Enhance Your Productivity and Software Quality
with Techniques from Silicon Valley

Benjamin S. Skrainka
The Harris School of Public Policy
University of Chicago

skrainka@uchicago.edu

July 17, 2012

mailto:skrainka@uchicago.edu

The Big Picture

Whether you like it or not you are a software engineer:

» Much wisdom we can learn from Silicon Valley

v

Much technology we can exploit

v

About increasing your productivity

v

About reproducible results (scientific method, getting sued)

= much of the cost of software is maintenance!

Good Code

Good code is:
» Easy to maintain
» Easy to extend
» Easy to understand ... even after a six month break!
» Straight-forward and direct ... no side-effects or surprises!
> Reads like English (or some other human language)

When you feel ‘friction’ something is wrong. ..

Some Questions

Before writing a line of code, ask yourself:
» What will this code be used for?
» How often will it be used?

» How might it evolve? How can | isolate myself from possible
changes, such as using a different solver?

» What part of this code is generic and what part
problem-specific? i.e,

» What can | reuse?
» What should | abstract into a library?

Roadmap

Tactical Programming

Designing Better Software

Debugging and Optimization

Software Development Tools

Goals of Tactical Programming

Tactics — aka programing style — are about structuring your code so
that:

» Easier to read

v

Easier to detect bugs

Easier to understand

v

Easier to extend

v

> i.e., to minimize the costs of working with your code

v

In short, you want to minimize (or eliminate) complexity

= increased productivity for free!!l

Use A Coding Convention

A good coding convention makes your code read like a good story
and makes your intent clear:

» Naming of functions, variables, and filenames

» Grouping and layout of code such as braces

v

Modification history

v

Comments

v

Respect the local coding convention when working on code
Choose a convention and stick to it!

Structure Your Code

Group logical chunks of code together:
» Separate larger blocks with comments

» Create horizontal lines of '-', '=', etc. to indicate higher-level
groupings

» Just like books are organized into chapters, sections,
subsections, etc.

» Use vertical space (blank lines) to set off lower-level chunks of
code

» Use white space:

» Put space around operators =, +, -, *, / and inside of {},
O, and []

» Choose a sensible indentation scheme, such as two spaces

» Beware of tabs ...

» Anything longer than 1-2 screenfuls of code should be a
separate function

Choose Good Names

Choose names which describe the role of a function or variable:
» Separate multiple words with CamelCase or ¢ _’

» Function names should start or end with a verb:
CalcMarketShares()

» Encode type information into variable names: float, int,
matrix, vector, etc.

» One variable definition per line + a comment
» Start indexes with ix: ixStart, ixStop

» One ‘p’ for each level of pointer indirection

Bad Names: p, x, y, n, i, j, k, 1, jfuncl

Good Names: dwPriceFood, dwExcessDemand, dwIncome,
nGoods, vProb, IntegrateMarketShares(),
IsValid(), ix, jx, kx, pHHData

Braces

There are two main styles for braces:
1TBS/K+R/etc

if (IsBadState()) {
fixProblem() ;
}

Allman/GNU /etc.

if (IsBadState())
{

fixProblem() ;
}

Write Comments

Comments are important:

>

>

>

History of changes
Why you did something, not what you did

Explain anything tricky — you won't remember why you did
something next month...

Use comments and white space to convey logical structure of
code on small, medium, and large scales

Start any file with a short one line comment explaining
purpose of module

Document function interfaces and any quirks

One Place Only

Strive to minimize duplication:

» Are you writing code with cut and paste? = abstract it into a
function ...

» Use constants whenever possible:

v

Define all numbers and constants in one place only

Define indexes (with good names) for different columns or
rows in a matrix, especially for MATLAB

Make arguments const when only used for input

No hard-coded numbers!!!

v

vy

» Automate what you can:

> macros
> templates

» When you have to make changes, it is easier if you only have
to modify it in one place!

Order of Operations

Don't abuse order of operations:
» Only use order of operations for +, -, /, *
» For everything else, use parentheses!

» Avoid clever tricks and side-effects ... unless necessary for
performance in which case you need to document how the
trick works

MATLAB Tricks

Here are a couple tricks to improve your MATLAB code:
» Use cells by commenting the start of a section with %%:
» Group a logically-related block of code
» Rerun the cell with CTRL + RETURN
» Handle errors with keyboard

» Store column indexes in a structure: Index.Price,
Index.Income,

» Wrap related variables into a structure:
ChoiceData.X = mCovariates ;

ChoiceData.Y vChoices ;
ChoiceData.nObs = length(vChoices) ;

How to Design Software

Much of good software design is based on:

» Planning ahead for maintenance (one of the biggest costs of
most projects) and future extensions

» Writing testable code
» Choosing good abstractions

» The right data structures
» The right algorithms

» Designing good interfaces

The goal is to minimize (hide) complexity, reduce friction, and
avoid duplicating code

What to Worry About

Questions to ponder:

v

Where will my code run?

v

What technologies does it depend on?

v

How is it likely to change?

How will it be used?

v

How often will it be used?

v

How can | test it?

v

= Write a design document!!! You don't have time not to plan. ..

Trade-offs

You

v

need to evaluate many trade-offs:
Speed vs. robustness
Speed vs. memory usage

Speed vs. maintainability (e.g. fast code may require
unreadable optimizations)

Development time vs. code quality (performance,
maintainability, reusability)

Quality vs. frequency of use

Interfaces

An interface is a contract:

» Clear and easy to remember
» Use the same interface for similar objects/operations
» Promotes loose coupling and reuse
» Minimizes maintenance headaches by isolating implementation
from interface
» Publish the interface in a header file:
» Separate from the implementation file
» Protect with include guards if using C preprocessor
» May need second header file for private information
» Only a few arguments — put any more in a struct

Functions

Functions are a key technique to eliminate complexity:
» A function should do one thing and do it well

» Facilitates composition to solve more complex problems
» Facilitates reuse, debugging, maintenance, and extension
» Facilitates understanding

» Follow the Unix model:

» Write simple commands and functions
» Easy to test
» Easy to combine

» Use to express interfaces

» Use to break up any code which exceeds a couple screenfuls

Practice Information Hiding

Hiding information and implementation make your code more
robust:

>

Put only the minimum amount of information in the public
name space

Make everything else private or static
Prevent unintentional access
Now changing implementation details won't break other code

Encapsulate state information in a struct, not a global if
possible

Avoid global variables!!! They often lead to race conditions. ..

Reusable Code

Write reusable code:
» Collect general tools and components into a common library
» Reuse for faster development of other projects
» Decrease bugs through use of production code

Corollary: reuse (high quality) existing software libraries and
components:

» Don't reinvent the wheel

» Benefit from code which has already been debugged

Defensive Programming |

Write code to facilitate debugging:
» Modularize functionality

» E.g., access shared resources or special facilities only through
one library: splinelLib, splineCreate, splineEval,
splineDelete,

» |If a bug occurs then it is:

1. In the library
2. Use of the library

Defensive Programming Il

Isolate your code from things which might change:
» Third party software: MPI, solvers, libraries
» Platform-specific technologies: OS-specific APIs
» Buggy code by co-workers (‘software condom’)

l.e., write a thin layer between your code and volatile resources

Defensive Programming Il

Trust but verify:
» Verify that input is sane:

» When reading in configuration information and data at start of
program
» Inside functions:

> Are the arguments correct?
» Did the computation produce a feasible value? E.g., is
consumption non-negative?

» Tools:

» keyboard in MATLAB
» #include <cassert> in C++

» Automate everything you can:

» Multiple steps and copying data lead to avoidable errors
» One to hit one button to produce your paper!

Test Driven Development

TDD uses unit tests and a tight write-test-debug cycle to catch
bugs early:

> Unit tests are short pieces of code which exercise all (or the
key) paths through a function

» The sooner you find a bug, the cheaper/easier it is to fix
» Immediately program to an interface to verify design decisions
» Catch bugs caused by other changes to system

» Many popular unit test frame works are available: junit,
cunit, boost::test, etc.

> Interpreted languages provide a similar productivity boost by
letting you test code interactively as you develop it.

» TDD is a philosophy for software development

» Refactor code which is unwieldy

Refactoring

Refactor when necessary:

» Refactoring means redesigning and/or rewritting code when it
becomes brittle, unwieldy, or starts to rot

» Do in presence of unit tests to ensure that you reimplement
code correctly

» Brooks (1995): ‘Plan to throw one away.’

» |t is time to refactor when you feel friction and frustration
when working on code.

> See Fowler et al (1999) ‘Refactoring’.

Debugging

Unfortunately, you will make mistakes:

» Learn to use the debugger

v

Don't sprinkle your code with printf, WRITE, etc.:

» Obscures code readability
» 1/O slows code considerably

v

Add diagnostic logging to large applications

» Message logging to files
» Print messages to screen in debug version only

v

Step through your code in the debugger: you might be
surprised by how it actually executes. ..

v

Will boost productivity considerably!

Debugging

Use the C preprocessor to facilitate debugging (even in FORTRAN):

#ifdef USE_DIAG

#define DIAG_PRINT PRINT *,
#else

#define DIAG_PRINT !

#endif

Must use correct compiler flags: -fpp -allow no_fppcomments

Optimization

Your intuition about what needs optimization is often wrong:
» First, get your code to work correctly
» Then optimize:

» Measure code with a profiler
» Optimize what needs optimizing

» MATLAB has a built-in optimizer

» For C, C++, FORTRAN, etc., use: gprof, Google's gperftools,
etc.

Vectorization

Write loops which support vectorization (unrolling):
> Use:

Straight-line code

Vector (array) data only

Local variables

Assignment statements only
Pre-defined (constant) exit condition

» Avoid:

Function calls

Non-mathematical operations (which are difficult to vectorize)
Mixing vectorizable types

Memory access patterns which prevent vectorization — i.e.
where one statement access future and/or previous array
elements

vV vy VY VvYyy

vV vy VvVvyy

Version Control

Manage all of your code (and IATEX) with version control:

>

>

>

>

>

Provides a safety net when programming

Stores code in a repository which tracks changes anyone makes
to code

Synchronize changes across computers

(Automatically) merge your changes with your co-authors'
changes

Revert to earlier versions
Manage different branches of code

Tag key milestones

Popular flavors: Subversion (svn), CVS, git, and hg

Make

Make manages building software:

v

Checks dependencies

v

Builds only what is necessary

v

Allows abstraction of build process:
» Tools
» Options
» Platform specific details

v

Promotes portability

Editor and OS

Invest in your tools:

» ‘Choose your editor with more care than you would your
spouse because you will spend more time with your editor,
even after the spouse is gone." — Harry J. Paarsch

» Learn to use a good programming editor: Vi, Emacs, jEdit,
Notepad++, Eclipse, etc.
» Will increase your productivity

» Same applies to your OS — get some Unix in your life!
> etags, cscope, ctree, etc. make it easy to explore code

» Eclipse, MS Visual Studio have powerful tools as well

	Tactical Programming
	Designing Better Software
	Debugging and Optimization
	Software Development Tools

