co(Wx ′), s.t

b is value of playing a today in state x and receiving
continuation value w ,

for each i , player i will choose to play ai

x ′ = g(a, x) if no defection

x̃ = g(ãi , a−i , x) if defection.

punishment value drawn from set Wex .
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Computing Equilibria of Dynamic Games

Factorization

b1

State 1

State 3 State 4

b2

w1

w2

State 2
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Computing Equilibria of Dynamic Games

Fixed Point: Equilibrium Value Correspondence

Factorization and self-generation imply that:

1) V is the maximal fixed point of the mapping D;

2) V can be obtained by repeatedly applying D to any set that
contains graph of V .
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Dynamic Cournot Duopoly with Capacity Investment

Classic Cournot duopoly game with endogenous capital.

Firms can invest in capital to relax a capacity constraint.

Two cases:

Reversible Investment: Market for resale.

Irreversible Investment: No market for resale.
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Computing Equilibria of Dynamic Games

Environment: Dynamic Cournot with Capacity

Firm i has sales of qi ∈ Qi (ki ), and unit cost ci .

MC= maintenance cost of machine

SP= resale/scrap value of machine

FC =cost of a new machine

Cost of capital maintenance and investment:

C (ki , k
′
i ) =


MC ∗ (ki − 1) + FC ∗ (k ′i − ki ) if k ′i ≥ ki

MC ∗ (ki − 1)− SP ∗ (ki − k ′i ) if k ′i ≤ ki
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Computing Equilibria of Dynamic Games

Profit: Dynamic Cournot with Capacity

Firm i ’s current profits:

Πi (q1, q2, ki , k
′
i ) = qi (p(q1, q2)− c)− C (ki , k

′
i )

Linear demand curve:

p(q1, q2) = max {a− b(q1 + q2), 0}.
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Computing Equilibria of Dynamic Games

Stage Game: Dynamic Cournot with Capacity

Action Space:

sets of outputs

sets of capital stocks

State Space:

set of feasible capital stocks

Ai = Qi × Ki

X = K1 × K2
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Computing Equilibria of Dynamic Games

Dynamic Strategies and Payoffs

Strategies: collection of functions that map from histories of
outputs and capital stocks into current output and capital
choices.

Maximize average discounted profits.

(1− δ)

δ

t=∞∑
t=0

δtΠi ,t(q1, q2, ki , k
′
i )
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Computing Equilibria of Dynamic Games

Dynamic Duopoly: Example 1

Finite action version of the dynamic duopoly game.

Discretize action space over qi and ki

Full capacity: 16 actions from interval [0, Q̄]

Partial capacity: 8 actions from interval [0, Q̄/2]

Firms endowed with 1 machine each.

4 states: (k1, k2) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}

48 hyperplanes for the approximation.
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Computing Equilibria of Dynamic Games

Example 1: Reversible Investment

Parameters: MC =SP=1.5, FC =2.5, δ = 0.8, Q̄ = 6.0 c = 0.6, b = 0.3, a = 6.0
p(q1, q2) = max {a− b(q1 + q2), 0}.

8 9 10 11 12 13 14 15
8

9

10

11

12

13

14

15

v1

v2
Example 1: Reversible Investment

 

 

(2,2)

(1,2)

(1,1)

(1,2)
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Computing Equilibria of Dynamic Games

Outer and Inner Approximations, Error Bounds

Outer approximation : Start with W s.t. D(W ) ⊆W

Inner approximation: Start with W s.t. W ⊆ D(W )

Any v in inner is an equilibrium value. Any v outside inner is
NOT an equilibrium value.

Error bound: Difference between inner and outer
approximations.
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Computing Equilibria of Dynamic Games

Example 1: Inner and Outer Approximations, N=48

Parameters: MC =SP=1.5, FC =2.5, δ = 0.8, Q̄ = 6.0 c = 0.6, b = 0.3, a = 6.0
p(q1, q2) = max {a− b(q1 + q2), 0}.
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Example 1: Error Bounds, with N=24
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Fluctuating Market Power
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Strategies: Fluctuating Market Power

Firms can do better than symmetric Nash collusion.

Frontier of equilibrium value sets supported by

continuation play where firms alternate having market power.

Worst equilibrium payoffs

firms produce at full capacity in current period

over-investment and over-production thereafter (symmetric
cases).
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Example 2: Striving for Cooperation
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Parameters:

MC =SP=1.5, FC =2.5, δ = 0.8, Q̄ = 6.0 c = 0.6, b=1.0, a = 6.0 .
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Striving for Cooperation

Symmetric Nash collusion payoffs on the frontier.

Frontier of equilibrium value set for all cases supported by

continuation play where firms each have 1 machine and
produce below capacity.

Worst equilibrium payoffs

firms over-produce in current period

over-investment and over-production for a limited period.

firms move towards Pareto-frontier after a punishment phase.
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Example 3: Irreversibility of investment and
over-investment

Parameters: MC =1.5, FC =2.5, δ = 0.8, Q̄ = 6.0 c = 0.6, b=1.0, a = 6.0
p(q1, q2) = max {a− b(q1 + q2), 0}.
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Irreversibility of Investment and over-investment

Parameters: MC =1.5, FC =2.5, δ = 0.8, Q̄ = 6.0 c = 0.6, b=1.0, a = 6.0
p(q1, q2) = max {a− b(q1 + q2), 0}.
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Irreversibility of investment and over-investment

Worst equilibrium payoff at states (1, 1) and (2, 2)

firms produce at full capacity in current period

over-investment and over-production thereafter.

Worst equilibrium payoff at states (1, 2) and (2, 1)

firms produce at full capacity in current period

over-investment and over-production thereafter.
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Summary

Computation of equilibrium value correspondence reveals

dynamic interaction and competition missed by simplifying
assumptions

rich set of equilibrium outcomes that involve

fluctuating market power

over-investment and over-production when cooperation breaks
down

phase of cooperation after a phase of uncooperative behavior

equilibria with current profit of leading firm less than smaller
firm

under-utilization of capacity followed by phase of full capacity
production
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Extensions

Method and algorithm suitable for

Larger state space

Flexible cost and demand functions

Any discounting

Multiple firms

Flexible informational assumptions
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Extensions

Strategy space can be expanded for other applications:

Multiproduct firms
Advertising
Learning curves
Spatial competition

With this algorithm, we can quantitatively examine many
important issues.

Determinants of the ability to cooperate
Impact of antitrust provisions
Effects of institutional arrangements
Importance of information asymmetry

Sevin Yeltekin ICE 2009 Computing Equilibria of Repeated and Dynamic Games



Introduction
Repeated Games
Dynamic Games

Details, Extensions, References

Dynamic Algorithm Details

Algorithm: Inputs

1 Subgradients: Set of subgradients (normals),

RW
k = {(sk,1,tk,1), ...,(sk,n,tk,n)}

2 Levels: Boundary points for each state k :

Z 0
k = {(x0

k,l ,y
0
k,l), · · · , (x0

k,n, y
0
k,n)}.

3 Hyperplanes: Define c0
k,l = sk,lx

0
k,l + tk,ly

0
k,l and

W 0
k = ∩n

l=1{(xk,l , yk,l) | sk,lxk,l + tk,lyk,l ≤ c0
k,l).

4 Search subgradients: BW
k = {(rk,1,pk,1), ...,(rk,m,pk,m)}
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Algorithm: New Value-Set Vector

For each k ∈ K and each (rk ,pk)) ∈ BW
k :

1 For each action profile (ai , aj) ∈ A× A:

ĉk,l(ai , aj , k) = (rl , pl) · [(1− δ)Π(ai , aj , k) + δw ]

(i) w ∈ co(Wg(a,k))

(ii)∀i ∈ N, ∀ãi , (1− δ)Πi (ai , aj , k) + δwi

≥ (1− δ)Πi (ãi , a−i , k) + δw̃i ,g(ãi ,a−i ,k)

2 Compute value of best action profile

c+
k,l = max

ai ,aj

{ck,l(ai , aj , k)|(ai , aj) ∈ A× A, k ∈ K}
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Algorithm: New Value-Set Vector

3 New {Wk} sets are

W +
k = ∩n

l=1{(xk,l , yk,l) | sk,lxk,l+tk,lyk,l ≤ c+
k,l) outer approx.
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Incentives, CEO compensation, and shareholder wealth in a dynamic
agency model, C Wang - Journal of Economic Theory, 1997.

Optimal fiscal policy in a business cycle model without
commitment, J Fernndez-Villaverde, A Tsyvinski.

Sequential equilibria in a Ramsey tax model, C Phelan, E Stacchetti
- Econometrica, 2001.

On the computation of value correspondences, C Sleet, S Yeltekin,
2003 WP.
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