
http://www.econometricsociety.org/

Econometrica, Vol. 78, No. 2 (March, 2010), 453–508

LEARNING-BY-DOING, ORGANIZATIONAL FORGETTING,
AND INDUSTRY DYNAMICS

DAVID BESANKO
Kellogg School of Management, Northwestern University, Evanston, IL 60208, U.S.A.

ULRICH DORASZELSKI
Harvard University, Cambridge, MA 02138, U.S.A.

YAROSLAV KRYUKOV
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

MARK SATTERTHWAITE
Kellogg School of Management, Northwestern University, Evanston, IL 60208, U.S.A.

The copyright to this Article is held by the Econometric Society. It may be downloaded,
printed and reproduced only for educational or research purposes, including use in course
packs. No downloading or copying may be done for any commercial purpose without the
explicit permission of the Econometric Society. For such commercial purposes contact
the Office of the Econometric Society (contact information may be found at the website
http://www.econometricsociety.org or in the back cover of Econometrica). This statement must
be included on all copies of this Article that are made available electronically or in any other
format.

http://www.econometricsociety.org/


Econometrica, Vol. 78, No. 2 (March, 2010), 453–508

LEARNING-BY-DOING, ORGANIZATIONAL FORGETTING,
AND INDUSTRY DYNAMICS

BY DAVID BESANKO, ULRICH DORASZELSKI,
YAROSLAV KRYUKOV, AND MARK SATTERTHWAITE1

Learning-by-doing and organizational forgetting are empirically important in a vari-
ety of industrial settings. This paper provides a general model of dynamic competition
that accounts for these fundamentals and shows how they shape industry structure and
dynamics. We show that forgetting does not simply negate learning. Rather, they are
distinct economic forces that interact in subtle ways to produce a great variety of pric-
ing behaviors and industry dynamics. In particular, a model with learning and forget-
ting can give rise to aggressive pricing behavior, varying degrees of long-run industry
concentration ranging from moderate leadership to absolute dominance, and multiple
equilibria.

KEYWORDS: Dynamic stochastic games, Markov-perfect equilibrium, learning-by-
doing, organizational forgetting, industry dynamics, multiple equilibria.

1. INTRODUCTION

EMPIRICAL STUDIES PROVIDE ample evidence that the marginal cost of pro-
duction decreases with cumulative experience in a variety of industrial settings.
This fall in marginal cost is known as learning-by-doing. More recent empirical
studies also suggest that organizations can forget the know-how gained through
learning-by-doing due to labor turnover, periods of inactivity, and failure to in-
stitutionalize tacit knowledge.2 Organizational forgetting has been largely ig-
nored in the theoretical literature. This is problematic because Benkard (2004)
showed that organizational forgetting is essential to explain the dynamics in the
market for wide-bodied airframes in the 1970s and 1980s.

1We have greatly benefitted from the comments and suggestions of a co-editor and two
anonymous referees. We are also indebted to Lanier Benkard, Luis Cabral, Jiawei Chen, Ste-
fano Demichelis, Michaela Draganska, Ken Judd, Pedro Marin, Ariel Pakes, Michael Ryall,
Karl Schmedders, Chris Shannon, Kenneth Simons, Scott Stern, Mike Whinston, and Huseyin
Yildirim as well as the participants of various conferences. Guy Arie and Paul Grieco provided
excellent research assistance. Besanko and Doraszelski gratefully acknowledge financial support
from the National Science Foundation under Grant 0615615. Doraszelski further benefitted from
the hospitality of the Hoover Institution during the academic year 2006–2007. Kryukov thanks the
General Motors Center for Strategy in Management at Northwestern’s Kellogg School of Man-
agement for support during this project. Satterthwaite acknowledges gratefully that this material
is based on work supported by the National Science Foundation under Grant 0121541.

2See Wright (1936), Hirsch (1952), DeJong (1957), Alchian (1963), Levy (1965), Kilbridge
(1962), Hirschmann (1964), Preston and Keachie (1964), Baloff (1971), Dudley (1972),
Zimmerman (1982), Lieberman (1984), Gruber (1992), Irwin and Klenow (1994), Jarmin (1994),
Pisano (1994), Bohn (1995), Hatch and Mowery (1998), Thompson (2001), and Thornton and
Thompson (2001) for empirical studies of learning-by-doing; see Argote, Beckman, and Ep-
ple (1990), Darr, Argote, and Epple (1995), Benkard (2000), Shafer, Nembhard, and Uzumeri
(2001), and Thompson (2003) for organizational forgetting.
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In this paper we build on the computational Markov-perfect equilibrium
framework of Ericson and Pakes (1995) to analyze how the economic fun-
damentals of learning-by-doing and organizational forgetting interact to de-
termine industry structure and dynamics.3 We add organizational forgetting
to Cabral and Riordan’s (1994) (C–R) seminal model of learning-by-doing.4
This seemingly small change has surprisingly large effects. Dynamic compe-
tition with learning and forgetting is akin to racing down an upward-moving
escalator. As long as a firm makes sales sufficiently frequently so that the gain
in know-how from learning outstrips the loss in know-how from forgetting, it
moves down its learning curve and its marginal cost decreases. However, if
sales slow down or come to a halt, perhaps because of its competitors’ aggres-
sive pricing, then the firm slides back up its learning curve and its marginal cost
increases. This cannot happen in the C–R model. Due to this qualitative dif-
ference, organizational forgetting leads to a rich array of pricing behaviors and
industry dynamics that the existing literature neither imagined nor explained.

It is often said that learning-by-doing promotes market dominance because
it gives a more experienced firm the ability to profitably underprice its less
experienced rival and therefore shut out the competition in the long run. As
Dasgupta and Stiglitz (1988, p. 247) explained

� � � firm-specific learning encourages the growth of industrial concentration. To be spe-
cific, one expects that strong learning possibilities, coupled with vigorous competition
among rivals, ensures that history matters � � � in the sense that if a given firm enjoys some
initial advantages over its rivals it can, by undercutting them, capitalize on these advan-
tages in such a way that the advantages accumulate over time, rendering rivals incapable
of offering effective competition in the long run � � � �

However, if organizational forgetting “undoes” learning-by-doing, then for-
getting may be a procompetitive force and an antidote to market dominance
through learning. Two reasons for suspecting this come to mind. First, to the
extent that the leader has more to forget than the follower, forgetting should
work to equalize differences between firms. Second, because forgetting makes
improvements in competitive position from learning transitory, it should make
firms reluctant to invest in the acquisition of know-how through price cuts.
We reach the opposite conclusion: Organizational forgetting can make firms
more aggressive rather than less aggressive. This aggressive pricing behavior,
in turn, puts the industry on a path toward one firm leading—perhaps even
dominating—the market.

3Dynamic stochastic games and feedback strategies that map states into actions date back at
least to Shapley (1953). Maskin and Tirole (2001) provided the fundamental theory that shows
how many subgame-perfect equilibria of these games can be represented consistently and robustly
as Markov-perfect equilibria.

4Prior to the infinite-horizon price-setting model of C–R, the literature had studied learning-
by-doing using finite-horizon quantity-setting models (Spence (1981), Fudenberg and Tirole
(1983), Ghemawat and Spence (1985), Ross (1986), Dasgupta and Stiglitz (1988), Cabral and
Riordan (1997)).
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In the absence of organizational forgetting, the price that a firm sets reflects
two goals. First, by winning a sale, the firm moves down its learning curve.
This is the advantage-building motive. Second, the firm prevents its rival from
moving down its learning curve. This is the advantage-defending motive. But
in the presence of organizational forgetting, bidirectional movements through
the state space are possible, and this opens up new strategic possibilities for
building and defending advantage. By winning a sale, the firm ensures that it
does not slide back up its learning curve even if it forgets. At the same time,
by denying its rival a sale, the firm sets up the possibility that its rival will move
back up its learning curve if it forgets. Because organizational forgetting rein-
forces the advantage-building and advantage-defending motives in this way, it
can create strong incentives to cut prices so as to win a sale. Organizational
forgetting is thus a source of aggressive pricing behavior.

While the existing literature has mainly focused on the dominance properties
of firms’ pricing behaviors, we find that these properties are neither necessary
nor sufficient for market dominance in our more general setting. We therefore
go beyond the existing literature and directly examine the industry dynamics
that firms’ pricing behaviors imply. We find that organizational forgetting is a
source of—not an antidote to—market dominance in the long run. If forgetting
is sufficiently weak, then asymmetries may arise but cannot persist. As in the
C–R model, learning-by-doing operates as a ratchet: firms inexorably—if at
different rates—move toward the bottom of their learning curves where cost
parity obtains. If forgetting is sufficiently strong, then asymmetries cannot arise
in the first place because forgetting stifles investment in learning altogether.
For intermediate degrees of forgetting, asymmetries arise and persist. Even
extreme asymmetries akin to near monopoly are possible. This is because, in
the presence of organizational forgetting, the leader can use price cuts to delay
or even stall the follower in moving down its learning curve.

Organizational forgetting is not the only source of long-run market domi-
nance. As C–R showed in their discussion of predatory pricing and as we also
demonstrate in Section 8, a model of learning-by-doing that incorporates shut-
out elements, such as entry and exit or a choke price, can lead to long-run
market dominance, much in the way Dasgupta and Stiglitz (1988) describe.
Nevertheless, we exclude shut-out elements from our basic model for two rea-
sons. First, the interaction between learning and forgetting is subtle and gener-
ates an enormous variety of interesting, even surprising, equilibria. Isolating it
is, therefore, useful theoretically. Second, from an empirical viewpoint, as with
Intel and AMD, we may see an apparently stable hierarchy of firms with differ-
ing market shares, costs, and profits. Our model can generate such an outcome,
while shut-out model elements favor more extreme outcomes in which either
one firm dominates or all firms compete on equal footing.

Organizational forgetting is also a source of multiple equilibria. If the inflow
of know-how into the industry due to learning is substantially smaller than the
outflow of know-how due to forgetting, then it is virtually impossible that both
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firms reach the bottom of their learning curves. Conversely, if the inflow is
substantially greater than the outflow, then it is virtually inevitable that they
do reach the bottom. In both cases, the primitives of the model tie down the
equilibrium. This is no longer the case if the inflow roughly balances the out-
flow. If both firms believe that they cannot profitably coexist at the bottom
of their learning curves, then both cut their prices in the hope of acquiring
a competitive advantage early on and maintaining it throughout. However, if
both firms believe that they can profitably coexist, then neither cuts its price,
thereby ensuring that the anticipated symmetric industry structure emerges.
Consequently, in addition to the degree of forgetting, the equilibrium by itself
is an important determinant of pricing behavior and industry dynamics.

Our finding of multiplicity is important for two reasons. First, to our knowl-
edge, all applications of Ericson and Pakes’ (1995) framework have found a
single equilibrium. Pakes and McGuire (1994, p. 570) (P–M) indeed held that
“nonuniqueness does not seem to be a problem.” It is, therefore, striking that
we obtain up to nine equilibria for some parameterizations. Second, we show
that multiple equilibria in our model arise from firms’ expectations regarding
the value of continued play. Being able to pinpoint the driving force behind
multiple equilibria is a first step toward tackling the multiplicity problem that
plagues the estimation of dynamic stochastic games and inhibits the use of
counterfactuals in policy analysis.5

In sum, we show that learning-by-doing and organizational forgetting are
distinct economic forces. Forgetting, in particular, does not simply negate
learning. The unique role forgetting plays comes about because it enables bidi-
rectional movements through the state space. Thus the interaction of learning
and forgetting can give rise to aggressive pricing behavior, long-run industry
concentration of varying degrees, and multiple equilibria.

We also make two methodological contributions. First, we point out a weak-
ness of the P–M algorithm, the major tool for computing equilibria in the lit-
erature following Ericson and Pakes (1995). Specifically, we prove that our dy-
namic stochastic game has equilibria that the P–M algorithm cannot compute.
Roughly speaking, in the presence of multiple equilibria, “in between” two
equilibria that it can compute there is one equilibrium it cannot. This severely
limits its ability to provide a complete picture of the set of solutions to the
model.

Second, we propose a homotopy or path-following algorithm. The algorithm
traces out the equilibrium correspondence by varying the degree of forgetting.
This allows us to compute equilibria that the P–M algorithm cannot compute.
We find that the equilibrium correspondence contains a unique path that starts
at the equilibrium of the C–R model. Whenever this path bends back on itself

5See Ackerberg, Benkard, Berry, and Pakes (2007) and Pakes (2008) for a discussion of the
issue.
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and then forward again, there are multiple equilibria. In addition, the equi-
librium correspondence may contain one or more loops that cause additional
multiplicity. To our knowledge, our paper is the first to describe in detail the
structure of the set of equilibria of a dynamic stochastic game in the tradition
of Ericson and Pakes (1995).

The organization of the remainder of the paper is as follows. Sections 2 and 3
describe the model specification and our computational strategy. Section 4 pro-
vides an overview of the equilibrium correspondence. Section 5 analyzes in-
dustry dynamics and Section 6 characterizes the pricing behavior that drives it.
Section 7 describes how organizational forgetting can lead to multiple equilib-
ria. Section 8 undertakes a number of robustness checks. Section 9 summarizes
and concludes.

Throughout the paper, in presenting our findings, we distinguish between
results, which are established numerically through a systematic exploration of a
subset of the parameter space, and propositions, which hold true for the entire
parameter space. If a proposition establishes a possibility through an example,
then the example is presented adjacent to the proposition. If the proof of a
proposition is deductive, then it is contained in the Appendix.

2. MODEL

For expositional clarity, we focus on the basic model of an industry with
two firms and neither entry nor exit; the online Appendix (Besanko, Doraszel-
ski, Kryukov, and Satterthwaite (2010)) outlines the general model. Our basic
model is the C–R model with organizational forgetting added and, to allow for
our computational approach, specific functional forms for demand and cost.

Firms and States

We consider a discrete-time, infinite-horizon dynamic stochastic game of
complete information played by two firms. Firm n ∈ {1�2} is described by its
state en ∈ {1� � � � �M}. A firm’s state indicates its cumulative experience or stock
of know-how. By making a sale, a firm can add to its stock of know-how. Fol-
lowing C–R, we use a period just long enough for a firm to make a sale.6 As sug-
gested by the empirical studies of Argote, Beckman, and Epple (1990), Darr,
Argote, and Epple (1995), Benkard (2000), Shafer, Nembhard, and Uzumeri
(2001), and Thompson (2003), we account for organizational forgetting. Ac-
cordingly, the evolution of firm n’s stock of know-how is governed by the law
of motion

e′
n = en + qn − fn�

6A sale may involve a single unit or a batch of units (e.g., 100 aircraft or 10,000 memory chips)
that are sold to a single buyer.
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where e′
n and en denote firm n’s stock of know-how in the subsequent and

current period, respectively, the random variable qn ∈ {0�1} indicates whether
firm n makes a sale and gains a unit of know-how through learning-by-doing,
and the random variable fn ∈ {0�1} indicates whether firm n loses a unit of
know-how through organizational forgetting.

At any point in time, the industry is characterized by a vector of firms’ states
e = (e1� e2) ∈ {1� � � � �M}2. We refer to e as the state of the industry. We use e[2]

to denote the vector (e2� e1) constructed by interchanging the stocks of know-
how of firms 1 and 2.

Learning-by-Doing

Firm n’s marginal cost of production c(en) depends on its stock of know-how
en through a learning curve

c(en)=
{
κeηn if 1 ≤ en <m,
κmη if m ≤ en ≤ M ,

where η = log2 ρ for a progress ratio of ρ ∈ (0�1]. Marginal cost decreases by
100(1 − ρ) percent as the stock of know-how doubles, so that a lower progress
ratio implies a steeper learning curve. The marginal cost of production at the
top of the learning curve, c(1), is κ > 0 and, as in C–R, m represents the stock
of know-how at which a firm reaches the bottom of its learning curve.7

Organizational Forgetting

We let Δ(en) = Pr(fn = 1) denote the probability that firm n loses a unit of
know-how through organizational forgetting. We assume that this probability
is nondecreasing in the firm’s experience level. This has several advantages.
First, experimental evidence in the management literature suggests that for-
getting by individuals is an increasing function of the current stock of learned
knowledge (Bailey (1989)). Second, a direct implication of Δ(·) increasing is
that the expected stock of know-how in the absence of further learning is a de-
creasing convex function of time.8 This phenomenon, known in the psychology
literature as Jost’s second law, is consistent with experimental evidence on for-
getting by individuals (Wixted and Ebbesen (1991)). Third, in the capital–stock
model employed in empirical work on organizational forgetting, the amount of
depreciation is assumed to be proportional to the stock of know-how. Hence,
the additional know-how needed to counteract depreciation must increase with

7While C–R take the state space to be infinite, that is, M = ∞ in our notation, they make the
additional assumption that the price that a firm charges does not depend on how far it is beyond
the bottom of its learning curve (C–R, p. 1119). This is tantamount to assuming, as we do, that
the state space is finite.

8See the online Appendix for a proof.
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the stock of know-how. Our specification has this feature. However, unlike the
capital–stock model, it is consistent with a discrete state space.9

The specific functional form we employ is

Δ(en)= 1 − (1 − δ)en�

where δ ∈ [0�1] is the forgetting rate.10 If δ > 0, then Δ(en) is increasing and
concave in en; δ = 0 corresponds to the absence of organizational forgetting,
the special case C–R analyzed.11 Other functional forms are plausible, and we
explore one of them in the online Appendix.

Demand

The industry draws its customers from a large pool of potential buyers. In
each period, one buyer enters the market and purchases a good from one of the
two firms. The utility that the buyer obtains by purchasing good n is v−pn +εn,
where pn is the price of good n, v is a deterministic component of utility, and εn

is a stochastic component that captures the idiosyncratic preference for good
n of this period’s buyer. Both ε1 and ε2 are unobservable to firms, and are in-
dependently and identically type 1 extreme value distributed with location pa-
rameter 0 and scale parameter σ > 0. The scale parameter governs the degree
of horizontal product differentiation. As σ → 0, goods become homogeneous.

The buyer purchases the good that gives it the highest utility. Given our
distributional assumptions, the probability that firm n makes the sale is given
by the logit specification

Dn(p)= Pr(qn = 1)=
exp

(
v−pn

σ

)

2∑
k=1

exp
(
v−pk

σ

) = 1

1 + exp
(
pn −p−n

σ

) �

where p = (p1�p2) is the vector of prices and p−n denotes the price the other
firm charges. Demand effectively depends on differences in prices because we

9See Benkard (2004) for an alternative approximation to the capital–stock model.
10One way to motivate this functional form is to imagine that the stock of know-how is dis-

persed among a firm’s workforce. In particular, assume that en is the number of skilled workers
and that organizational forgetting is the result of labor turnover. Then, given a turnover rate of
δ, Δ(en) is the probability that at least one of the en skilled workers leaves the firm.

11In state e = (e1� e2) ∈ {m�m+ 1� � � � �M}2 where both firms have reached the bottom of their
learning curves, if one firm adds a unit of know-how, moving the industry to either state e′ =
(e1 +1� e2) or state e′′ = (e1� e2 +1), then firms’ marginal costs remain constant and equal. If there
is learning but no forgetting (ρ < 1, δ = 0), then each pair of states e′� e′′ ∈ {m�m + 1� � � � �M}2

satisfies Maskin and Tirole’s (2001, p. 204) criterion for belonging “to the same element of the
Markov partition.” If, however, there is both learning and forgetting (ρ < 1, δ > 0), then every
state e ∈{1� � � � �M}2 is a distinct member of the Markov partition and is payoff-relevant.
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assume, as do C–R, that the buyer always purchases from one of the two firms
in the industry. In Section 8 we discuss the effects of including an outside good
in the specification.

State-to-State Transitions

From one period to the next, a firm’s stock of know-how moves up or down or
remains constant depending on realized demand qn ∈ {0�1} and organizational
forgetting fn ∈ {0�1}. The transition probabilities are

Pr(e′
n|en�qn)=

{
1 −Δ(en) if e′

n = en + qn,
Δ(en) if e′

n = en + qn − 1,

where, at the upper and lower boundaries of the state space, we modify the
transition probabilities to be Pr(M|M�1) = 1 and Pr(1|1�0) = 1, respectively.
Note that a firm can increase its stock of know-how only if it makes a sale in
the current period, an event that has probability Dn(p); otherwise, it runs the
risk that its stock of know-how decreases.

Bellman Equation

We define Vn(e) to be the expected net present value of firm n’s cash flows
if the industry is currently in state e. The value function Vn : {1� � � � �M}2 →
[−V̂ � V̂ ], where V̂ is a sufficiently large constant, is implicitly defined by the
Bellman equation

Vn(e) = max
pn

Dn(pn�p−n(e))(pn − c(en))(1)

+β

2∑
k=1

Dk(pn�p−n(e))V nk(e)�

where p−n(e) is the price charged by the other firm in state e, β ∈ (0�1) is
the discount factor, and V nk(e) is the expectation of firm n’s value function
conditional on the buyer purchasing the good from firm k ∈ {1�2} in state e as
given by

V n1(e) =
e1+1∑
e′

1=e1

e2∑
e′

2=e2−1

Vn(e′)Pr(e′
1|e1�1)Pr(e′

2|e2�0)�(2)

V n2(e) =
e1∑

e′
1=e1−1

e2+1∑
e′

2=e2

Vn(e′)Pr(e′
1|e1�0)Pr(e′

2|e2�1)�(3)
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The policy function pn : {1� � � � �M}2 → [−p̂� p̂], where p̂ is a sufficiently
large constant, specifies the price pn(e) that firm n sets in state e.12 Let
hn(e�pn�p−n(e)�Vn) denote the maximand in the Bellman equation (1). Dif-
ferentiating it with respect to pn and using the properties of logit demand, we
obtain the first-order condition (FOC)

0 = ∂hn(·)
∂pn

= 1
σ
Dn(pn�p−n(e))

(
σ − (pn − c(en))−βV nn(e)+ hn(·)

)
�

Differentiating hn(·) a second time yields

∂2hn(·)
∂p2

n

= 1
σ

∂hn(·)
∂pn

(
2Dn(pn�p−n(e))− 1

) − 1
σ
Dn(pn�p−n(e))�

If the FOC is satisfied, then ∂2hn(·)
∂p2

n
= − 1

σ
Dn(pn�p−n(e)) < 0. hn(·) is therefore

strictly quasiconcave in pn, so that the pricing decision pn(e) is uniquely deter-
mined by the solution to the FOC (given p−n(e)).

Equilibrium

In our model, firms face identical demand and cost primitives. Asymmetries
between firms arise endogenously from the effects of their pricing decisions on
realized demand and organizational forgetting. Hence, we focus attention on
symmetric Markov-perfect equilibria (MPE). In a symmetric equilibrium, the
pricing decision taken by firm 2 in state e is identical to the pricing decision
taken by firm 1 in state e[2], that is, p2(e) = p1(e[2]), and similarly for the value
function. It therefore suffices to determine the value and policy functions of
firm 1. We define V (e) = V1(e) and p(e) = p1(e) for each state e. Further, we
let V k(e) = V 1k(e) denote the conditional expectation of firm 1’s value func-
tion and let Dk(e) = Dk(p(e)�p(e[2])) denote the probability that the buyer
purchases from firm k ∈ {1�2} in state e.

Given this notation, the Bellman equation and FOC can be expressed as

F 1
e (V

∗�p∗) = −V ∗(e)+D∗
1(e)(p

∗(e)− c(e1))(4)

+β

2∑
k=1

D∗
k(e)V

∗
k(e)

= 0�

12In what follows, we assume that p̂ is chosen large enough to not constrain pricing behavior.
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F 2
e (V

∗�p∗) = σ − (1 −D∗
1(e))(p

∗(e)− c(e1))−βV ∗
1(e)(5)

+β

2∑
k=1

D∗
k(e)V k

∗(e)

= 0�

where we use asterisks to denote an equilibrium. The collection of equa-
tions (4) and (5) for all states e ∈ {1� � � � �M}2 can be written more compactly
as

F(V∗�p∗)=

⎡
⎢⎢⎢⎣

F 1
(1�1)(V

∗�p∗)

F 1
(2�1)(V

∗�p∗)
���

F 2
(M�M)(V

∗�p∗)

⎤
⎥⎥⎥⎦ = 0�(6)

where 0 is a (2M2 ×1) vector of zeros. Any solution to this system of 2M2 equa-
tions in 2M2 unknowns V∗ = (V ∗(1�1)�V ∗(2�1)� � � � � V ∗(M�M)) and p∗ =
(p∗(1�1)�p∗(2�1)� � � � �p∗(M�M)) is a symmetric equilibrium in pure strate-
gies. A slightly modified version of Proposition 2 in Doraszelski and Satterth-
waite (2010) establishes that such an equilibrium always exists.

Baseline Parameterization

Since our focus is on how learning-by-doing and organizational forgetting
affect pricing behavior and the industry dynamics this behavior implies, we ex-
plore the full range of values for the progress ratio ρ and the forgetting rate δ.
To do so, we fix the remaining parameters to their baseline values given below.
We specify a grid of 100 equidistant values of ρ ∈ (0�1]. For each of them, we
use the homotopy algorithm described in Section 3 to trace the equilibrium as
δ ranges from 0 to 1. Typically this entails solving the model for a few thousand
intermediate values of δ. If an important or interesting property is true for
each of these systematically computed equilibria, then we report it as a result.
In Section 8 we then vary the values of the parameters other than ρ and δ so as
to discuss their influence on the equilibrium and demonstrate the robustness
of our conclusions.

While we explore the full range of values for ρ and δ, we note that most
empirical estimates of progress ratios are in the range of 0�7 to 0�95 (Dutton
and Thomas (1984)). However, a very steep learning curve, with ρ much less
than 0�7, may also capture a practically relevant situation. Suppose the first
unit of a product is a hand-built prototype and the second unit is a guinea pig
for organizing the production line. After this point, the gains from learning-by-
doing are more or less exhausted and the marginal cost of production is close to
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zero.13 Benkard (2000) and Argote, Beckman, and Epple (1990) found monthly
rates of depreciation ranging from 4 to 25 percent of the stock of know-how.
In the online Appendix, we show how to map these estimates that are based on
a capital–stock model of organizational forgetting into our specification. The
implied values of the forgetting rate δ fall below 0�1.

In our baseline parameterization we set M = 30 and m = 15. The marginal
cost at the top of the learning curve κ is equal to 10. For a progress ratio
of ρ = 0�85, this implies that the marginal cost of production declines from a
maximum value of c(1)= 10 to a minimum value of c(15)= · · · = c(30)= 5�30.
For ρ = 0�15, we have the case of a hand-built prototype where the marginal
cost of production declines very quickly from c(1) = 10 to c(2) = 1�50 and
c(3)= 0�49 to c(15)= · · · = c(30)= 0�01.

Turning to demand, we set σ = 1 in our baseline parameterization. To illus-
trate, in the Nash equilibrium of a static price-setting game (obtained by setting
β= 0 in our model), the own-price elasticity of demand ranges between −8�86
in state (1�15) and −2�13 in state (15�1) for a progress ratio of ρ = 0�85. The
cross-price elasticity of firm 1’s demand with respect to firm 2’s price is 2�41
in state (15�1) and 7�84 in state (1�15). For ρ = 0�15, the own-price elasticity
ranges between −9�89 and −1�00, and the cross-price elasticity ranges between
1�00 and 8�05. These reasonable elasticities suggest that the results reported
below are not artifacts of extreme parameterizations.

We finally set the discount factor to β= 1
1�05 . It may be thought of as β = ζ

1+r
,

where r > 0 is the per-period discount rate and ζ ∈ (0�1] is the exogenous
probability that the industry survives from one period to the next. Conse-
quently, our baseline parameterization corresponds to a variety of scenarios
that differ in the length of a period. For example, it corresponds to a period
length of 1 year, a yearly discount rate of 5 percent, and certain survival. Per-
haps more interestingly, it also corresponds to a period length of 1 month, a
monthly discount rate of 1 percent (which translates into a 12�68 percent an-
nual discount rate), and a monthly survival probability of 0�96. To put this—our
focal scenario—in perspective, technology companies such as IBM and Mi-
crosoft had costs of capital in the range of 11 to 15 percent per annum in the
late 1990s. Furthermore, an industry with a monthly survival probability of 0�96
has an expected lifetime of 26�25 months. Thus this scenario is consistent with
a pace of innovative activity that is expected to make the current generation of
products obsolete within 2–3 years.

13To avoid a marginal cost of close to zero, shift the cost function c(en) by τ > 0. While intro-
ducing a component of marginal cost that is unresponsive to learning-by-doing shifts the policy
function by τ, the value function and the industry dynamics remain unchanged.
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3. COMPUTATION

In this section we first describe a novel algorithm for computing equilibria
of dynamic stochastic games that is based on the homotopy method.14 Then we
turn to the P–M algorithm that is the standard means for computing equilibria
in the literature following Ericson and Pakes (1995). We show that it is inade-
quate for characterizing the set of solutions to our model, although it remains
useful for obtaining a starting point for the homotopy algorithm. A reader who
is more interested in the economic implications of learning and forgetting may
skip ahead to Section 4 after reading the first part of this section that intro-
duces the homotopy algorithm by way of an example.

3.1. Homotopy Algorithm

Our goal is to explore the graph of the equilibrium correspondence as the
forgetting rate δ and the progress ratio ρ vary:

F−1 = {(V∗�p∗� δ�ρ)|F(V∗�p∗;δ�ρ) = 0� δ ∈ [0�1]�ρ ∈ (0�1]}�(7)

where F(·) is the system of equations (6) that defines an equilibrium, and we
make explicit that it depends on δ and ρ (recall that we hold fixed the remain-
ing parameters). The graph F−1 is a surface, or set of surfaces, that may have
folds. Our homotopy algorithm explores this graph by taking slices of it for
given values of ρ:

F−1(ρ)= {(V∗�p∗� δ)|F(V∗�p∗;δ�ρ)= 0� δ ∈ [0�1]}�(8)

The homotopy algorithm starts from a single equilibrium that has already been
computed and traces out an entire path of equilibria in F−1(ρ) by varying δ.
The homotopy algorithm is therefore also called a path-following algorithm
and δ is the homotopy parameter.

EXAMPLE: An example helps explain how the homotopy algorithm works.
Consider the equation F(x;δ)= 0, where

F(x;δ)= −15�289 − δ

1 + δ4
+ 67�500x− 96�923x2 + 46�154x3�(9)

Equation (9) implicitly relates an endogenous variable x to an exogenous pa-
rameter δ. Figure 1 graphs the set of solutions F−1 = {(x�δ)|F(x;δ) = 0� δ ∈
[0�1]}. There are multiple solutions at δ = 0�3, namely x = 0�610, x = 0�707,

14See Schmedders (1998, 1999) for an application of the homotopy method to general equilib-
rium models with incomplete asset markets and see Berry and Pakes (2007) for an application to
estimating demand systems.
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FIGURE 1.—Homotopy example.

and x = 0�783. Finding them is trivial with the graph in hand, but even for this
simple case, the graph is less than straightforward to draw. Whether one solves
F(x;δ) = 0 for x taking δ as given or for δ taking x as given, the result is a
correspondence, not a function.

The homotopy method introduces an auxiliary variable s that indexes each
point on the graph, starting at point A for s = 0 and ending at point D for
s = s̄. The graph is then just the parametric path given by a pair of functions
(x(s)�δ(s)) that satisfy F(x(s);δ(s)) = 0 or, equivalently, (x(s)�δ(s)) ∈ F−1.
While there are infinitely many such pairs, a simple way to select a member of
this family is to differentiate F(x(s);δ(s))= 0 with respect to s:

∂F(x(s);δ(s))
∂x

x′(s)+ ∂F(x(s);δ(s))
∂δ

δ′(s) = 0�(10)

This differential equation in two unknowns x′(s) and δ′(s) must be satisfied
so as to remain “on path.” One possible approach for tracing out the path in
F−1 is to solve equation (10) for the ratio x′(s)

δ′(s) = − ∂F(x(s);δ(s))/∂δ
∂F(x(s);δ(s))/∂x that indicates

the direction of the next step along the path from s to s + ds. This approach,
however, fails because the ratio switches from +∞ to −∞ at points such as B
in Figure 1. So instead of solving for the ratio, we simply solve for each term of
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the ratio. This insight implies that the graph F−1 in Figure 1 is the solution to
the system of differential equations

x′(s) = ∂F(x(s);δ(s))
∂δ

� δ′(s) = −∂F(x(s);δ(s))
∂x

�(11)

These are the so-called basic differential equations for our example. They re-
duce the task of tracing out the set of solutions to solving a system of differ-
ential equations. Given an initial condition, this can be done with a variety of
methods (see Chapter 10 of Judd (1998)). If δ = 0, then F(x;δ) = 0 is easily
solved for x = 0�5, thereby providing an initial condition (point A in Figure 1).
From there the homotopy algorithm uses the basic differential equations to de-
termine the next step along the path. It continues to follow—step by step—the
path until it reaches δ= 1 (point D). In our example, the auxiliary variable s is
decreasing from point A to point D. Therefore, whenever δ′(s) switches sign
from negative to positive (point B), the path is bending backward and there are
multiple solutions. Conversely, whenever the sign of δ′(s) switches back from
positive to negative (point C), the path is bending forward.

Returning to our model of learning and forgetting, let x = (V∗�p∗) denote
the 2M2 endogenous variables. Our goal is to explore F−1(ρ), a slice of the
graph of the equilibrium correspondence. Proceeding as in our example, a
parametric path is a set of functions (x(s)�δ(s)) ∈ F−1(ρ). Differentiating
F(x(s);δ(s)�ρ) = 0 with respect to s yields the necessary conditions for re-
maining on path:

∂F(x(s);δ(s)�ρ)
∂x

x′(s)+ ∂F(x(s);δ(s)�ρ)
∂δ

δ′(s) = 0�(12)

where ∂F(x(s);δ(s)�ρ)
∂x is the (2M2 ×2M2) Jacobian, x′(s) and ∂F(x(s);δ(s)�ρ)

∂δ
are (2M2 ×

1) vectors, and δ′(s) is a scalar. This system of 2M2 differential equations in the
2M2 +1 unknowns x′

i(s), i = 1� � � � �2M2, and δ′(s) has a solution that obeys the
basic differential equations

y ′
i(s) = (−1)i+1 det

((
∂F(y(s);ρ)

∂y

)
−i

)
� i = 1� � � � �2M2 + 1�(13)

where y(s) = (x(s)�δ(s)) and the notation (·)−i is used to indicate that the
ith column is removed from the (2M2 × 2M2 + 1) Jacobian ∂F(y(s);ρ)

∂y . Note that
equation (13) reduces to equation (11) if x is a scalar instead of a vector. Garcia
and Zangwill (1979) and Chapter 2 of Zangwill and Garcia (1981) proved that
the basic differential equations (13) satisfy the conditions in equation (12).

The homotopy method requires that F(y;ρ) be continuously differentiable
with respect to y and that the Jacobian ∂F(y;ρ)

∂y have full rank at all points
in F−1(ρ). To appreciate the importance of the latter requirement, known as
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regularity, note that if the Jacobian ∂F(y(s);ρ)
∂y has less than full rank at some

point y(s), then the determinants of all its (2M2 × 2M2) submatrices are
zero. Hence, according to the basic differential equations (13), y ′

i(s) = 0 for
i = 1� � � � �2M2 + 1, and the algorithm stalls. On the other hand, with regular-
ity in place, the implicit function theorem ensures that F−1(ρ) consists only of
continuous paths; paths that suddenly terminate, endless spirals, branch points,
isolated equilibria, and continua of equilibria are ruled out (see Chapter 1 of
Zangwill and Garcia (1981)).

While our assumed functional forms ensure continuous differentiability, we
have been unable to establish regularity analytically. Indeed, we have numeri-
cal evidence suggesting that regularity can fail. In practice, failures of regularity
are not a problem as long as they are confined to isolated points. Because our
algorithm computes just a finite number of points along the path, it is extremely
unlikely to hit an irregular point.15 We refer the reader to Borkovsky, Doraszel-
ski, and Kryukov (2010) for a fuller discussion of this issue and a step-by-step
guide to solving dynamic stochastic games using the homotopy method.

As Result 1 in Section 4 shows, we have always been able to trace out a path
in F−1(ρ) that starts at the equilibrium for δ = 0 and ends at the equilibrium
for δ = 1. Whenever this “main path” folds back on itself, the homotopy algo-
rithm automatically identifies multiple equilibria. This makes it well suited for
models like ours that have multiple equilibria.

Nevertheless, the homotopy algorithm cannot be guaranteed to find all equi-
libria.16 The slice F−1(ρ) may contain additional equilibria that are off the main
path. These equilibria form one or more loops (see Result 1 in Section 4). We
have two intuitively appealing but potentially fallible ways to try and identify
additional equilibria. First, we use a large number of restarts of the P–M algo-
rithm, often trying to “propagate” equilibria from “nearby” parameterizations.
Second, and more systematically, just as we can choose δ as the homotopy pa-
rameter while keeping ρ fixed, we can choose ρ while keeping δ fixed. This
allows us to “crisscross” the parameter space in an orderly fashion by using
the equilibria on the δ-slices as initial conditions to generate ρ-slices. A ρ-slice
must either intersect with all δ-slices or lead us to an additional equilibrium
that, in turn, gives us an initial condition to generate an additional δ-slice. We
continue this process until all the ρ- and δ-slices “match up” (for details see
Grieco (2008)).

3.2. Pakes and McGuire (1994) Algorithm

While the homotopy method has advantages in finding multiple equilibria,
it cannot stand alone. The P–M algorithm (or some other means for solving a

15Our programs use Hompack (Watson, Billups, and Morgan (1987), Watson et al. (1997))
written in Fortran 90. They are available from the authors upon request.

16Unless the system of equations that defines them happens to be polynomial; see Judd and
Schmedders (2004) for some early efforts along this line.
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system of nonlinear equations) is necessary to compute a starting point for our
homotopy algorithm.

Recall that V2(e) = V1(e[2]) and p2(e) = p1(e[2]) for each state e in a sym-
metric equilibrium, and it therefore suffices to determine V and p, the value
and policy functions of firm 1. The P–M algorithm is iterative. An iteration cy-
cles through the states in some predetermined order and updates V and p as
it progresses from one iteration to the next. The strategic situation firms face
in setting prices in state e is similar to a static game if the value of continued
play is taken as given. The P–M algorithm computes the best reply of firm 1
against p(e[2]) in this game and uses it to update the value and policy functions
of firm 1 in state e.

More formally, let h1(e�p1�p(e[2])�V) be the maximand in the Bellman
equation (1) after symmetry is imposed. The best reply of firm 1 against p(e[2])
in state e is given by

G2
e(V�p)= arg max

p1
h1

(
e�p1�p

(
e[2])�V

)
(14)

and the value associated with it is

G1
e(V�p)= max

p1
h1

(
e�p1�p

(
e[2])�V

)
�(15)

Write the collection of equations (14) and (15) for all states e ∈ {1� � � � �M}2 as

G(V�p)=

⎛
⎜⎜⎜⎝

G1
(1�1)(V�p)

G1
(2�1)(V�p)

���
G2

(M�M)(V�p)

⎞
⎟⎟⎟⎠ �(16)

Given an initial guess x0 = (V0�p0), the P–M algorithm executes the iteration

xk+1 = G(xk)� k= 0�1�2� � � � �

until the changes in the value and policy functions of firm 1 are deemed small
(or a failure to converge is diagnosed).

The P–M algorithm does not lend itself to computing multiple equilibria.
To identify more than one equilibrium (for a given parameterization of the
model), it must be restarted from different initial guesses, but different initial
guesses may or may not lead to different equilibria. This, however, still under-
states the severity of the problem. Whenever our dynamic stochastic game has
multiple equilibria, the P–M algorithm cannot compute a substantial fraction
of them even if an arbitrarily large number of initial guesses are tried.

The problem is this. The P–M algorithm continues to iterate until it reaches a
fixed point x = G(x). A necessary condition for convergence is local stability of
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the fixed point. Consider the (2M2 ×2M2) Jacobian ∂G(x)
∂x at the fixed point and

let �(∂G(x)
∂x ) be its spectral radius.17 The fixed point is locally stable under the

P–M algorithm if �(∂G(x)
∂x ) < 1, that is, if all eigenvalues are within the complex

unit circle. Given local stability, the P–M algorithm converges provided that
the initial guess is close (perhaps very close) to the fixed point. Conversely, if
�(∂G(x)

∂x ) ≥ 1, then the fixed point is unstable and the P–M algorithm cannot
compute it. The following proposition identifies a subset of equilibria that the
P–M algorithm cannot compute.

PROPOSITION 1: Let (x(s)�δ(s)) ∈ F−1(ρ) be a parametric path of equilibria.
(i) If δ′(s) ≤ 0, then �(∂G(x(s))

∂x |(δ(s)�ρ)) ≥ 1 and the equilibrium x(s) is unstable
under the P–M algorithm.

(ii) Moreover, the equilibrium x(s) remains unstable with either dampening or
extrapolation applied to the P–M algorithm.

Part (i) of Proposition 1 establishes that the P–M algorithm cannot com-
pute equilibria on any part of the path for which δ′(s) ≤ 0� Whenever δ′(s)
switches sign from positive to negative, the main path connecting the equilib-
rium at δ= 0 with the equilibrium at δ= 1 bends backward and multiple equi-
libria arise. Conversely, whenever the sign of δ′(s) switches back from neg-
ative to positive, the main path bends forward. Hence, for a fixed forgetting
rate δ(s), between two equilibria for which δ′(s) > 0 lies a third—necessarily
unstable—equilibrium for which δ′(s) ≤ 0� Similarly, a loop has equilibria for
which δ′(s) > 0 and equilibria for which δ′(s) ≤ 0. Consequently, if we have
multiple equilibria (for a given parameterization of the model), then the P–M
algorithm can compute at best 1/2 to 2/3 of them.

Dampening and extrapolation are often applied to the P–M algorithm in the
hope of improving its likelihood or speed of convergence. The iteration

xk+1 = ωG(xk)+ (1 −ω)xk� k = 0�1�2� � � � �

is said to be dampened if ω ∈ (0�1) and extrapolated if ω ∈ (1�∞). Part (ii) of
Proposition 1 establishes the futility of these attempts.18

The ability of the P–M algorithm to provide a reasonably complete picture of
the set of solutions to the model is limited beyond the scope of Proposition 1.
Our numerical analysis indicates that the P–M algorithm cannot compute equi-
libria on some part of the path for which δ′(s) > 0:

PROPOSITION 2: Let (x(s)�δ(s)) ∈ F−1(ρ) be a parametric path of equilibria.
Even if δ′(s) > 0, we may have �(∂G(x(s))

∂x |(δ(s)�ρ)) ≥ 1 so that the equilibrium x(s)
is unstable under the P–M algorithm.

17Let A be an arbitrary matrix and let ς(A) be the set of its eigenvalues. The spectral radius of
A is �(A)= max{|λ| :λ ∈ ς(A)}.

18Dampening and extrapolation may, of course, still be helpful in computing equilibria for
which δ′(s) > 0.
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In the online Appendix we prove Proposition 2 by way of an example and
illustrate equilibria of our model that the P–M algorithm cannot compute.

As is well known, not all Nash equilibria of static games are stable under best
reply dynamics (see Chapter 1 of Fudenberg and Tirole (1991)).19 Since the
P–M algorithm incorporates best reply dynamics, it is reasonable to expect that
this limits its usefulness. In the online Appendix, we argue that this is not the
case. More precisely, we show that, holding fixed the value of continued play,
the best reply dynamics are contractive and therefore converge to a unique
fixed point irrespective of the initial guess. The value function iteration also is
contractive, holding fixed the policy function. Hence, each of the two building
blocks of the P–M algorithm “works.” What makes it impossible to obtain a
substantial fraction of equilibria is the interaction of value function iteration
with best reply dynamics.

The P–M algorithm is a pre-Gauss–Jacobi method. The subsequent litera-
ture has instead sometimes used a pre-Gauss–Seidel method (Benkard (2004),
Doraszelski and Judd (2008)). Whereas a Gauss–Jacobi method replaces the
old guesses for the value and policy functions with the new guesses at the end of
an iteration after all states have been visited, a Gauss–Seidel method updates
after each state. This has the advantage that “information” is used as soon as
it becomes available (see Chapters 3 and 5 of Judd (1998)). We have been un-
able to prove that Proposition 1 carries over to this alternative algorithm. We
note, however, that the Stein–Rosenberg theorem (see Proposition 6.9 in Sec-
tion 2.6 of Bertsekas and Tsitsiklis (1997)) asserts that for certain systems of
linear equations, if the Gauss–Jacobi algorithm fails to converge, then so does
the Gauss–Seidel algorithm. Hence, it does not seem reasonable to presume
that the Gauss–Seidel variant of the P–M algorithm is immune to the difficul-
ties the original algorithm suffers.

4. EQUILIBRIUM CORRESPONDENCE

This section provides an overview of the equilibrium correspondence. In the
absence of organizational forgetting, C–R established uniqueness of equilib-
rium. Theorem 2.2 in C–R extends to our model:

PROPOSITION 3: If organizational forgetting is either absent (δ = 0) or certain
(δ= 1), then there is a unique equilibrium.20

The cases of δ = 0 and δ= 1 are special in that they ensure that movements
through the state space are unidirectional. When δ= 0, a firm can never move

19More generally, in static games, Nash equilibria of degree −1 are unstable under any Nash
dynamics, that is, dynamics with rest points that coincide with Nash equilibria, including replica-
tor and smooth fictitious play dynamics (Demichelis and Germano (2002)).

20Proposition 3 pertains to both symmetric and asymmetric equilibria.
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“backward” to a lower state and when δ = 1, it can never move “forward” to a
higher state. Hence, backward induction can be used to establish uniqueness of
equilibrium (see Section 7 for details). In contrast, when δ ∈ (0�1), a firm can
move in either direction. These bidirectional movements break the backward
induction and make multiple equilibria possible:

PROPOSITION 4: If organizational forgetting is neither absent (δ = 0) nor cer-
tain (δ= 1), then there may be multiple equilibria.

Figure 2 proves the proposition and illustrates the extent of multiplicity. It
shows the number of equilibria that we have identified for each combination of
progress ratio ρ and forgetting rate δ. Darker shades indicate more equilibria.
As can be seen, we have found up to nine equilibria for some values of ρ and δ.
Multiplicity is especially pervasive for forgetting rates δ in the empirically rel-
evant range below 0�1.

In dynamic stochastic games with finite actions, Herings and Peeters (2004)
have shown that generically the number of MPE is odd. While they consider
both symmetric and asymmetric equilibria, in a two-player game with symmet-
ric primitives such as ours, asymmetric equilibria occur in pairs. Hence, their
result immediately implies that generically the number of symmetric equilibria

FIGURE 2.—Number of equilibria.
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is odd in games with finite actions. Figure 2 suggests that this carries over to
our setting with continuous actions.

To understand the geometry of how multiple equilibria arise, we take a close
look at the slices of the graph of the equilibrium correspondence that our ho-
motopy algorithm computes.

RESULT 1: The slice F−1(ρ) contains a unique path that connects the equilib-
rium at δ= 0 with the equilibrium at δ= 1. In addition, F−1(ρ) may contain (one
or more) loops that are disjoint from this “main path” and from each other.

Figure 3 illustrates Result 1. To explain this figure, recall that an equilibrium
consists of a value function V∗ and a policy function p∗, and is thus an element
of a high-dimensional space. To succinctly represent it, we proceed in two steps.
First, we use p∗ to construct the probability distribution over next period’s state
e′ given this period’s state e, that is, the transition matrix that characterizes the
Markov process of industry dynamics. We compute the transient distribution
over states in period t, μt(·), starting from state (1�1) in period 0. This tells us
how likely each possible industry structure is in period t� given that both firms
began at the top of their learning curves. In addition, we compute the limit-
ing (or ergodic) distribution over states, μ∞(·).21 The transient distributions
capture short-run dynamics and the limiting distribution captures long-run (or
steady-state) dynamics.

Second, we use the transient distribution over states in period t, μt(·), to
compute the expected Herfindahl index

Ht =
∑

e

(D∗
1(e)

2 +D∗
2(e)

2)μt(e)�

The time path of Ht summarizes the implications of learning and forgetting for
industry dynamics. If the industry evolves asymmetrically, then Ht > 0�5. The
maximum expected Herfindahl index

H∧ = max
t∈{1�����100}

Ht

is a summary measure of short-run industry concentration. The limiting ex-
pected Herfindahl index H∞, computed using μ∞(·) instead of μt(·), is a sum-
mary measure of long-run industry concentration. If H∞ > 0�5, then an asym-
metric industry structure persists.

21Let P be the M2 × M2 transition matrix. The transient distribution in period t is given by
μt = μ0Pt , where μ0 is the 1×M2 initial distribution and Pt the tth matrix power of P. If δ ∈ (0�1),
then the Markov process is irreducible because logit demand implies that the probability moving
forward is always nonzero. That is, all its states belong to a single closed communicating class
and the 1 × M2 limiting distribution μ∞ solves the system of linear equations μ∞ = μ∞P. If
δ = 0 (δ = 1), then there is also a single closed communicating class, but its sole member is state
(M�M) ((1�1)).
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FIGURE 3.—Limiting expected Herfindahl index H∞ (solid line) and maximum expected
Herfindahl index H∧ (dashed line).
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In Figure 3 we visualize F−1(ρ) for a variety of progress ratios by plotting
H∧ (dashed line) and H∞ (solid line). As can be seen, multiple equilibria arise
whenever the main path folds back on itself. Moreover, there is one loop for
ρ ∈ {0�75�0�65�0�55�0�15�0�05}, two loops for ρ ∈ {0�85�0�35}, and three loops
for ρ= 0�95, thus adding further multiplicity.

Figure 3 is not necessarily a complete picture of the equilibria to our model.
As discussed in Section 3.1, no algorithm is guaranteed to find all equilibria.
We do find all equilibria along the main path and we have been successful in
finding a number of loops, but other loops may exist because, to trace out a
loop, we must somehow compute at least one equilibrium on the loop, and
doing so is problematic.

Types of Equilibria

Despite the multiplicity, the equilibria of our game exhibit the four typ-
ical patterns shown in Figure 4.22 The parameter values are ρ = 0�85 and
δ ∈ {0�0�0275�0�08}; they represent the median progress ratio across a wide
array of empirical studies combined with the cases of no, low, and high organi-
zational forgetting. One should recognize that the typical patterns, helpful as
they are in understanding the range of behaviors that can occur, lie on a con-
tinuum and thus morph into each other in complicated ways as we change the
parameter values.

The upper left panel of Figure 4 is typical for what we call a flat equilibrium
without well (ρ = 0�85, δ = 0). The policy function is very even over the entire
state space. In particular, the price that a firm charges in equilibrium is fairly
insensitive to its rival’s stock of know-how. The upper right panel shows a flat
equilibrium with well (ρ= 0�85, δ= 0�0275). While the policy function remains
even over most of the state space, price competition is intense during the in-
dustry’s birth. This manifests itself as a “well” in the neighborhood of state
(1�1).

The lower left panel of Figure 4 exemplifies a trenchy equilibrium (ρ = 0�85,
δ= 0�0275). The parameter values are the same as for the flat equilibrium with
well, thereby providing an instance of multiplicity.23 The policy function is un-
even and exhibits a “trench” along the diagonal of the state space. This trench
starts in state (1�1) and extends beyond the bottom of the learning curve in

22The value functions corresponding to the policy functions in Figure 4 can be found in the
online Appendix where we also provide tables of the value and policy functions for ease of refer-
ence.

23As can be seen in the upper right panel of Figure 3, the main path in F−1(0�85) bends back
on itself at δ = 0�0275, and there are three equilibria for slightly lower values of δ and only
one for slightly higher values. This particular parameterization (if not the pattern of behavior
it generates) is therefore almost nongeneric in that it approximates the isolated occurrence of
an even number of equilibria. Due to the limited precision of our homotopy algorithm, we have
indeed been unable to find a third equilibrium.
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FIGURE 4.—Policy function p∗(e1� e2); marginal cost c(e1) (solid line in e2 = 30 plane).

state (m�m) all the way to state (M�M). Hence, in a trenchy equilibrium,
price competition between firms with similar stocks of know-how is intense but
abates once firms become asymmetric. Finally, the lower right panel illustrates
an extra-trenchy equilibrium (ρ = 0�85, δ = 0�08). The policy function has not
only a diagonal trench, but also trenches parallel to the edges of the state space.
In these sideways trenches, the leader competes aggressively with the follower.

Sunspots

For a progress ratio of ρ = 1 the marginal cost of production is constant
at c(1) = · · · = c(M) = κ and there are no gains from learning-by-doing. It
clearly is an equilibrium for firms to disregard their stocks of know-how and
set the same prices as in the Nash equilibrium of a static price-setting game
(obtained by setting β = 0). Since firms’ marginal costs are constant, so are
the static Nash equilibrium prices. Thus, we have an extreme example of a
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flat equilibrium with p∗(e) = κ + 2σ = 12 and V ∗(e) = σ
1−β

= 21 for all states
e ∈ {1� � � � �M}2.

Figure 2 shows that, in case of ρ = 1, there are two more equilibria for a
range of forgetting rates δ below 0�1. Since the state of the industry has no
bearing on the primitives, we refer to these equilibria as sunspots. One of the
sunspots is a trenchy equilibrium while the other one is, depending on δ, either
a flat or a trenchy equilibrium. In the trenchy equilibrium, the industry evolves
toward an asymmetric structure where the leader charges a lower price than
the follower and enjoys a higher probability of making a sale. Consequently,
the net present value of cash flows to the leader exceeds that to the follower.
The value in state (1�1), however, is lower than in the static Nash equilibrium,
that is, V ∗(1�1) < 21.24 This indicates that value is destroyed as firms fight for
dominance.

The existence of sunspots and the fact that these equilibria persist for ρ ≈ 1
suggests that the concept of MPE is richer than one may have thought. Be-
sides describing the physical environment of the industry, the state serves as a
summary of the history of play: A larger stock of know-how indicates that—on
average—a firm has won more sales than its rival, with the likely reason being
that the firm has charged lower prices. Hence, by conditioning their current
behavior on the state, firms implicitly condition on the history of play. The dif-
ference with a subgame perfect equilibrium is that there firms have the entire
history of play at their disposal, whereas here they have but a crude indica-
tion of it. Nevertheless, “barely” payoff-relevant state variables (such as firms’
stocks of know-how if ρ≈ 1) open the door for bootstrap-type equilibria, which
are familiar from repeated games, to arise in Markov-perfect settings.

In sum, accounting for organizational forgetting in a model of learning-by-
doing leads to multiple equilibria and a rich array of pricing behaviors. In the
next section we explore what these behaviors entail for industry dynamics, both
in the short run and in the long run.

5. INDUSTRY DYNAMICS

Figures 5 and 6 display the transient distribution in periods 8 and 32, re-
spectively, and Figure 7 displays the limiting distribution for our four typical
cases.25 In the flat equilibrium without well (ρ= 0�85, δ= 0, upper left panels),
the transient and limiting distributions are unimodal. The most likely industry
structure is symmetric. For example, the modal state is (5�5) in period 8, is
(9�9) in period 16, is (17�17) in period 32, and is (30�30) in period 64. Turn-
ing from the short run to the long run, the industry is sure to remain in state
(30�30), because with logit demand, a firm always has a positive probability of

24For example, if δ = 0�0275, then V ∗(28�21) = 25�43 and p∗(28�21) = 12�33 for the leader,
V ∗(21�28) = 22�39 and p∗(21�28) = 12�51 for the follower, and V ∗(1�1) = 19�36.

25To avoid clutter, we do not graph states that have probability of less than 10−4.
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FIGURE 5.—Transient distribution over states in period 8 given initial state (1�1).

making a sale irrespective of its own price and that of its rival so that, in the
absence of organizational forgetting, both firms must eventually reach the bot-
tom of their learning curves.26 In short, the industry starts symmetric and stays
symmetric.

By contrast, in the flat equilibrium with well (ρ = 0�85, δ = 0�0275, upper
right panels), the transient distributions are first bimodal and then unimodal
as is the limiting distribution. The modal states are (1�8) and (8�1) in period 8,
are (4�11) and (11�4) in period 16, and are (9�14) and (14�9) in period 32,
but the modal state is (17�17) in period 64 and the modal states of the limiting
distribution are (24�25) and (25�24). Thus, as time passes, firms end up com-
peting on equal footing. In sum, the industry evolves first toward an asymmetric

26The absence of persistent asymmetries is not an artifact of our functional forms. C–R pointed
out that it holds true as long as the support of demand is unbounded (see their Assumption 1(a)
and footnote 6 on p. 1118).
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FIGURE 6.—Transient distribution over states in period 32 given initial state (1�1).

structure and then toward a symmetric structure. As we discuss in detail in the
Section 6, the well serves to build, but not to defend, a competitive advantage.

While the modes of the transient distributions are more separated and pro-
nounced in the trenchy equilibrium (ρ = 0�85, δ = 0�0275, lower left panels)
than in the flat equilibrium with well, the dynamics of the industry are similar
at first. Unlike in the flat equilibrium with well, however, the industry contin-
ues to evolve toward an asymmetric structure. The modal states are (14�21)
and (21�14) in period 64 and are (21�28) and (28�21) in the limiting distri-
bution. Although the follower reaches the bottom of its learning curve in the
long run and attains cost parity with the leader, asymmetries persist because
the diagonal trench serves to build and to defend a competitive advantage.

In the extra-trenchy equilibrium (ρ = 0�85, δ = 0�08, lower right panels) the
sideways trench renders it unlikely that the follower ever makes it down from
the top of its learning curve. The transient and limiting distributions are bi-
modal, and the most likely industry structure is extremely asymmetric. The
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FIGURE 7.—Limiting distribution over states.

modal states are (1�7) and (7�1) in period 8, are (1�10) and (10�1) in pe-
riod 16, are (1�15) and (15�1) in period 32, are (1�19) and (19�1) in pe-
riod 64, and are (1�26) and (26�1) in the limiting distribution. In short, one
firm acquires a competitive advantage early on and maintains it with an iron
hand.

Returning to Figure 3, the maximum expected Herfindahl index H∧ (dashed
line) and the limiting expected Herfindahl index H∞ (solid line) highlight the
fundamental economics of organizational forgetting. If forgetting is sufficiently
weak (δ ≈ 0), then asymmetries may arise but cannot persist, that is, H∧ ≥ 0�5
and H∞ ≈ 0�5. Moreover, if asymmetries arise in the short run, they are mod-
est. If forgetting is sufficiently strong (δ≈ 1), then asymmetries cannot arise in
the first place, that is, H∧ ≈ H∞ ≈ 0�5 because forgetting stifles investment in
learning altogether,27 but for intermediate degrees of forgetting, asymmetries

27We further document this investment stifling in the online Appendix.
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arise and persist. These asymmetries can be so pronounced that the leader is
virtually a monopolist.

Since the Markov process of industry dynamics is irreducible for δ ∈ (0�1),
the follower must eventually overtake the leader. The limiting expected
Herfindahl index H∞ may be a misleading measure of long-run industry con-
centration if such leadership reversals happen frequently. This, however, is
not the case: Leadership reversals take a long time to occur when H∞ is
high. To establish this, define τ(e1� e2) to be the first-passage time into the
set {(ẽ1� ẽ2)|ẽ1 ≤ ẽ2} if e1 ≥ e2 or {(ẽ1� ẽ2)|ẽ1 ≥ ẽ2} if e1 ≤ e2. That is, τ(e) is
the expected time it takes the industry to move from state e below (or on) the
diagonal of the state space, where firm 1 leads and firm 2 follows, to state ẽ
above (or on) it, where firm 1 follows and firm 2 leads. Taking the average with
respect to the limiting distribution yields the summary measure

τ∞ =
∑

e

τ(e)μ∞(e)�

For the trenchy and extra-trenchy equilibria τ∞ = 295 and τ∞ = 83�406, re-
spectively, indicating that a leadership reversal takes a long time to occur.
Hence, the asymmetry captured by H∞ persists. In the online Appendix we plot
the expected time to a leadership reversal τ∞ in the same format as Figure 3.
Just like H∞, τ∞ is largest for intermediate degrees of forgetting. Moreover,
τ∞ is of substantial magnitude, easily reaching and exceeding 1000 periods.
Asymmetries are therefore persistent in our model because the expected time
until the leader and the follower switch roles is (perhaps very) long.

We caution the reader that the absence of persistent asymmetries for small
forgetting rates δ in Figure 3 may be an artifact of the finite size of the state
space (M = 30 in our baseline parameterization). Given δ= 0�01, say, Δ(30)=
0�26 and organizational forgetting is so weak that the industry is sure to remain
in or near state (30�30). This minimizes bidirectional movements and restores
the backward induction logic that underlies uniqueness of equilibrium for the
extreme case of δ = 0 (see Proposition 3). We show in the online Appendix
that increasing M , while holding fixed δ, facilitates persistent asymmetries as
the industry becomes more likely to remain in the interior of the state space.
Furthermore, as emphasized in Section 1, shut-out model elements can give
rise to persistent asymmetries even in the absence of organizational forgetting.
We explore this issue further in Section 8.

To summarize, contrary to what one might expect, organizational forgetting
does not negate learning-by-doing. Rather, as can be seen in Figure 3, over a
range of progress ratios ρ above 0�6 and forgetting rates δ below 0�1, learning
and forgetting reinforce each other. Starting from the absence of both learning
(ρ = 1) and forgetting (δ = 0), a steeper learning curve (lower progress ratio)
tends to give rise to a more asymmetric industry structure just as a higher for-
getting rate does. In the next section we analyze the pricing behavior that drives
these dynamics.
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6. PRICING BEHAVIOR

Rewriting equation (5) shows that firm 1’s price in state e satisfies

p∗(e) = c∗(e)+ σ

1 −D∗
1(e)

�(17)

where the virtual marginal cost

c∗(e)= c(e1)−βφ∗(e)(18)

equals the actual marginal cost c(e1) minus the discounted prize βφ∗(e) from
winning the current period’s sale. The prize, in turn, is the difference in the
value of continued play to firm 1 if it wins the sale, V ∗

1(e), versus if it loses the
sale, V ∗

2(e):

φ∗(e) = V ∗
1(e)− V ∗

2(e)�(19)

Note that irrespective of the forgetting rate δ, the equilibrium of our dy-
namic stochastic game reduces to the static Nash equilibrium if firms are my-
opic. Setting β = 0 in equations (17) and (18) gives the usual FOC for a static
price-setting game with logit demand:

p†(e)= c(e1)+ σ

1 −D†
1(e)

�(20)

where D†
k(e) = Dk(p

†(e)�p†(e[2])) denotes the probability that, in the static
Nash equilibrium, the buyer purchases from firm k ∈ {1�2} in state e. Thus,
if β = 0, then p∗(e) = p†(e) and V ∗(e) = D†

1(e)(p
†(e) − c(e1)) for all states

e ∈ {1� � � � �M}2.

6.1. Price Bounds

Comparing equations (17) and (20) shows that equilibrium prices p∗(e) and
p∗(e[2]) coincide with the prices that obtain in a static Nash equilibrium with
costs equal to virtual marginal costs c∗(e) and c∗(e[2]). Static Nash equilibrium
prices are increasing in either firm’s cost (Vives (1999, p. 35)). Therefore, if
both firms’ prizes are nonnegative, static Nash equilibrium prices are an upper
bound on equilibrium prices, that is, if φ∗(e)≥ 0 and φ∗(e[2])≥ 0, then p∗(e) ≤
p†(e) and p∗(e[2])≤ p†(e[2]).

A sufficient condition for φ∗(e)≥ 0 for each state e is that the value function
V ∗(e) is nondecreasing in e1 and nonincreasing in e2. Intuitively, it should not
hurt firm 1 if it moves down its learning curve and it should not benefit firm 1
if firm 2 moves down its learning curve. While neither we nor C–R have suc-
ceeded in proving it, our computations show that this intuition is valid in the
absence of organizational forgetting:
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RESULT 2: If organizational forgetting is absent (δ= 0), then p∗(e)≤ p†(e) for
all e ∈ {1� � � � �M}2.

Result 2 highlights the fundamental economics of learning-by-doing: As long
as improvements in competitive position are valuable, firms use price cuts as
investments to achieve them.

We complement Result 2 by establishing a lower bound on equilibrium
prices in states where at least one of the two firms has reached the bottom
of its learning curve:

PROPOSITION 5: If organizational forgetting is absent (δ= 0), then (i) p∗(e) =
p†(e) = p†(m�m) > c(m) for all e ∈ {m� � � � �M}2 and (ii) p∗(e) > c(m) for all
e1 ∈ {m� � � � �M} and e2 ∈ {1� � � � �m− 1}.

Part (i) of Proposition 5 sharpens Theorem 4.3 in C–R by showing that once
both firms have reached the bottom of their learning curves, equilibrium prices
revert to static Nash levels. To see why, note that, given δ = 0� the prize re-
duces to φ∗(e)= V ∗(e1 +1� e2)−V ∗(e1� e2 +1), but beyond the bottom of their
learning curves, firms’ competitive positions can neither improve nor deterio-
rate. Hence, as we show in the proof of the proposition, V ∗(e) = V ∗(e′) for all
e� e′ ∈ {m� � � � �M}2, so that the advantage-building and advantage-defending
motives disappear, the prize is zero, and equilibrium prices revert to static
Nash levels. This rules out trenches penetrating into this region of the state
space. Trenchy and extra-trenchy equilibria therefore cannot arise in the ab-
sence of organizational forgetting.

Part (ii) of Proposition 5 restates Theorem 4.3 in C–R for the situation where
the leader but not the follower has reached the bottom of its learning curve.
The leader no longer has an advantage-building motive, but continues to have
an advantage-defending motive. This raises the possibility that the leader uses
price cuts to delay the follower in moving down its learning curve. The propo-
sition shows that there is a limit to how aggressively the leader defends its ad-
vantage: below-cost pricing is never optimal in the absence of organizational
forgetting.

The story changes dramatically in the presence of organizational forgetting.
The equilibrium may exhibit soft competition in some states and price wars in
other states. Consider the trenchy equilibrium (ρ= 0�85, δ = 0�0275). The up-
per bound in Result 2 fails in state (22�20) where the leader charges 6�44 and
the follower charges 7�60, significantly above its static Nash equilibrium price
of 7�30. The follower’s high price stems from its prize of −1�04. This prize, in
turn, reflects that if the follower wins the sale, then the industry most likely
moves to state (22�21) and thus moves closer to the brutal price competition
on the diagonal of the state space. Indeed, the follower’s value function de-
creases from 20�09 in state (22�20) to 19�56 in state (22�21). To avoid this
undesirable possibility, the follower charges a high price. The lower bound in
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Proposition 5 fails in state (20�20) where both firms charge 5�24 as compared
to a marginal cost of 5�30. The prize of 2�16 makes it worthwhile to price be-
low cost even beyond the bottom of the learning curve because “in the trench”
winning the current sale confers a lasting advantage.

This discussion provides the instances that prove the next two propositions.

PROPOSITION 6: If organizational forgetting is present (δ > 0), then we may
have p∗(e) > p†(e) for some e ∈ {1� � � � �M}2.

Figure 8 illustrates Proposition 6 by plotting the share of equilibria that vi-
olate the upper bound in Result 2.28 Darker shades indicate higher shares. As
can be seen, the upper bound continues to hold if organizational forgetting is
very weak (δ ≈ 0) and possibly also if learning-by-doing is very weak (ρ ≈ 1).

FIGURE 8.—Share of equilibria with p∗(e) > p†(e) for some e ∈ {1� � � � �M}2.

28To take into account the limited precision of our computations, we take the upper bound to
be violated if p∗(e) > p†(e) + ε for some e ∈ {1� � � � �M}2, where ε is positive but small. Specif-
ically, we set ε = 10−2, so that if prices are measured in dollars, then the upper bound must be
violated by more than a cent. Given that the homotopy algorithm solves the system of equations
up to a maximum absolute error of about 10−12, Figure 8 therefore almost certainly understates
the extent of violations.
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Apart from these extremes (and a region around ρ = 0�45 and δ = 0�25), at
least some, if not all, equilibria entail at least one state where equilibrium
prices exceed static Nash equilibrium prices.

Taken alone, Proposition 6 suggests that organizational forgetting makes
firms less aggressive. This makes sense: After all, why invest in improvements
in competitive position when they are transitory? However, organizational for-
getting can also be a source of aggressive pricing behavior:

PROPOSITION 7: If organizational forgetting is present (δ > 0), then we may
have p∗(e)≤ c(m) for some e1 ∈ {m� � � � �M} and e2 ∈ {1� � � � �M}.

Figure 9 illustrates Proposition 7 by plotting the share of equilibria in which
a firm prices below cost even though it has reached the bottom of its learn-
ing curve. Note that Figure 9 is a conservative tally of how often the lower
bound in Proposition 5 fails, because the lower bound in part (i) already fails
if the leader charges less than its static Nash equilibrium price, not less than
its marginal cost. In sum, the leader may be more aggressive in defending its
advantage in the presence of organizational forgetting than in its absence. The

FIGURE 9.—Share of equilibria with p∗(e) ≤ c(m) for some e1 ∈ {m� � � � �M} and
e2 ∈ {1� � � � �M}.
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most dramatic expression of this aggressive pricing behavior is the diagonal
trenches that are the defining feature of trenchy and extra-trenchy equilibria.

6.2. Wells and Trenches

This section develops intuition as to how wells and trenches can arise. Our
goal is to provide insight as to whether equilibria featuring wells and trenches
are economically plausible and, at least potentially, empirically relevant.

Wells

A well, as seen in the upper right panel of Figure 4, is a preemption battle
that firms at the top of their learning curves fight. Consider our leading exam-
ple of a flat equilibrium with well (ρ= 0�85, δ= 0�0275).29 Table I details firms’
competitive positions at various points in time, assuming that firm 1 leads and
firm 2 follows. Having moved down the learning curve first, the leader has a
lower cost and a higher prize than the follower. In the modal state (8�1) in
period 8, the leader therefore charges a lower price and enjoys a higher prob-
ability of making a sale. In time the follower also moves down the learning
curve and the leader’s advantage begins to erode (see modal state (11�4) in
period 16) and eventually vanishes completely (see the modal state (17�17)
in period 64). The prizes reflect this erosion. The leader’s prize is higher than
the follower’s in state (8�1) (3�95 versus 2�20) but lower in state (11�4) (1�16
versus 1�23). Although the leadership position is transitory, it is surely worth
having. Both firms use price cuts in state (1�1) in the hope of being the first
to move down the learning curve. In the example, the prize of 6�85 justifies
charging the price of 5�48 that is well below the marginal cost of 10. The well
is therefore an investment in building competitive advantage.

TABLE I

FLAT EQUILIBRIUM WITH WELL (ρ= 0�85, δ = 0�0275)

Leader FollowerModal
StatePeriod Cost Prize Price Prob. Value Cost Prize Price Prob. Value

0 (1�1) 10.00 6.85 5.48 0.50 5.87 10.00 6.85 5.48 0.50 5.87
8 (8�1) 6.14 3.95 7.68 0.81 22.99 10.00 2.20 9.14 0.19 5.34

16 (11�4) 5.70 1.16 7.20 0.62 20.08 7.22 1.23 7.68 0.38 11.48
32 (14�9) 5.39 0.36 7.16 0.53 20.06 5.97 0.64 7.27 0.47 17.30
64 (17�17) 5.30 −0.01 7.31 0.50 20.93 5.30 −0.01 7.31 0.50 20.93
∞ (25�24) 5.30 −0.01 7.30 0.50 21.02 5.30 −0.00 7.30 0.50 21.02

29As a point of comparison, we provide details on firms’ competitive positions at various points
in time for our leading example of a flat equilibrium without well (ρ = 0�85, δ = 0) in the online
Appendix.
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More abstractly, a well is the outcome of an auction in state (1�1) for the ad-
ditional future profits—the prize—that accrue to the firm that makes the first
sale and acquires transitory industry leadership. As equations (17)–(19) show,
a firm’s price in equilibrium is virtual marginal cost marked up. Virtual mar-
ginal cost, in turn, accounts for the discounted prize from winning the current
period’s sale and, getting to the essential point, the prize is the difference in
the value of continued play if the firm rather than its rival wins.

Diagonal Trenches

A diagonal trench, as seen in the lower panels of Figure 4, is a price war be-
tween symmetric or nearly symmetric firms. Extending along the entire diago-
nal of the state space, a diagonal trench has the curious feature that the firms
compete fiercely—perhaps pricing below cost—even when they both have ex-
hausted all gains from learning-by-doing. Part (i) of Proposition 5 rules out this
type of behavior in the absence of organizational forgetting.

Like a well, a diagonal trench serves to build a competitive advantage. Un-
like a well, a diagonal trench also serves to defend a competitive advantage,
thereby rendering it (almost) permanent: The follower recognizes that to seize
the leadership position, it would have to “cross over” the diagonal trench and
struggle through another price war. Crucially this price war is a part of a MPE
and, as such, a credible threat the follower cannot ignore.

The logic behind a diagonal trench has three parts. If a diagonal trench ex-
ists, then the follower does not contest the leadership position. If the follower
does not contest the leadership position, then being the leader is valuable. Fi-
nally, to close the circle of logic, if being the leader is valuable, then firms price
aggressively on the diagonal on the state space in a bid for the leadership posi-
tion, thus giving rise to the diagonal trench. Table II illustrates this argument by
providing details on firms’ competitive position in various states for our leading
example of a trenchy equilibrium (ρ= 0�85, δ= 0�0275).

Part 1. Trench Sustains Leadership. To see why the follower does not con-
test the leadership position, consider a state such as (21�20), where the fol-

TABLE II

TRENCHY EQUILIBRIUM (ρ= 0�85, δ = 0�0275)

Leader Follower

State Cost Prize Price Prob. Value Cost Prize Price Prob. Value

(21�20) 5.30 3.53 5.57 0.72 21.91 5.30 0.14 6.54 0.28 19.56
(21�21) 5.30 2.14 5.26 0.50 19.79 5.30 2.14 5.26 0.50 19.79
(22�20) 5.30 3.22 6.44 0.76 23.98 5.30 −1.04 7.60 0.24 20.09

(28�21) 5.30 −0.13 7.63 0.55 25.42 5.30 −0.71 7.81 0.45 22.37

(20�20) 5.30 2.16 5.24 0.50 19.82 5.30 2.16 5.24 0.50 19.82
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lower has almost caught up with the leader. Suppose the follower wins the
current sale. In this case, the follower may leapfrog the leader if the indus-
try moves against the odds to state (20�21). However, the most likely possi-
bility, with a probability of 0�32, is that the industry moves to state (21�21).
Due to the brutal price competition “in the trench,” the follower’s expected
cash flow in the next period decreases to −0�02 = 0�50 × (5�26 − 5�30) com-
pared to 0�34 = 0�28 × (6�54 − 5�30) if the industry had remained in state
(21�20). Suppose, in contrast, the leader wins. This completely avoids spark-
ing a price war. Moreover, the most likely possibility, with a probability of
0�32, is that the leader enhances its competitive advantage by moving to state
(22�20). If so, the leader’s expected cash flow in the next period increases to
0�87 = 0�76×(6�44−5�30) compared to 0�20 = 0�72×(5�57−5�30) if the indus-
try had remained in state (21�20). Because winning the sale is more valuable
to the leader than to the follower, the leader’s prize in state (21�20) is almost
25 times larger than the follower’s and the leader underprices the follower. As
a consequence, the leader defends its position with a substantial probability of
0�79. In other words, the diagonal trench sustains the leadership position.

Part 2. Leadership Generates Value. Because the leader underprices the fol-
lower, over time the industry moves from state (21�20) to (or near) the modal
state (28�21) of the limiting distribution. Once there, the leader underprices
the follower (7�63 versus 7�81) despite cost parity and thus enjoys a higher
probability of making a sale (0�55 versus 0�45). The leader’s expected cash flow
in the current period is, therefore, 0�55 × (7�63 − 5�30) = 1�27 as compared to
the follower’s expected cash flow of 0�45 × (7�81 − 5�30) = 1�14. Because the
follower does not contest the leadership position, the leader is likely to enjoy
these additional profits for a long time (recall that τ∞ = 295). Hence, being the
leader is valuable.

Part 3. Value Induces Trench. Because being the leader is valuable, firms
price aggressively on the diagonal on the state space in a bid for the leader-
ship position. The prize is 2�16 in state (20�20) and 2�14 in state (21�21), and
justifies charging a price of 5�24 and 5�26, respectively, even through all gains
from learning-by-doing have been exhausted. This gives rise to the diagonal
trench. Observe that this argument applies at every state on the diagonal, be-
cause no matter where on the diagonal the firms happen to be, winning the
current sale confers a lasting advantage. The trench therefore extends along
the entire diagonal of the state space.

All this can be summed up in a sentence: Building a competitive advantage
creates the diagonal trench that defends the advantage and creates the prize
that makes it worthwhile to fight for the leadership position. A diagonal trench
is thus a self-reinforcing mechanism for gaining and maintaining market dom-
inance.
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TABLE III

EXTRA-TRENCHY EQUILIBRIUM (ρ= 0�85, δ= 0�08)

Leader Follower

State Cost Prize Price Prob. Value Cost Prize Price Prob. Value

(26�1) 5.30 6.43 8.84 0.90 53.32 10.00 0.12 11.00 0.10 2.42
(26�2) 5.30 6.21 7.48 0.88 46.31 8.50 0.21 9.44 0.12 2.55
(26�3) 5.30 5.16 6.94 0.85 40.23 7.73 0.27 8.65 0.15 2.78
���

���
���

���
���

���
���

���
���

���
���

(26�7) 5.30 3.04 6.14 0.73 24.76 6.34 0.58 7.15 0.27 4.16
(26�8) 5.30 2.33 5.99 0.66 21.86 6.14 1.08 6.64 0.34 4.78
(26�9) 5.30 1.17 6.24 0.51 19.84 5.97 1.71 6.29 0.49 6.07
(26�10) 5.30 0.16 6.83 0.40 19.09 5.83 1.96 6.44 0.60 8.08

Sideways Trenches

A sideways trench, as seen in the lower right panel of Figure 4, is a price
war between very asymmetric firms. This war is triggered when the follower
starts to move down its learning curve. Table III provides details on firms’
competitive positions in various states for our leading example of an extra-
trenchy equilibrium (ρ = 0�85, δ = 0�08). The sideways trench is evident in
the decrease in the leader’s price from state (26�1) to state (26�8) and the
increase from state (26�8) to state (26�10). Note that the follower has lit-
tle chance of making it down its learning curve as long as the probability
of winning a sale is less than the probability of losing a unit of know-how
through organizational forgetting. While D∗

2(26�1) = 0�10 > 0�08 = Δ(1), we
have D∗

2(26�2) = 0�12 < 0�15 = Δ(2) and D∗
2(26�3) = 0�15 < 0�22 = Δ(3).

Hence, the leader can stall the follower at the top of its learning curve and,
indeed, the modal state of the limiting distribution is (26�1).

The additional future profits stemming from the leader’s ability to stall
the follower are the source of its large prize in state (26�1). In state (26�2),
the prize is almost as large because by winning a sale, the leader may move the
industry back to state (26�1) in the next period. The leader’s prize falls as the
follower moves further down its learning curve because it takes progressively
longer for the leader to force the follower back up its learning curve and be-
cause the lower cost of the follower makes it harder for the leader to do so.
In the unlikely event that the follower crashes through the sideways trench in
state (26�8), the leader’s prize falls sharply. At the same time, the follower’s
prize rises sharply as it turns from a docile competitor into a viable threat.

A sideways trench, like a diagonal trench, is a self-reinforcing mechanism
for gaining and maintaining market dominance, but a diagonal trench is about
fighting an imminent threat, whereas a sideways trench is about fighting a dis-
tant threat. One can think of a sideways trench as an endogenously arising
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mobility barrier in the sense of Caves and Porter (1977) or the equilibrium
manifestation of former Intel CEO Andy Grove’s dictum, “Only the paranoid
survive.”

In sum, the four types of equilibria that we have identified in Section 4 give
rise to distinct yet plausible pricing behaviors and industry dynamics. Rather
than impeding aggressive behavior, organizational forgetting facilitates it. In
its absence, the equilibria are flat either with or without well, depending on
the progress ratio. Generally speaking, organizational forgetting is associated
with “trenchier” equilibria, more aggressive behavior, and more concentrated
industries both in the short run and in the long run.

6.3. Dominance Properties

Traditional intuition suggests that learning-by-doing leads by itself to market
dominance by giving a more experienced firm the ability to profitably under-
price its less experienced rival. This enables the leader to widen its compet-
itive advantage over time, thereby further enhancing its ability to profitably
underprice the follower. C–R formalized this idea with “two concepts of self-
reinforcing market dominance” (p. 1115): An equilibrium exhibits increasing
dominance (ID) if p∗(e)−p∗(e[2]) < 0 whenever e1 > e2 and exhibits increasing
increasing dominance (IID) if p∗(e) − p∗(e[2]) is decreasing in e1. If ID holds,
the leader charges a lower price than the follower and therefore enjoys a higher
probability of making a sale. If IID holds, the price gap between the firms
widens with the length of the lead.30

In the absence of organizational forgetting, Theorem 3.3 in C–R shows that
ID and IID hold provided that the discount factor β is sufficiently close to 1
(alternatively, close to 0; see Theorem 3.1 in C–R). Our computations show
that β= 1

1�05 in our baseline parameterization suffices.

RESULT 3: If organizational forgetting is absent (δ = 0), then IID holds. Thus,
ID holds.

Even if an equilibrium satisfies ID and IID, it is not clear that the industry
is inevitably progressing toward monopolization. If the price gap between the
firms is small, then the impact of ID and IID on industry structure and dynam-
ics may be trivial.31 In such a scenario, the leader charges a slightly lower price
than the follower and this gap widens a bit over time. However, with even a

30Athey and Schmutzler’s (2001) notion of weak increasing dominance describes the relation-
ship between players’ states and their actions in dynamic games with deterministic state-to-state
transitions and coincides with the notion of ID in C–R. Similar notions also have been used by
Vickers (1986) and Budd, Harris, and Vickers (1993) in dynamic investment games.

31Indeed, C–R showed in their Theorem 3.2 that p∗(e) → p†(m�m) for all e ∈ {1� � � � �M}2 as
β → 1, that is, both firms price as if at the bottom of their learning curves. This suggests that the
price gap may be small for “reasonable” discount factors.
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modest degree of horizontal product differentiation, the firms still split sales
more or less equally and thus move down the learning curve in tandem. This
is exactly what happens when δ = 0. For example, the flat equilibrium without
well (ρ = 0�85, δ = 0) satisfies IID and thus ID, but with a maximum expected
Herfindahl index of 0�52 the industry is essentially a symmetric duopoly at all
times. More generally, as Figure 3 shows, in the absence of organizational for-
getting, asymmetries are modest if they arise at all. Although ID and IID hold,
the maximum expected Herfindahl index across all equilibria is 0�67 (attained
at ρ= 0�65). Hence, ID and IID are not sufficient for economically meaningful
market dominance.

ID and IID are also not necessary for market dominance. The extra-trenchy
equilibrium (ρ = 0�85, δ = 0�08), for example, violates ID and thus IID. Yet,
the industry is likely to be a near monopoly at all times. More generally, while
the empirical studies of Argote, Beckman, and Epple (1990), Darr, Argote,
and Epple (1995), Benkard (2000), Shafer, Nembhard, and Uzumeri (2001),
and Thompson (2003) warrant accounting for organizational forgetting in a
model of learning-by-doing, doing so may cause ID and IID to fail.

PROPOSITION 8: If organizational forgetting is present (δ > 0), then IID may
fail. Also ID may fail.

In the absence of organizational forgetting, C–R have already shown that
ID and IID may fail for intermediate values of β (see their Remark C.5 on
p. 1136). Result 3 and Proposition 8 make the comparative dynamics point
that ID and IID may hold when δ = 0 but fail when δ > 0 (holding fixed the
remaining parameters). Figure 10 illustrates Proposition 8 by plotting the share
of equilibria that violate IID (upper panel) and ID (lower panel). As can be
seen, all equilibria fail to obey IID unless forgetting or learning is very weak.
Even violations of ID are extremely common, especially for forgetting rates δ
in the empirically relevant range below 0�1.

Of course, we do not argue that the concepts of ID and IID have no place
in the analysis of industry dynamics. Caution, however, is advisable. Since ID
and IID are neither necessary nor sufficient for market dominance, making
inferences about the evolution of the industry on their basis alone may be mis-
leading.

6.4. Summary

Table IV summarizes the broad patterns of pricing behavior and industry dy-
namics. Acknowledging that the know-how gained through learning-by-doing
can be lost through organizational forgetting is important. Generally speak-
ing, organizational forgetting is associated with “trenchier” equilibria, more
aggressive behavior, and more concentrated industries both in the short run
and in the long run. Moreover, the dominance properties of firms’ pricing be-
havior can break down in the presence of organizational forgetting.
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FIGURE 10.—Share of equilibria that violate IID (upper panel) and share of equilibria that
violate ID (lower panel).
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TABLE IV

PRICING BEHAVIOR AND INDUSTRY DYNAMICS

Flat Eqbm. Flat Eqbm. Trenchy Extratrenchy
Without Well With Well Eqbm. Eqbm.

Leading example ρ = 0�85� ρ = 0�85� ρ= 0�85� ρ= 0�85�
δ= 0 δ = 0�0275 δ= 0�0275 δ = 0�08

Preemption battle (well) no yes no no
Price war triggered by imminent

threat (diagonal trench) no no yes yes
Price war triggered by distant

threat (sideways trench) no no no yes

Short-run market dominance no yes yes yes
Long-run market dominance no no yes, yes,

modest extreme

Dominance properties yes no, no, no,
mostly mostly mostly

The key difference between a model with and without organizational forget-
ting is that in the former, a firm can move both forward to a higher state and
backward to a lower state. This possibility of bidirectional movement enhances
the advantage-building and advantage-defending motives. By winning a sale,
a firm makes itself less and its rival more vulnerable to organizational forget-
ting. This can create strong incentives to cut prices. Rather than impeding it,
organizational forgetting therefore facilitates aggressive pricing as manifested
in the trenchy and extra-trenchy equilibria that we have identified.

7. ORGANIZATIONAL FORGETTING AND MULTIPLE EQUILIBRIA

While the equilibrium is unique if organizational forgetting is either absent
(δ = 0) or certain (δ = 1), multiple equilibria are common for intermediate
degrees of forgetting. Surprisingly, for some values of ρ and δ, the equilibria
range from “peaceful coexistence” to “trench warfare.” Consequently, in addi-
tion to primitives of learning-by-doing and organizational forgetting, the equi-
librium by itself is an important determinant of pricing behavior and industry
dynamics.

Why do multiple equilibria arise in our model? To explore this question,
think about the strategic situation faced by firms in setting prices in state e.
The value of continued play to firm n is given by the conditional expectation
of its value function, V n1(e) and V n2(e), as defined in equations (2) and (3).
Holding the value of continued play fixed, the strategic situation in state e is
akin to a static game. If the reaction functions in this game intersect more than
once, then multiple equilibria arise. On the other hand, if they intersect only
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once, irrespective of the value of continued play, then we say that a model
satisfies statewise uniqueness.

PROPOSITION 9: Statewise uniqueness holds.

Not surprisingly, the proof of Proposition 9 relies on the functional form of
demand. This is reminiscent of the restrictions on demand (e.g., log concavity)
that Caplin and Nalebuff (1991) set forth to guarantee uniqueness of Nash
equilibrium in their analysis of static price-setting games.

Given that the model satisfies statewise uniqueness, multiple equilibria must
arise from firms’ expectations regarding the value of continued play. To see
this, consider again state e. The intersection of the reaction functions consti-
tutes a Nash equilibrium in prices in a subgame in which firm n believes that
its value of continued play is given by V n1(e) and V n2(e). If firms have ratio-
nal expectations, that is, if the conjectured value of continued play is actually
attained, then these prices constitute an equilibrium of our dynamic stochastic
game. In our model, taking the value of continued play as given, the reaction
functions intersect only once because we have statewise uniqueness, but there
may be more than one value of continued play that is consistent with rational
expectations. In this sense, multiplicity is rooted in the dynamics of the model.

The key driver of multiplicity is organizational forgetting. Dynamic compe-
tition with learning and forgetting is like racing down an upward-moving esca-
lator. Unless a firm makes sales at a rate that exceeds the rate at which it loses
know-how through forgetting, its marginal cost is bound to increase. The inflow
of know-how to the industry is one unit per period, whereas in expectation the
outflow in state e is Δ(e1) + Δ(e2). Consider state (e� e), where e ≥ m, on the
diagonal of the state space at or beyond the bottom of the learning curve. If
1 � 2Δ(e), then it is impossible that both firms reach the bottom of their learn-
ing curves and remain there. Knowing this, firms have no choice but to price
aggressively. The result is trench warfare as each firm uses price cuts to push
the state to its side of the diagonal and keep it there. If, however, 1 � 2Δ(e),
then it is virtually inevitable that both firms reach the bottom of their learning
curves, and firms may as well price softly. In both cases, the primitives of the
model tie down the equilibrium.

This is no longer the case if 1 ≈ 2Δ(e), setting the stage for multiple equilib-
ria as diverse as peaceful coexistence and trench warfare. If firms believe that
they cannot peacefully coexist at the bottom of their learning curves and that
one firm will come to dominate the market, then both firms will cut their prices
in the hope of acquiring a competitive advantage early on and maintaining it
throughout. This naturally leads to trench warfare and market dominance. If,
however, firms believe that they can peacefully coexist at the bottom of their
learning curves, then neither firm cuts its price. Soft pricing, in turn, ensures
that the anticipated symmetric industry structure actually emerges. A back-of-
the-envelope calculation is reassuring here. Recall that m = 15 and M = 30 in
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our baseline parameterization, and observe that 1 = 2Δ(15) implies δ≈ 0�045,
1 = 2Δ(20) implies δ ≈ 0�034, and 1 = 2Δ(30) implies δ ≈ 0�023. This range
of forgetting rates, for which the inflow of know-how approximately equals the
outflow, is indeed where multiplicity prevails (see again Figure 2).

Perhaps the starkest example of multiplicity arising from firms’ expectations
about each other are the sunspot equilibria discussed in Section 4. The gains
from learning-by-doing are absent (ρ = 1) and, consequently, the state vari-
ables are payoff-irrelevant in the sense of Maskin and Tirole (2001). One equi-
librium is for firms to set the same price as in the Nash equilibrium of a sta-
tic price-setting game. In addition to this flat equilibrium, there can also be a
sunspot in the form of a trenchy equilibrium where the leader charges a higher
price than the follower. The leader correctly anticipates that the follower will
back down and charge a higher price, thus allowing the leader to enjoy a higher
probability of making a sale. This equilibrium can be sustained because the
state carries enough history for punishments to be effectively administered.32

A sufficient condition for uniqueness of equilibrium in a dynamic stochas-
tic game with a finite state space is that the model satisfies statewise unique-
ness and the movements through the state space are unidirectional. Statewise
uniqueness precludes players’ actions from giving rise to multiple equilibria
and unidirectional movements preclude their expectations from doing so. The
proof of Proposition 3 illustrates the power of this sufficient condition. Specif-
ically, if δ = 0 in our game, then a firm can never move backward to a lower
state. Hence, once the industry reaches state (M�M), it remains there forever,
so that the value of future play in state (M�M) coincides with the value of
being in this state ad infinitum. In conjunction with statewise uniqueness, this
uniquely determines the value of being in state (M�M). Next consider states
(M −1�M) and (M�M −1). The value of future play in states (M −1�M) and
(M�M − 1) depends on the value of being in state (M�M). Statewise unique-
ness ensures that firms’ prices in states (M − 1�M) and (M�M − 1) as well as
the value of being in these states are uniquely determined. Continuing to work
backward establishes that the equilibrium is unique.

8. ROBUSTNESS CHECKS

We have conducted extensive robustness checks regarding our specification
of the discount factor, demand (product differentiation, outside good, and
choke price), learning-by-doing, and entry and exit. In the interest of brevity,

32In their discussion of predatory pricing, C–R contrasted an equilibrium in which neither
firm exits the industry with another equilibrium in which the firm losing the first sale exits. C–
R called this latter case a “bootstrap” equilibrium because it is sustained by the leader correctly
anticipating that by pricing aggressively, it will drive the follower out of the industry. Our sunspots
are similar in that they—like any equilibrium—rely on self-fulfilling expectations, but different in
that they do not rely on payoff-relevant state variables.
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we confine ourselves here to pointing out if and how our results regarding
aggressive pricing behavior (wells and trenches), market dominance (persis-
tent asymmetries), and multiple equilibria change with the specification of the
model. A more detailed discussion can be found in the online Appendix along
with some further checks (frequency of sales, organizational forgetting) that
we omit here.

8.1. Discount Factor

Two extreme cases merit discussion. First, as β → 0 and firms become more
myopic, the wells and trenches vanish and we obtain a flat equilibrium with-
out well. In the limit of β = 0, equation (20) implies that the equilibrium of
our dynamic stochastic game reduces to the static Nash equilibrium irrespec-
tive of the forgetting rate δ. Second, as β → 1, the wells and trenches deepen:
More patient firms have a stronger incentive to cut prices in the present so
as to seize the leadership position in the future. In addition to the four typi-
cal cases in Figure 4, we obtain other types of equilibria with more complex
patterns of trenches. The fact that high discount factors exacerbate the multi-
plicity problem is hardly surprising in light of the folk theorems for repeated
games (Friedman (1971), Rubinstein (1979), Fudenberg and Maskin (1986)).

8.2. Demand

Product Differentiation

A higher degree of horizontal product differentiation σ lowers the extent to
which firms interact strategically with each other. As σ → ∞, firms eventually
become monopolists and have no incentive to cut prices to acquire or defend of
a competitive advantage. As a result, the equilibrium is unique and the industry
evolves symmetrically.

Outside Good

As in C–R, we assume that the buyer always purchases from one of the two
firms in the industry. Allowing the buyer to choose, instead, an alternative
made from a substitute technology (outside good) implies that the price elas-
ticity of aggregate demand for the two competing firms is no longer zero. If the
outside good is made sufficiently attractive, then in state (1�1) the probability
that either firm wins the one unit of demand that is available each period be-
comes small unless they price aggressively—below marginal cost—against the
outside good. Making it down from the top of its learning curve consequently
requires a firm to incur substantial losses in the near term. In the long term,
however, fighting one’s way down the learning curve has substantial rewards,
because the outside good is a much less formidable competitor to a firm at the
bottom of its learning curve than to a firm at the top.
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If the discount factor is held fixed at its baseline value, then even a moder-
ately attractive outside good sufficiently constrains firms’ pricing behavior so
that we no longer have sunspots for a progress ratio of ρ = 1. If we further
increase the attractiveness of the outside good, then the rewards from fighting
one’s way down the learning curve become too far off in the future to justify
the required aggressive pricing with its attendant near-term losses. In the en-
suing equilibrium, the price that a firm charges is fairly insensitive to its rival’s
stock of know-how, because the outside good is the firm’s main competitor and
wins the sale most periods. As a result, the inflow of know-how to the indus-
try through learning is much smaller than the outflow through forgetting. This
implies that the equilibrium is unique and entails both firms being stuck at the
top of their learning curves. Trenchy and extra-trenchy equilibria disappear.

If the discount factor is increased as the outside good is made increasingly
attractive, then the near-term losses of fighting one’s way down the learning
curve do not overwhelm the long-term rewards from doing so. Firms price
aggressively in trenchy and extra-trenchy equilibria. Therefore, provided the
discount factor is sufficiently close to one, the presence of an economically
significant price elasticity of aggregate demand does not seem to change the
variety and multiplicity of equilibria in any fundamental way.

Choke Price

As in C–R, our logit specification for demand ensures that a firm always has
a positive probability of making a sale and, in the absence of forgetting, must
therefore eventually reach the bottom of its learning curve. This precludes the
occurrence of long-run market dominance in the absence of organizational
forgetting.

Suppose instead that the probability that firm n makes a sale is given by a
linear specification. Due to the choke price in the linear specification, a firm
is surely able to deny its rival a sale by pricing sufficiently aggressively. Given
a sufficiently low degree of horizontal product differentiation, firms at the top
of their learning curves fight a preemption battle. The industry remains in an
asymmetric structure as the winning firm takes advantage of the choke price to
stall the losing firm at the top of its learning curve. In other words, the choke
price is a shut-out model element that can lead to persistent asymmetries even
in the absence of organizational forgetting.

8.3. Learning-by-Doing

Following C–R, we assume that m<M represents the stock of know-how at
which a firm reaches the bottom of its learning curve. In a bottomless learning
specification with m=M , we obtain other types of equilibria in addition to the
four typical cases in Figure 4. Particularly striking is the plateau equilibrium.
This equilibrium is similar to a trenchy equilibrium except that the diagonal
trench is interrupted by a region of very soft price competition. On this plateau,
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both firms charge prices well above cost. This “cooperative” behavior contrasts
markedly with the price war of the diagonal trench.

8.4. Entry and Exit

We assume that at any point in time there is a total of N firms, each of which
can be either an incumbent firm or a potential entrant. Once an incumbent
firm exits the industry, it perishes and a potential entrant automatically takes
its “slot” and has to decide whether or not to enter.

Organizational forgetting remains a source of aggressive pricing behavior,
market dominance, and multiple equilibria in the general model with entry
and exit. The possibility of exit adds another component to the prize from
winning a sale, because by winning a sale, a firm may move the industry
to a state in which its rival is likely to exit. But if the rival exits, then it
may be replaced by an entrant that comes into the industry at the top of its
learning curve or it may not be replaced at all. As a result, pricing behav-
ior is more aggressive than in the basic model without entry and exit. This
leads to more pronounced asymmetries both in the short run and in the long
run.

Because entry and exit are shut-out model elements, asymmetries can
arise and persist even in the absence of organizational forgetting (see the
online Appendix for a concrete example). Entry and exit may also give
rise to multiple equilibria as C–R have already shown (see their Theo-
rem 4.1).

9. CONCLUSIONS

Learning-by-doing and organizational forgetting are empirically important
in a variety of industrial settings. This paper provides a general model of dy-
namic competition that accounts for these economic fundamentals and shows
how they shape industry structure and dynamics. We contribute to the numer-
ical analysis of industry dynamics in two ways. First, we show that there are
equilibria that the P–M algorithm cannot compute. Second, we propose a ho-
motopy algorithm that allows us to describe in detail the structure of the set of
solutions to our model.

In contrast to the present paper, the theoretical literature on learning-
by-doing has largely ignored organizational forgetting. Moreover, it has
mainly focused on the dominance properties of firms’ pricing behavior.
By directly examining industry dynamics, we are able to show that ID
and IID may not be sufficient for economically meaningful market dom-
inance. By generalizing the existing models of learning, we are able to
show that these dominance properties break down with even a small de-
gree of forgetting. Yet, it is precisely in the presence of organizational for-
getting that market dominance ensues, both in the short run and in the long
run.
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Our analysis of the role of organizational forgetting reveals that learning
and forgetting are distinct economic forces. Forgetting, in particular, does not
simply negate learning. The unique role played by organizational forgetting
comes about because it makes bidirectional movements through the state space
possible. As a consequence, a model with forgetting can give rise to aggres-
sive pricing behavior, varying degrees of long-run industry concentration rang-
ing from moderate leadership to absolute dominance, and multiple equilib-
ria.

Diagonal and sideways trenches are part and parcel of the self-reinforcing
mechanisms that lead to market dominance. Since the leadership position
is aggressively defended, firms fight a price war to attain it. This provides
all the more reason to aggressively defend the leadership position, because
if it is lost, then another price war ensues. This seems like a good story
to tell. Our computations show that this is not just an intuitively sensible
story, but also a logically consistent one that—perhaps—plays out in real mar-
kets.

APPENDIX

PROOF OF PROPOSITION 1: Part (i) The basic differential equations (13) set

δ′(s) = det
(
∂F(x(s);δ(s)�ρ)

∂x

)
�

The Jacobian ∂F(x(s);δ(s)�ρ)
∂x is a (2M2 × 2M2) matrix and therefore has an even

number of eigenvalues. Its determinant is the product of its eigenvalues.
Hence, if δ′(s) ≤ 0, then there exists at least one real nonnegative eigenvalue.
(Suppose to the contrary that all eigenvalues are either complex or real and
negative. Since the number of complex eigenvalues is even, so is the number of
real eigenvalues. Moreover, the product of a conjugate pair of complex eigen-
values is positive, as is the product of an even number of real negative eigen-
values.)

To relate the P–M algorithm to our homotopy algorithm, let (x(s)�δ(s)) ∈
F−1(ρ) be a parametric path of equilibria. We show in the online Appendix
that

∂G(x(s))
∂x

∣∣∣∣
(δ(s)�ρ)

= ∂F(x(s);δ(s)�ρ)
∂x

+ I�(21)

where I denotes the (2M2 × 2M2) identity matrix.
The proof is completed by recalling a basic result from linear algebra: Let A

be an arbitrary matrix and let ς(A) be its spectrum. Then ς(A + I) = ς(A) + 1
(see Proposition A.17 in Appendix A of Bertsekas and Tsitsiklis (1997)).
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Hence, because ∂F(x(s);δ(s)�ρ)
∂x has at least one real nonnegative eigenvalue, it fol-

lows from equation (21) that ∂G(x(s))
∂x |(δ(s)�ρ) has at least one real eigenvalue equal

to or greater than unity. Hence, �(∂G(x(s))
∂x |(δ(s)�ρ))≥ 1.

Part (ii) Consider the iteration xk+1 = G̃(xk) = ωG(xk) + (1 − ω)xk, where
ω> 0. Using equation (21), its Jacobian at (x(s)�δ(s)) ∈ F−1(ρ) is

∂G̃(x(s))
∂x

∣∣∣∣
(δ(s)�ρ)

= ω
∂G(x(s))

∂x

∣∣∣∣
(δ(s)�ρ)

+ (1 −ω)I

= ω
∂F(x(s);δ(s)�ρ)

∂x
+ I�

As before, it follows that �(∂G̃(x(s))
∂x |(δ(s)�ρ))≥ 1. Q.E.D.

PROOF OF PROPOSITION 3: We rewrite the Bellman equations and FOCs in
state e as

V1 =D1(p1�p2)(p1 − c(e1)+β(V 11 − V 12))+βV 12�(22)

V2 =D2(p1�p2)(p2 − c(e2)+β(V 22 − V 21))+βV 21�(23)

0 = σ

D2(p1�p2)
− (p1 − c(e1)+β(V 11 − V 12))�(24)

0 = σ

D1(p1�p2)
− (p2 − c(e2)+β(V 22 − V 21))�(25)

where, to simplify the notation, Vn is shorthand for Vn(e), V nk is shorthand
for V nk(e), pn is shorthand for pn(e), etcetera and we use the fact that
D1(p1�p2)+D2(p1�p2)= 1.

Case (i) First suppose δ = 0. The proof proceeds in a number of steps.
In Step 1, we establish that the equilibrium in state (M�M) is unique. In
Step 2a, we assume that there is a unique equilibrium in state (e1 + 1�M),
where e1 ∈ {1� � � � �M − 1}, and show that this implies that the equilibrium in
state (e1�M) is unique. In Step 2b, we assume that there is a unique equilib-
rium in state (M�e2 + 1), where e2 ∈ {1� � � � �M − 1}, and show that this im-
plies that the equilibrium in state (M�e2) is unique. By induction, Steps 1,
2a, and 2b establish uniqueness along the upper edge of the state space. In
Step 3, we assume that there is a unique equilibrium in states (e1 + 1� e2) and
(e1� e2 + 1), where e1 ∈ {1� � � � �M − 1} and e2 ∈ {1� � � � �M − 1}, and show that
this implies that the equilibrium in state (e1� e2) is unique. Hence, unique-
ness in state (M − 1�M − 1) follows from uniqueness in states (M�M − 1)
and (M − 1�M), uniqueness in state (M − 2�M − 1) follows from uniqueness
in states (M − 1�M − 1) and (M − 2�M), etcetera. Working backward gives
uniqueness in states (e1�M − 1), where e1 ∈ {1� � � � �M − 1}. This, in turn, gives
uniqueness in states (e1�M − 2), where e1 ∈ {1� � � � �M − 1}, and so on.
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Step 1. Consider state e = (M�M). From the definition of the state-to-state
transitions in Section 2, we have

V 11 = V 12 = V1� V 21 = V 22 = V2�

Imposing these restrictions and solving equations (22) and (23) for V1 and V2,
respectively, yields

V1 = D1(p1�p2)(p1 − c(e1))

1 −β
�(26)

V2 = D2(p1�p2)(p2 − c(e2))

1 −β
�(27)

Simplifying equations (24) and (25) yields

0 = σ

D2(p1�p2)
− (p1 − c(e1))= F1(p1�p2)�(28)

0 = σ

D1(p1�p2)
− (p2 − c(e2))= F2(p1�p2)�(29)

The system of equations (28) and (29) determines equilibrium prices. Once we
have established that there is a unique solution for p1 and p2, equations (26)
and (27) immediately ascertain that V1 and V2 are unique.

Let p�
1(p2) and p�

2(p1) be defined by

F1(p
�
1(p2)�p2)= 0� F2(p1�p

�
2(p1))= 0�

and set F(p1) = p1 − p�
1(p

�
2(p1)). The p1 that solves the system of equa-

tions (28) and (29) is the solution to F(p1) = 0, and this solution is unique
provided that F(p1) is strictly monotone. The implicit function theorem yields

F ′(p1) = 1 −

(
−∂F1

∂p2

)

∂F1

∂p1

(
−∂F2

∂p1

)

∂F2

∂p2

�

Straightforward differentiation shows that(
−∂F1

∂p2

)

∂F1

∂p1

=
−D1(p1�p2)

D2(p1�p2)

− 1
D2(p1�p2)

= D1(p1�p2) ∈ (0�1)�

(
−∂F2

∂p1

)

∂F2

∂p2

=
−D2(p1�p2)

D1(p1�p2)

− 1
D1(p1�p2)

= D2(p1�p2) ∈ (0�1)�
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It follows that F ′(p1) > 0.
Step 2a. Consider state e = (e1�M), where e1 ∈ {1� � � � �M − 1}. We have

V 12 = V1� V 22 = V2�

Imposing these restrictions and solving equations (22) and (23) for V1 and V2,
respectively, yields

V1 = D1(p1�p2)(p1 − c(e1)+βV 11)

1 −βD2(p1�p2)
�(30)

V2 = D2(p1�p2)(p2 − c(e2)−βV 21)+βV 21

1 −βD2(p1�p2)
�(31)

Substituting equations (30) and (31) into equations (24) and (25), and dividing
through by 1−β

1−βD2(p1�p2)
and 1

1−βD2(p1�p2)
, respectively, yields

0 = (1 −βD2(p1�p2))σ

(1 −β)D2(p1�p2)
− (p1 − c(e1)+βV 11)=G1(p1�p2)�(32)

0 = (1 −βD2(p1�p2))σ

D1(p1�p2)
− (p2 − c(e2)−β(1 −β)V 21)=G2(p1�p2)�(33)

The system of equations (32) and (33) determines equilibrium prices as a func-
tion of V 11 and V 21. These are given by V1(e1 +1�M) and V2(e1 +1�M), respec-
tively, and are unique by hypothesis. As in Step 1, once we have established that
there is a unique solution for p1 and p2, equations (30) and (31) immediately
ascertain that, in state e = (e1�M), V1 and V2 are unique.

Proceeding as in Step 1, set G(p1) = p1 − p�
1(p

�
2(p1)), where p�

1(p2) and
p�

2(p1) are defined by G1(p
�
1(p2)�p2) = 0 and G2(p1�p

�
2(p1)) = 0, respec-

tively. We have to show that G(·) is strictly monotone. Straightforward dif-
ferentiation shows that(

−∂G1

∂p2

)

∂G1

∂p1

=
− D1(p1�p2)

(1 −β)D2(p1�p2)

− 1 −βD2(p1�p2)

(1 −β)D2(p1�p2)

= D1(p1�p2)

1 −βD2(p1�p2)
∈ (0�1)�

(
−∂G2

∂p1

)

∂G2

∂p2

=
−(1 −β)D2(p1�p2)

D1(p1�p2)

−1 −βD2(p1�p2)

D1(p1�p2)

= (1 −β)D2(p1�p2)

1 −βD2(p1�p2)
∈ (0�1)�

It follows that G′(p1) > 0.
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Step 2b. Consider state e = (M�e2), where e2 ∈ {1� � � � �M − 1}. We have

V 11 = V1� V 21 = V2�

The argument is completely symmetric to the argument in Step 2a and there-
fore is omitted.

Step 3. Consider state e = (e1� e2), where e1 ∈ {1� � � � �M − 1} and e2 ∈
{1� � � � �M − 1}. The system of equations (24) and (25) determines equilibrium
prices as a function of V 11, V 12, V 21, and V 22. These are given by V1(e1 + 1� e2),
V1(e1� e2 + 1), V2(e1 + 1� e2), and V2(e1� e2 + 1), respectively, and are unique
by hypothesis. As in Step 1, once we have established that there is a unique
solution for p1 and p2, equations (22) and (23) immediately ascertain that, in
state e = (e1� e2), V1 and V2 are unique.

Let H1(p1�p2) and H2(p1�p2) denote the right-hand side of equations (24)
and (25), respectively. Proceeding as in step 1, set H(p1) = p1 − p�

1(p
�
2(p1)),

where p�
1(p2) and p�

2(p1) are defined by H1(p
�
1(p2)�p2) = 0 and H2(p1�

p�
2(p1)) = 0, respectively. We have to show that H(·) is strictly monotone.

Straightforward differentiation shows that(
−∂H1

∂p2

)

∂H1

∂p1

=
−D1(p1�p2)

D2(p1�p2)

− 1
D2(p1�p2)

=D1(p1�p2) ∈ (0�1)�

(
−∂H2

∂p1

)

∂H2

∂p2

=
−D2(p1�p2)

D1(p1�p2)

− 1
D1(p1�p2)

=D2(p1�p2) ∈ (0�1)�

It follows that H ′(p1) > 0.
Case (ii) Next suppose δ = 1. A similar induction argument as in the case

of δ = 0 can be used to establish the claim except that in the case of δ = 1 we
anchor the argument in state (1�1) rather than state (M�M). Q.E.D.

PROOF OF PROPOSITION 5: Part (i) Consider the static Nash equilibrium.
The FOCs in state e are

p†
1(e)= c(e1)+ σ

1 −D1(p
†
1(e)�p

†
2(e))

�(34)

p†
2(e)= c(e2)+ σ

1 −D2(p
†
1(e)�p

†
2(e))

�(35)

Equations (34) and (35) imply p†
1(e) > c(e1) and p†

2(e) > c(e2), and thus, in
particular, p†(m�m) > c(m). In addition, p†(e) = p†(m�m) because c(e1) =
c(e2)= c(m) for all e ∈ {m� � � � �M}2.
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Turning to our dynamic stochastic game, suppose that δ = 0. The proof of
part (i) proceeds in a number of steps, similar to the proof of Proposition 3.
In Step 1, we establish that equilibrium prices in state (M�M) coincide with
the static Nash equilibrium. In Step 2a, we assume that the equilibrium in state
(e1 + 1�M), where e1 ∈ {m� � � � �M − 1}, coincides with the equilibrium in state
(M�M) and show that this implies that the equilibrium in state (e1�M) does
the same. In Step 2b, we assume that the equilibrium in state (M�e2 +1), where
e2 ∈ {m� � � � �M − 1}, coincides with the equilibrium in state (M�M) and show
that this implies that the equilibrium in state (M�e2) does the same. In Step 3,
we assume that the equilibrium in states (e1 + 1� e2) and (e1� e2 + 1), where
e1 ∈ {m� � � � �M − 1} and e2 ∈ {m� � � � �M − 1}, coincides with the equilibrium in
state (M�M) and show that this implies that the equilibrium in state (e1� e2)
does the same. Also similar to the proof of Proposition 3, we continue to use
Vn as shorthand for Vn(e), V nk as shorthand for V nk(e), pn as shorthand for
pn(e), etcetera.

Step 1. Consider state e = (M�M). From the proof of Proposition 3, equi-
librium prices are determined by the system of equations (28) and (29). Since
equations (28) and (29) are equivalent to equations (34) and (35), equilibrium
prices are p1 = p†

1 and p2 = p†
2. Substituting equation (28) into (26) and equa-

tion (29) into (27) yields equilibrium values

V1 = σD1(p1�p2)

(1 −β)D2(p1�p2)
�(36)

V2 = σD2(p1�p2)

(1 −β)D1(p1�p2)
�(37)

Step 2a. Consider state e = (e1�M), where e1 ∈ {m� � � � �M − 1}. Equilib-
rium prices are determined by the system of equations (32) and (33). Given
V 11 = V1(e1 + 1�M) = V1(M�M) and V 21 = V2(e1 + 1�M) = V2(M�M), it is
easy to see that, in state e = (e1�M), p1 = p1(M�M) and p2 = p2(M�M) are
a solution. Substituting equation (32) into (30) and equation (33) into (31)
yields equilibrium values V1 = V1(M�M) and V2 = V2(M�M) as given by equa-
tions (36) and (37).

Step 2b. Consider state e = (M�e2), where e2 ∈ {m� � � � �M − 1}. The argu-
ment is completely symmetric to the argument in Step 2a and therefore is
omitted.

Step 3. Consider state e = (e1� e2), where e1 ∈ {m� � � � �M − 1} and e2 ∈
{m� � � � �M − 1}. Equilibrium prices are determined by the system of equa-
tions (24) and (25). Given V 11 = V1(e1 + 1� e2) = V1(M�M), V 12 = V1(e1� e2 +
1) = V1(M�M), V 21 = V2(e1 + 1� e2) = V2(M�M), and V 22 = V2(e1� e2 + 1) =
V2(M�M), it is easy to see that, in state e = (e1� e2), p1 = p1(M�M) and
p2 = p2(M�M) are a solution. Substituting equation (24) into (22) and equa-
tion (25) into (23) yields equilibrium values V1 = V1(M�M) and V2 = V2(M�M)
as given by equations (36) and (37).
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Part (ii) We show that p2(e) > c(m) for all e1 ∈ {1� � � � �m − 1} and e2 ∈
{m� � � � �M}. The claim follows because p∗(e)= p2(e[2]).

The proof of part (ii) proceeds in two steps. In Step 1, we establish that the
equilibrium price of firm 2 in state (e1�M), where e1 ∈ {1� � � � �m− 1}, exceeds
c(m). In Step 2, we extend the argument to states in which firm 2 has not yet
reached the bottom of its learning curve. We proceed by induction: Assuming
that the equilibrium in state (e1� e2 + 1), where e1 ∈ {1� � � � �m − 1} and e2 ∈
{m� � � � �M − 1}, coincides with the equilibrium in state (e1�M), we show that
the equilibrium in state (e1� e2) does the same.

Step 1. Consider state e = (e1�M), where e1 ∈ {1� � � � �m − 1}. From the
proof of Proposition 3, equilibrium prices are determined by the system of
equations (32) and (33). In equilibrium, we must have Vn(e) ≥ 0 for all e ∈
{1� � � � �M}2 because a firm can always set price equal to cost. Hence, V 21 ≥ 0
and equation (33) implies p2 > c(m).

For reference in Step 2, note that substituting equation (32) into (30) and
equation (33) into (31) yields equilibrium values

V1 = σD1(p1�p2)

(1 −β)D2(p1�p2)
�(38)

V2 = σD2(p1�p2)+βD1(p1�p2)V 21

D1(p1�p2)
�(39)

Step 2. Consider state e = (e1� e2), where e1 ∈ {1� � � � �m − 1} and e2 ∈
{m� � � � �M − 1}. Equilibrium prices are determined by the system of equa-
tions (24) and (25). Assuming V 12 = V1(e1� e2 + 1) = V1(e1�M) and V 22 =
V2(e1� e2 + 1) = V2(e1�M) as given by equations (38) and (39) in Step 1,
equations (24) and (25) collapse to equations (32) and (33). Hence, in state
e = (e1� e2), p1 = p1(e1�M) and p2 = p2(e1�M) are a solution. Further sub-
stituting equation (24) into (22) and equation (25) into (23) yields equilib-
rium values V1 = V1(e1�M) and V2 = V2(e1�M) as given by equations (38)
and (39). Q.E.D.

PROOF OF PROPOSITION 9: We rewrite the FOCs in state e as

0 = σ

D2(p1�p2)
− (p1 − c(e1)+β(V 11 − V 12))�(40)

0 = σ

D1(p1�p2)
− (p2 − c(e2)+β(V 22 − V 21))�(41)

where, to simplify the notation, V nk is shorthand for V nk(e), pn is shorthand
for pn(e), etcetera, and we use the fact that D1(p1�p2)+D2(p1�p2) = 1. The
system of equations (40) and (41) determines equilibrium prices. We have to
establish that there is a unique solution for p1 and p2 irrespective of V 11, V 12,
V 21, and V 22.
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Let H1(p1�p2) and H2(p1�p2) denote the right-hand side of equations (40)
and (41), respectively. Proceeding as in Step 3 of the proof of Proposi-
tion 3, set H(p1) = p1 − p�

1(p
�
2(p1)), where p�

1(p2) and p�
2(p1) are defined

by H1(p
�
1(p2)�p2) = 0 and H2(p1�p

�
2(p1)) = 0, respectively. We have to show

that H(·) is strictly monotone. Straightforward differentiation shows that
(

−∂H1

∂p2

)

∂H1

∂p1

=
−D1(p1�p2)

D2(p1�p2)

− 1
D2(p1�p2)

=D1(p1�p2) ∈ (0�1)�

(
−∂H2

∂p1

)

∂H2

∂p2

=
−D2(p1�p2)

D1(p1�p2)

− 1
D1(p1�p2)

=D2(p1�p2) ∈ (0�1)�

It follows that H ′(p1) > 0. Q.E.D.
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