
Unix Basics

Benjamin S. Skrainka
Harris School of Public Policy

University of Chicago

July 19, 2012

Overview

We will cover basic Unix survival skills:

Why you need some Unix in your life

How to get some Unix in your life

Basic commands

(Free) tools you can’t live without

Why you need some Unix in your life

Unix/Linux will make you more productive:
I Simple yet powerful commands to solve common problems
I ‘Building blocks’ + ‘glue’ to quickly build new tools
I Command line or GUI interface
I Access to vast amounts of Open Source or free software
I Forgiving programming environment
I Exceptionally robust architecture
I The lingua franca for scientific and high throughput computing

Design Philosophy

The core of Unix’s design philosophy is:
I A command/program should do one thing only, but do it well

(building blocks)
I Commands should be easy to string together to perform more

complex operations (glue)
I I.e. ‘filters and pipes’
I Smaller kernel than Windows

I Greater reliability and extensibility
I Better performance
I Software errors are less likely to be catastrophic

I Written by smart people for smart people. . .

How to get some Unix in your life

There are several ways to get some Unix:
I PC hardware:

I Download cygwin (www.cygwin.com)
I Install Linux

I
Can dual-boot Linux and Windows

I
Ubuntu is a popular distribution

I OS/X
I Has Unix-style kernel underneath user interface
I Install XCode (developer.apple.com)
I Install MacPorts (www.macports.org)
I Install desired packages with port command

I Use a virtual machine: VMWare Fusion, Parallels, VirtualBox
(Free)

Overview

Let’s look at the basic survival skills needed on Unix:
I The Shell
I Getting Help
I Configuration
I Files and Directories
I Editing
I Job Control

The Shell

On a Unix/Linux machine, you interact with a shell:
I Connect to a shell:

I via NX-Client, VNC, etc. ! graphical
I via Terminal, xterm, ssh, etc. ! command line

I The shell is a program:
I Reads your commands and executes them
I Is also a programming language – you can write scripts to

automate common commands

I Several shells are available: bash, sh, csh, . . .
I Bash is now the most popular
I Can configure via ~/.bashrc, ~/.profile, and

~/.bash_profile

Help

To get help:
I Use the man command:

man man
man ls
man -k edit

I Navigation: space, /, f, b, . . .

I Use GUI help command, if supported
I Google
I StackOverflow
I O’Reilly books (www.ora.com)
I A Practical Guide to Linux, Editors, and Shell Programming by

Mark G. Sobell

http://stackoverflow.com/
http://www.amazon.com/Practical-Guide-Commands-Editors-Programming/dp/0131367366/ref=sr_1_1?s=books&ie=UTF8&qid=1311175557&sr=1-1

Files and Directories

Navigate by specifying filenames and directories (folders):
ls [dir] list the contents of a directory

pwd display current directory
cd dir change directory

mkdir dir make directory
rmdir dir remove directory

rm file delete a file (N.B. there is no trash!)
rm -rf * nuke everything

mv from to move/rename a file or directory
find traverse a directory tree and execute commands

Conventions

There are a couple conventions to be aware of:
I Special characters in filenames:

. Current directory
.. Parent directory
* Greedy matching of all characters in a name
~ Your HOME directory (cd without arguments goes to ~)

I Dotfiles:
I Invisible unless you use ls -a
I Used for configuration
I

.bashrc, .profile, .login, and application-specific files
I The place to define your own commands with alias

Unix vs. Windows vs. Mac Confusion

Unfortunately, there is often confusion when moving between
Windows/DOS and Unix/Linux/Mac:

I Different separators in pathnames:
*nix: /path/to/my/file.txt
Mac: /path/to/my/file.txt

Windows: c:\path\to\my\file.txt
But, ‘\’ is used to escape special characters such as ‘\n’ for
line feed or ‘\\’ for ‘\’. . .

I Different conventions for line termination:
*nix: LF
Mac: CR

Windows: CR+LF
May need to convert text files when changing platforms with
dos2unix, unix2dos, sed, or tr.

UTF-8

Beware of UTF-8 and other il8n (internationalization) encodings
because bash expects text to be just ASCII characters:

I Often used with Asian languages
I Can be a problem if cutting and pasting code from email or

the web
I E.g., there are several different versions of some characters

such as the apostrophe
I Bottom line: if the text looks correct but is producing weird

error messages then retype everything. . .
I Can convert using iconv

Configuration

Most Unix programs can be configured:
I Configuration information is stored in the application’s dotfile

in your login directory (~)
I Specify PATH, LD_LIBRARY_PATH, EDITOR, and other

environment variables
I Define alias:

alias h=’history’
alias l=’ls -F’
alias ll=’ls -lFh’
alias py=’python2.7’
alias xsede=’ssh skrainka@blacklight.psc.teragrid.org’

Environment Variables

Use environment variables specify configuration or state
information:

I Typically set in ~/.bashrc or ~/.profile for bash
I Access by prefacing name with ‘$’
I Key environment variables are:

I PATH : a list of directories the shell searches for commands
I LD_LIBRARY_PATH : a list of directories which the operating

system searches for shared libraries needed by programs

I Other applications have their own configuration files or
directories, e.g. .vimrc for vim, .matlab for MATLAB, and
.ssh for ssh.

I Display with env or echo $VAR_NAME
I See manual for more complex operations

History

Unix has a sophisticated history facility:
history list recent commands

!n reexecute n-th command
!cmd reexecute most recent command which started with

string cmd
^P scroll backwards through history (can use arrow

keys...)
!cmd:p load most recent command starting with cmd onto

command line (for editing or execution)
More sophisticated manipulations are possible

Looking at Stuff

Unix has many handy commands for manipulating text files:
less Page through a file

grep Search for a token
cat Concatenate files (or dump them to the screen)

head Cat the top of a file
tail Cat the end of a file
wc Display number of characters, words, and/or lines

cmp Test if two files are the same (can use on binary files)
diff Show differences between two files

sum/md5/md5sum Compute checksum (can use on binary files)

Editing

Traditional editors are:
I vi
I emacs
I Supported everywhere!

Other options (if installed):
I nano or pico
I jEdit (Download from www.jedit.org)

Learning a programming editor will increase your productivity!

Permissions

Unix-style permissions are confusing to the uninitiated:

% ls -la
total 440
drwxr-xr-x 23 bss staff 782 24 Jul 22:05 .
drwxr-xr-x 11 bss staff 374 24 Jul 22:06 ..
drwxr-xr-x 8 bss staff 272 27 Jul 18:25 .svn
-rw-r--r--@ 1 bss staff 12655 24 Jul 22:06 BasicDriver.m
-rw-r--r-- 1 bss staff 16128 24 Jul 21:54 BasicDriver.m~
...

[d|-] directory or not
[rwx] permissions are grouped according to social distance:

I
user, group, and world

I Specify r, w, and x (Octal: 4, 2, 1)

chmod: use to change permissions: chmod 755 myFile.m

Remote Login

To connect to a remote machine use the secure shell protocol:
I Unix, Linux, or OS/X:

I ssh -Y YourLoginName@htc.uni.edu
I Can also use sftp and scp

I Windows:
I Download PuTTY
I Create a connection via GUI
I May need to configure colors

I Uses encryption to provide a secure connection
I Do not use rlogin, telnet, or ftp (unless anonymous) which are

not secure!!!

Building More Complex Commands

Unix provides tools to link ‘atomic’ commands together into more
complex commands:

I IO Redirection: >, <, <‌<
I Pipe: |
I Shell scripts
I Regular Expressions
I Think of commands as filters in a pipeline joined by pipes. . .

Example:

egrep -e ’^[0-9]\{1,2\}[a-z]’ Data.txt | sort > out.txt

Pattern Matching

Most Unix tools support Regular Expressions:
I Powerful, compact, and often cryptic language for specifying

patterns
I Permits sophisticated searching via egrep, vi, emacs
I Permits sophisticated editing via vi, emacs, sed, awk, perl,

python, etc.
I Can capture parts of a pattern and manipulate
I Simple example to reverse columns separated by ’=’:

sed ’s/\(.*\)=\(.*\)/\2 = \1/’ SomeFile.txt

Job Control

Processes are organized in a hierarchical manner:
I Every process has a parent

I The parent forks and execs a child process
I Kill the parent, and all its children also die
I Reference with a Process ID
I Dead children are reaped. . .

Process Control

Basic process control commands include:
top List processes consuming most resources
ps Get information about processes

cmd & Run cmd in background process
jobs List process running in background

kill -9 PID Terminate a process
kill %JobID Terminate using job ID

xkill Terminate a process graphically
users Who is logged in (variants: w and who)

uptime How long since last reboot + load average

(Free) tools you can’t live without

Unix rules for data janitorial activities such as process text,
extracting information from a stream of output, automating
analysis of log files, etc.

I Version control: git
I Stream Editors: sed, awk, etc.
I Python
I R
I make
I Eclipse (Photran, C/C++, Java)
I doxygen

Listing 1: Text Extraction for NEOS Server: sed + bash

#!/ b in / bash
INFILE=neosOutput . t x t

f o r varName i n V VK1 VK2 VK3 MIU HELPC HELPQ
do

sed �n "/${varName}� \ [/ , / ; /P" $INFILE > out . ${varName } . t x t
done

Listing 2: Text Extraction for NEOS Server: Python
#! / u s r / b i n / env python
import r e
import s y s
import s t r i n g

s z I n F i l e = s y s . a rgv [1]
szOutDi r = s y s . a rgv [2]

vTokens = [’V ’ , ’VK1 ’ , ’VK2 ’ , ’VK3 ’ , ’MIU ’]

Load NEOS i npu t f i l e
f I n = open (s z I n F i l e)
vText = f I n . r ead ()
f I n . c l o s e ()

f o r szToken i n vTokens :
pat = r e . comp i l e (szToken + "� \ [[^ ;] ⇤ ; " , r e .DOTALL)
t g t = pat . s e a r c h (vText)
i x S t a r t = tg t . s t a r t ()
ixEnd = tg t . end ()
f = open (szOutDi r + ’ / ’ + szToken + ’ . out ’ , ’w ’)
f . w r i t e (vText [i x S t a r t : i xEnd])
f . c l o s e ()

Comparing Data Files

#!/usr/bin/env python
"""
isApprox.py - test approximate equality of data
"""
import numpy as np
import sys
Setup
if 3 != len(sys.argv) :

print ’Syntax error: isApprox.py file1 file2’
sys.exit(-1)

szFile1 = sys.argv[1]
szFile2 = sys.argv[2]
m1 = np.loadtxt(szFile1)
m2 = np.loadtxt(szFile2)

Comparing Data Files

Compare data
if m1.ndim != m2.ndim :

print ’Matrices are not conformable.’
sys.exit(-1)

if m1.shape[0] != m2.shape[0] :
print ’Error: different numbers of rows.’
sys.exit(-1)

if 2 == m1.ndim :
if m1.shape[1] != m2.shape[1] :

print ’Error : different numbers of columns.’
sys.exit(-1)

print ’Norm(diff): ’, np.linalg.norm(m1 - m2, ord=2)
print ’max abs diff : ’, np.max(np.abs(m1 - m2))

	Why you need some Unix in your life
	How to get some Unix in your life
	Basic commands
	(Free) tools you can't live without

