
Enhance Your Productivity and Software Quality
with Techniques from Silicon Valley

Benjamin S. Skrainka
The Harris School of Public Policy

University of Chicago

skrainka@uchicago.edu

July 17, 2012

mailto:skrainka@uchicago.edu

The Big Picture

Whether you like it or not you are a software engineer:
I Much wisdom we can learn from Silicon Valley
I Much technology we can exploit
I About increasing your productivity
I About reproducible results (scientific method, getting sued)

) much of the cost of software is maintenance!

Good Code

Good code is:
I Easy to maintain
I Easy to extend
I Easy to understand ... even after a six month break!
I Straight-forward and direct ... no side-effects or surprises!
I Reads like English (or some other human language)

When you feel ‘friction’ something is wrong. . .

Some Questions

Before writing a line of code, ask yourself:
I What will this code be used for?
I How often will it be used?
I How might it evolve? How can I isolate myself from possible

changes, such as using a different solver?
I What part of this code is generic and what part

problem-specific? i.e,
I What can I reuse?
I What should I abstract into a library?

Roadmap

Tactical Programming

Designing Better Software

Debugging and Optimization

Software Development Tools

Goals of Tactical Programming

Tactics – aka programing style – are about structuring your code so
that:

I Easier to read
I Easier to detect bugs
I Easier to understand
I Easier to extend
I i.e., to minimize the costs of working with your code
I In short, you want to minimize (or eliminate) complexity

) increased productivity for free!!!

Use A Coding Convention

A good coding convention makes your code read like a good story
and makes your intent clear:

I Naming of functions, variables, and filenames
I Grouping and layout of code such as braces
I Modification history
I Comments
I Respect the local coding convention when working on code

Choose a convention and stick to it!

Structure Your Code

Group logical chunks of code together:
I Separate larger blocks with comments

I Create horizontal lines of ’-’, ’=’, etc. to indicate higher-level
groupings

I Just like books are organized into chapters, sections,
subsections, etc.

I Use vertical space (blank lines) to set off lower-level chunks of
code

I Use white space:
I Put space around operators =, +, -, *, / and inside of {},

(), and []

I Choose a sensible indentation scheme, such as two spaces
I Beware of tabs ...

I Anything longer than 1-2 screenfuls of code should be a
separate function

Choose Good Names

Choose names which describe the role of a function or variable:
I Separate multiple words with CamelCase or ‘_’
I Function names should start or end with a verb:

CalcMarketShares()
I Encode type information into variable names: float, int,

matrix, vector, etc.
I One variable definition per line + a comment
I Start indexes with ix: ixStart, ixStop
I One ‘p’ for each level of pointer indirection

Bad Names: p, x, y, n, i, j, k, l, jfunc1
Good Names: dwPriceFood, dwExcessDemand, dwIncome,

nGoods, vProb, IntegrateMarketShares(),
IsValid(), ix, jx, kx, pHHData

Braces

There are two main styles for braces:
1TBS/K+R/etc.

if(IsBadState()) {
fixProblem() ;

}

Allman/GNU/etc.

if(IsBadState())
{

fixProblem() ;
}

Write Comments

Comments are important:
I History of changes
I Why you did something, not what you did
I Explain anything tricky – you won’t remember why you did

something next month...
I Use comments and white space to convey logical structure of

code on small, medium, and large scales
I Start any file with a short one line comment explaining

purpose of module
I Document function interfaces and any quirks

One Place Only

Strive to minimize duplication:
I Are you writing code with cut and paste?) abstract it into a

function ...
I Use constants whenever possible:

I Define all numbers and constants in one place only
I Define indexes (with good names) for different columns or

rows in a matrix, especially for MATLAB
I Make arguments const when only used for input
I No hard-coded numbers!!!

I Automate what you can:
I macros
I templates

I When you have to make changes, it is easier if you only have
to modify it in one place!

Order of Operations

Don’t abuse order of operations:
I Only use order of operations for +, -, /, *
I For everything else, use parentheses!
I Avoid clever tricks and side-effects . . . unless necessary for

performance in which case you need to document how the
trick works

MATLAB Tricks

Here are a couple tricks to improve your MATLAB code:
I Use cells by commenting the start of a section with %%:

I Group a logically-related block of code
I Rerun the cell with CTRL + RETURN

I Handle errors with keyboard
I Store column indexes in a structure: Index.Price,

Index.Income, ...
I Wrap related variables into a structure:

ChoiceData.X = mCovariates ;
ChoiceData.Y = vChoices ;
ChoiceData.nObs = length(vChoices) ;

How to Design Software

Much of good software design is based on:
I Planning ahead for maintenance (one of the biggest costs of

most projects) and future extensions
I Writing testable code
I Choosing good abstractions

I The right data structures
I The right algorithms

I Designing good interfaces
The goal is to minimize (hide) complexity, reduce friction, and
avoid duplicating code

What to Worry About

Questions to ponder:
I Where will my code run?
I What technologies does it depend on?
I How is it likely to change?
I How will it be used?
I How often will it be used?
I How can I test it?

) Write a design document!!! You don’t have time not to plan. . .

Trade-offs

You need to evaluate many trade-offs:
I Speed vs. robustness
I Speed vs. memory usage
I Speed vs. maintainability (e.g. fast code may require

unreadable optimizations)
I Development time vs. code quality (performance,

maintainability, reusability)
I Quality vs. frequency of use

Interfaces

An interface is a contract:
I Clear and easy to remember
I Use the same interface for similar objects/operations
I Promotes loose coupling and reuse
I Minimizes maintenance headaches by isolating implementation

from interface
I Publish the interface in a header file:

I Separate from the implementation file
I Protect with include guards if using C preprocessor
I May need second header file for private information

I Only a few arguments – put any more in a struct

Functions

Functions are a key technique to eliminate complexity:
I A function should do one thing and do it well

I Facilitates composition to solve more complex problems
I Facilitates reuse, debugging, maintenance, and extension
I Facilitates understanding

I Follow the Unix model:
I Write simple commands and functions
I Easy to test
I Easy to combine

I Use to express interfaces
I Use to break up any code which exceeds a couple screenfuls

Practice Information Hiding

Hiding information and implementation make your code more
robust:

I Put only the minimum amount of information in the public
name space

I Make everything else private or static
I Prevent unintentional access
I Now changing implementation details won’t break other code
I Encapsulate state information in a struct, not a global if

possible
I Avoid global variables!!! They often lead to race conditions. . .

Reusable Code

Write reusable code:
I Collect general tools and components into a common library
I Reuse for faster development of other projects
I Decrease bugs through use of production code

Corollary: reuse (high quality) existing software libraries and
components:

I Don’t reinvent the wheel
I Benefit from code which has already been debugged

Defensive Programming I

Write code to facilitate debugging:
I Modularize functionality
I E.g., access shared resources or special facilities only through

one library: splineLib, splineCreate, splineEval,
splineDelete, ...

I If a bug occurs then it is:
1. In the library
2. Use of the library

Defensive Programming II

Isolate your code from things which might change:
I Third party software: MPI, solvers, libraries
I Platform-specific technologies: OS-specific APIs
I Buggy code by co-workers (‘software condom’)

I.e., write a thin layer between your code and volatile resources

Defensive Programming III

Trust but verify:
I Verify that input is sane:

I When reading in configuration information and data at start of
program

I Inside functions:
I

Are the arguments correct?

I
Did the computation produce a feasible value? E.g., is

consumption non-negative?

I Tools:
I keyboard in MATLAB
I #include <cassert> in C++

I Automate everything you can:
I Multiple steps and copying data lead to avoidable errors
I One to hit one button to produce your paper!

Test Driven Development

TDD uses unit tests and a tight write-test-debug cycle to catch
bugs early:

I Unit tests are short pieces of code which exercise all (or the
key) paths through a function

I The sooner you find a bug, the cheaper/easier it is to fix
I Immediately program to an interface to verify design decisions
I Catch bugs caused by other changes to system

I Many popular unit test frame works are available: junit,
cunit, boost::test, etc.

I Interpreted languages provide a similar productivity boost by
letting you test code interactively as you develop it.

I TDD is a philosophy for software development
I Refactor code which is unwieldy

Refactoring

Refactor when necessary:
I Refactoring means redesigning and/or rewritting code when it

becomes brittle, unwieldy, or starts to rot
I Do in presence of unit tests to ensure that you reimplement

code correctly
I Brooks (1995): ‘Plan to throw one away.’
I It is time to refactor when you feel friction and frustration

when working on code.
I See Fowler et al (1999) ‘Refactoring’.

Debugging

Unfortunately, you will make mistakes:
I Learn to use the debugger
I Don’t sprinkle your code with printf, WRITE, etc.:

I Obscures code readability
I I/O slows code considerably

I Add diagnostic logging to large applications
I Message logging to files
I Print messages to screen in debug version only

I Step through your code in the debugger: you might be
surprised by how it actually executes. . .

I Will boost productivity considerably!

Debugging

Use the C preprocessor to facilitate debugging (even in FORTRAN):

#ifdef USE_DIAG
#define DIAG_PRINT PRINT *,
#else
#define DIAG_PRINT !
#endif

Must use correct compiler flags: -fpp -allow no_fppcomments

Optimization

Your intuition about what needs optimization is often wrong:
I First, get your code to work correctly
I Then optimize:

I Measure code with a profiler
I Optimize what needs optimizing

I MATLAB has a built-in optimizer
I For C, C++, FORTRAN, etc., use: gprof, Google’s gperftools,

etc.

Vectorization

Write loops which support vectorization (unrolling):
I Use:

I Straight-line code
I Vector (array) data only
I Local variables
I Assignment statements only
I Pre-defined (constant) exit condition

I Avoid:
I Function calls
I Non-mathematical operations (which are difficult to vectorize)
I Mixing vectorizable types
I Memory access patterns which prevent vectorization – i.e.

where one statement access future and/or previous array
elements

Version Control

Manage all of your code (and LATEX) with version control:
I Provides a safety net when programming
I Stores code in a repository which tracks changes anyone makes

to code
I Synchronize changes across computers
I (Automatically) merge your changes with your co-authors’

changes
I Revert to earlier versions
I Manage different branches of code
I Tag key milestones

Popular flavors: Subversion (svn), CVS, git, and hg

Make

Make manages building software:
I Checks dependencies
I Builds only what is necessary
I Allows abstraction of build process:

I Tools
I Options
I Platform specific details

I Promotes portability

Editor and OS

Invest in your tools:
I ‘Choose your editor with more care than you would your

spouse because you will spend more time with your editor,
even after the spouse is gone.’ – Harry J. Paarsch

I Learn to use a good programming editor: Vi, Emacs, jEdit,
Notepad++, Eclipse, etc.

I Will increase your productivity

I Same applies to your OS – get some Unix in your life!
I etags, cscope, ctree, etc. make it easy to explore code
I Eclipse, MS Visual Studio have powerful tools as well

	Tactical Programming
	Designing Better Software
	Debugging and Optimization
	Software Development Tools

