# A Large Scale Study of the Small Sample Performance of Random Coefficient Models of Demand 

Benjamin S. Skrainka<br>University of Chicago<br>The Harris School of Public Policy<br>skrainka@uchicago.edu

June 26, 2012

## Introduction

## Objectives

This talk's objectives:

- Discuss Monte Carlo experiments to characterize properties of Berry, Levinsohn, and Pakes (1995) (BLP) estimator:
- 'BLP' characteristics IV vs. cost shifter IV
- Asymptotics as $J \rightarrow \infty$ and $T \rightarrow \infty$
- Finite sample bias
- Bias of different quadrature methods
- Demonstrate power of modern software engineering tools to answer practical econometric questions, such as behavior of an estimator:
- PADS cluster + parameter sweep
- C++ and Eigen for implementing high performance code
- State of the art BLP implementation
- Generate data from structural model


## Overview

Introduction

Estimation Infrastructure

Data Generation

## Experiments \& Results

## Estimation Infrastructure

## Overview of Infrastructure

This project depends heavily on modern software engineering and numerical methods:

- Robust and speedy implementation of BLP estimation code
- Robust and speedy implementation of code to generate data
- PADS Cluster
- Data analysis scripts (R, Python, BASH)


## A Robust BLP Implementation

Uses current best practice to create a robust BLP implementation:

- Best optimization strategy: MPEC (Su \& Judd, 2011)
- Best quadrature rules: SGI (Skrainka \& Judd, 2011)
- Modern solver: SNOPT (Gill, Murray, \& Saunders, 2002)
- Numerically robust:
- C++
- Eigen, a cutting edge template library for linear algebra - at least as fast as Intel MKL!
- Higher precision arithmetic (long double)
- Analytic derivatives


## Finding a Global Optimum

Even with MPEC, BLP is a difficult problem to solve reliably:

- Often very flat - perhaps even non-convex!
- Used 50 starts per replication:
- Some did not converge, especially for larger $T$ and $J$
- Some did not satisfy feasibility conditions, especially for larger $T$ and $J$, despite generating initial guesses which satisfied constraints
- Restarted every successful start to make sure it converged to the same point
- Performed for both BLP and cost shifter IV


## PADS Cluster

PADS cluster provides High Throughput Computing (HTC):

- PBS Job Manager facilitates parameter sweeps, an easy technique for parallelizing work which is independent
- Uses scripts to generate data or estimate code for come chunk of runs (1 to 50) per task
- Chunk jobs together for shorter jobs to spread scheduler overhead across more jobs
- Could never estimate BLP $>300,000$ times on my laptop!


## Parallelization

Parameter Sweep provides easy parallelization:

- Each job:
- Estimates one or more replication and starting value
- Short runs are chunked to minimize scheduler overhead
- Independent of all other jobs
- Identified by an index it receives from Job Manager $\rightarrow$ use to determine which starts to run
- Writes results to several output files
- Job manager logs whatever the job writes to standard output and standard error to .o and a .e files
- A separate program computes bias, RMSE, and other statistics from the output files
- Impose time limit to terminate slow or runaway jobs


## Job Times

Distribution of Runtimes for $\mathrm{T}=\mathbf{5 0}$ and $\mathrm{J}=\mathbf{1 0 0}$ with BLP IV


## Computational Cost

Some statistics about these experiments:

- > 85, 656 CPU-hours
- > 27, 969 jobs
- 16 experiments $\times 100$ replications $\times 50$ starts $\times 2$ restarts $\times$ 2 IV types $=320,000$ estimations of BLP!


## Data Generation

## Data Generation

Data must be generated from a structural model:

- Armstrong (2011):
- Proves general result that for logit, nested logit, random coefficients, BLP, etc., these models are only identified as $J \rightarrow \infty$ with cost shifters.
- I.e., BLP is unidentified with BLP instruments in large markets!
- Corrects Berry, Linton, Pakes (2004)
- Shows that you must generate data from a structural model or the data will not behave correctly asymptotically
- Note: each firm must produce at least two products to use BLP instruments


## Intuition

Intuition comes from logit:

- FOC: $0=s_{j}+\left(p_{j}-c_{j}\right) \frac{\partial s_{j}}{\partial p_{j}}$ or $p_{j}=c_{j}-\frac{s_{j}}{\partial s_{j} / \partial p_{j}}$
- This simplifies to: $p_{j}=c_{j}+\frac{1}{\alpha_{\text {price }}\left(1-s_{j}\right)}$
- As $J \rightarrow \infty, s_{j} \rightarrow 0$ so product characteristics drop out of pricing equation!


## Implementation

Generating synthetic data is more difficult than estimating BLP:

- Must generate from a structural model (Armstrong, 2011)
- Used same software technologies (C++, Eigen, higher precision arithmetic, C++ Standard Library) as BLP code
- Used PATH (Ferris, Kanzow, \& Munson, 1999) to solve for Bertrand-Nash price equilibrium
- Hard for large $J$ because dense
- Hard to solve because BLP FOCs are highly non-linear
- Gaussian root finding is $O\left(N^{3}\right) \Rightarrow$ root finding is slow
- Divided FOCs by market shares to facilitate convergence


## Experiments \& Results

## Experiments

The study performs the following experiments:

- Asymptotics
- Finite sample bias
- Bias of different quadrature methods


## Design

Experiments consist of:

- Fixed DGP parameters $(\beta, \Sigma)$ for all experiments
- $T=\{1,10,25,50\}$
- $J=\{12,24,48,100\}$
- 100 replications per experiment
- Two instrumentation strategies (BLP, Cost)
- Estimation time ranges from seconds to more than 24 hours


## Results: Overview

Bottom line: there is pronounced and persistent finite sample bias:

- Traditional BLP instruments:
- Biased point estimates and elasticities
- Bias always in one direction!
- $T$ and $J$ not yet large enough for asymptotics to work
- Cost shifter instruments: better than BLP instruments but finite sample bias still present for most parameters
- Numerical problems increase with $T$ and $J$
- pMC is more biased than SGI quadrature
- Fundamental problem: 'a few, weak instruments'

Results: Price Parameter $\widehat{\theta_{13}}-$ BLP IV

| T | J | Bias | Mean Abs Dev | RMSE | $!C l^{95}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 12 | -2 | 3 | 5.7 | 0 |
| 1 | 24 | -0.72 | 1.9 | 3.2 | 0 |
| 1 | 48 | -0.52 | 1.9 | 3 | 0 |
| 1 | 100 | -0.57 | 1.7 | 2.3 | 0 |
| 10 | 12 | -1.7 | 2.6 | 6 | 1 |
| 10 | 24 | -0.65 | 2 | 3.6 | 0 |
| 10 | 48 | -0.64 | 1.9 | 3.2 | 0 |
| 10 | 100 | -0.83 | 2 | 3.9 | 0 |
| 25 | 12 | -0.62 | 1.9 | 3.1 | 3 |
| 25 | 24 | -0.96 | 2.3 | 3.7 | 1 |
| 25 | 48 | -1.3 | 2.8 | 7.6 | 0 |
| 25 | 100 | -0.95 | 2.1 | 3.7 | 0 |
| 50 | 12 | -0.39 | 1.6 | 2.7 | 1 |
| 50 | 24 | -1.2 | 2.5 | 5.4 | 1 |
| 50 | 48 | -1.2 | 2.2 | 5.2 | 0 |
| 50 | 100 | -0.63 | 1.9 | 3 | 0 |

Results: Price Parameter $\widehat{\theta_{13}}-$ Cost IV

| T | J | Bias | Mean Abs Dev | RMSE | $!C I^{95}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 12 | -0.38 | 1.1 | 1.5 | 1 |
| 1 | 24 | -0.05 | 1 | 1.3 | 0 |
| 1 | 48 | 0.012 | 0.99 | 1.2 | 2 |
| 1 | 100 | 0.057 | 0.72 | 0.88 | 0 |
| 10 | 12 | -0.62 | 1.3 | 2 | 0 |
| 10 | 24 | -0.18 | 0.8 | 1.3 | 0 |
| 10 | 48 | -0.15 | 0.62 | 0.86 | 0 |
| 10 | 100 | -0.027 | 0.39 | 0.52 | 1 |
| 25 | 12 | -0.38 | 1 | 1.6 | 0 |
| 25 | 24 | -0.3 | 0.73 | 0.98 | 0 |
| 25 | 48 | -0.11 | 0.45 | 0.63 | 0 |
| 25 | 100 | -0.033 | 0.25 | 0.33 | 0 |
| 50 | 12 | -0.081 | 0.79 | 1.1 | 0 |
| 50 | 24 | -0.22 | 0.55 | 1 | 0 |
| 50 | 48 | -0.026 | 0.28 | 0.4 | 0 |
| 50 | 100 | 0.003 | 0.19 | 0.26 | 0 |

Results: Scale of Product Characteristic $\widehat{\theta_{21}}-$ BLP IV

| T | J | Bias | Mean Abs Dev | RMSE | $!C I^{95}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 12 | 3.1 | 3.9 | 7.3 | 0 |
| 1 | 24 | 4.8 | 5.3 | 10 | 0 |
| 1 | 48 | 5.7 | 6.5 | 23 | 0 |
| 1 | 100 | 2.1 | 2.7 | 5.2 | 0 |
| 10 | 12 | 3.5 | 4.1 | 8.1 | 0 |
| 10 | 24 | 2.9 | 3.3 | 7.1 | 1 |
| 10 | 48 | 4.7 | 5.1 | 9.9 | 0 |
| 10 | 100 | 1.7 | 2.2 | 6.7 | 0 |
| 25 | 12 | 3.6 | 4.1 | 7 | 0 |
| 25 | 24 | 3.3 | 3.6 | 7.2 | 0 |
| 25 | 48 | 2.9 | 3.3 | 7.4 | 0 |
| 25 | 100 | 2.2 | 2.7 | 6.7 | 0 |
| 50 | 12 | 2.5 | 3 | 5.6 | 0 |
| 50 | 24 | 4.1 | 4.5 | 11 | 0 |
| 50 | 48 | 1.5 | 2 | 3.6 | 0 |
| 50 | 100 | 2.7 | 3.1 | 7.4 | 0 |

Results: Scale of Product Characteristic $\widehat{\theta_{21}}-$ Cost IV

| T | J | Bias | Mean Abs Dev | RMSE | $!\mathrm{Cl}^{95}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 12 | 7.4 | 8.2 | 13 | 0 |
| 1 | 24 | 8.4 | 8.8 | 14 | 0 |
| 1 | 48 | 7.2 | 8.1 | 13 | 0 |
| 1 | 100 | 6.2 | 7.1 | 12 | 1 |
| 10 | 12 | 0.8 | 1.8 | 2.7 | 0 |
| 10 | 24 | 4 | 4.9 | 11 | 1 |
| 10 | 48 | 2.9 | 3.8 | 6.6 | 0 |
| 10 | 100 | 5.9 | 6.8 | 11 | 0 |
| 25 | 12 | 1.5 | 2.3 | 3.4 | 0 |
| 25 | 24 | 3.6 | 4.4 | 7.7 | 0 |
| 25 | 48 | 3.7 | 4.6 | 7 | 1 |
| 25 | 100 | 6.2 | 7 | 11 | 0 |
| 50 | 12 | 0.97 | 2 | 3.1 | 0 |
| 50 | 24 | 3.9 | 4.6 | 12 | 0 |
| 50 | 48 | 3.6 | 4.2 | 6.3 | 1 |
| 50 | 100 | 5.9 | 6.6 | 12 | 0 |

Results: Elasticities - BLP IV

| T | J | Bias | Mean Abs Dev | Med Abs Dev | RMSE |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 12 | -0.77 | 2.2 | 0.94 | 4.9 |
| 1 | 24 | -0.095 | 1.5 | 0.77 | 3.3 |
| 1 | 48 | -0.082 | 1.6 | 0.91 | 2.7 |
| 1 | 100 | -0.39 | 1.5 | 0.98 | 2.5 |
| 10 | 12 | -0.5 | 1.7 | 0.81 | 3.3 |
| 10 | 24 | -0.57 | 1.7 | 0.83 | 3.3 |
| 10 | 48 | -0.16 | 1.5 | 0.97 | 2.2 |
| 10 | 100 | -0.53 | 1.7 | 0.93 | 3.3 |
| 25 | 12 | -0.3 | 1.4 | 0.94 | 2.7 |
| 25 | 24 | -0.72 | 1.8 | 1.1 | 3 |
| 25 | 48 | -0.87 | 2.2 | 1.1 | 4.9 |
| 25 | 100 | -0.61 | 1.7 | 0.97 | 2.7 |
| 50 | 12 | -0.43 | 1.5 | 0.94 | 2.6 |
| 50 | 24 | -0.77 | 1.9 | 0.91 | 3.8 |
| 50 | 48 | -0.97 | 1.9 | 1.1 | 4 |
| 50 | 100 | -0.56 | 1.8 | 1.1 | 2.9 |

Results: Elasticities - Cost IV

| T | J | Bias | Mean Abs Dev | Med Abs Dev | RMSE |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 12 | 0.059 | 0.86 | 0.52 | 1.4 |
| 1 | 24 | 0.17 | 0.83 | 0.55 | 1.3 |
| 1 | 48 | 0.11 | 0.85 | 0.6 | 1.3 |
| 1 | 100 | -0.59 | 1.3 | 0.43 | 60 |
| 10 | 12 | -0.098 | 0.69 | 0.48 | 1 |
| 10 | 24 | -0.095 | 0.52 | 0.33 | 0.82 |
| 10 | 48 | -0.15 | 0.48 | 0.28 | 4.2 |
| 10 | 100 | -0.072 | 0.3 | 0.19 | 0.54 |
| 25 | 12 | -0.23 | 0.56 | 0.38 | 0.83 |
| 25 | 24 | -0.22 | 0.48 | 0.34 | 0.69 |
| 25 | 48 | -0.062 | 0.3 | 0.19 | 0.45 |
| 25 | 100 | -0.16 | 0.3 | 0.13 | 0.68 |
| 50 | 12 | -0.27 | 0.54 | 0.32 | 0.92 |
| 50 | 24 | -0.32 | 0.46 | 0.22 | 1 |
| 50 | 48 | -0.1 | 0.2 | 0.12 | 0.33 |
| 50 | 100 | -0.15 | 0.24 | 0.098 | 0.57 |

## Results: Solver Convergence

SNOPT has increasing difficulty finding an optimum as the number of markets and products increase:

- Most common problem: cannot find a feasible point
- Other problems:
- Hits iteration limit
- Not enough real storage
- Singular basis


## Results: pMC vs SGI

|  | Bias |  | Mean Abs Dev |  | RMSE |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | SGI | pMC | SGI | pMC | SGI | pMC |
| $\theta_{11}$ | 0.96 | 12.34 | 2.29 | 13.25 | 4.00 | 28.92 |
| $\theta_{12}$ | 0.02 | -0.13 | 0.52 | 0.38 | 0.94 | 0.48 |
| $\theta_{13}$ | -0.28 | -0.38 | 1.47 | 1.21 | 3.01 | 1.51 |
| $\theta_{21}$ | 22.57 | 128.22 | 23.01 | 128.24 | 81.76 | 253.87 |
| $\theta_{22}$ | 0.02 | -0.04 | 0.12 | 0.16 | 0.19 | 0.20 |
| $\theta_{23}$ | 0.08 | 0.64 | 0.36 | 0.75 | 0.75 | 0.90 |

Table: Comparison of bias in point estimates: SGI vs. pMC for T=2 markets and $\mathrm{J}=24$ products with 165 nodes.

## Next Steps

This infrastructure can be used to solve several related problems:

- Rerun experiments in Skrainka \& Judd (2011) on a larger scale and compute bias for different rules
- Evaluate sensitivity of results to DGP
- Evaluate impact of strong and weak instruments
- Bootstrap BLP to study where asymptotic GMM standard errors are valid
- Evaluate other estimation approaches such as Empirical Likelihood (Conlon, 2010)
- Compute with (approximations to) optimal instruments (Reynaert \& Verboven, 2012)


## Conclusion

Developed infrastructure to test BLP estimator:

- Characterize estimator's bias for a range of markets and number of products
- Computed bias for BLP and Cost IV
- Demonstrated power of modern HTC + Monte Carlo experiments to answer questions where (econometric) theory has failed to produce an answer.
- Shown that these resources are easily accessible to economists

