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�1-PENALIZED QUANTILE REGRESSION IN HIGH-DIMENSIONAL
SPARSE MODELS1

BY ALEXANDRE BELLONI AND VICTOR CHERNOZHUKOV

Duke University and Massachusetts Institute of Technology

We consider median regression and, more generally, a possibly infinite
collection of quantile regressions in high-dimensional sparse models. In these
models, the number of regressors p is very large, possibly larger than the sam-
ple size n, but only at most s regressors have a nonzero impact on each con-
ditional quantile of the response variable, where s grows more slowly than n.
Since ordinary quantile regression is not consistent in this case, we consider
�1-penalized quantile regression (�1-QR), which penalizes the �1-norm of
regression coefficients, as well as the post-penalized QR estimator (post-�1-
QR), which applies ordinary QR to the model selected by �1-QR. First, we
show that under general conditions �1-QR is consistent at the near-oracle rate√

s/n
√

log(p ∨ n), uniformly in the compact set U ⊂ (0,1) of quantile in-
dices. In deriving this result, we propose a partly pivotal, data-driven choice
of the penalty level and show that it satisfies the requirements for achieving
this rate. Second, we show that under similar conditions post-�1-QR is con-
sistent at the near-oracle rate

√
s/n

√
log(p ∨ n), uniformly over U , even if

the �1-QR-selected models miss some components of the true models, and the
rate could be even closer to the oracle rate otherwise. Third, we characterize
conditions under which �1-QR contains the true model as a submodel, and
derive bounds on the dimension of the selected model, uniformly over U ; we
also provide conditions under which hard-thresholding selects the minimal
true model, uniformly over U .

1. Introduction. Quantile regression is an important statistical method for an-
alyzing the impact of regressors on the conditional distribution of a response vari-
able (cf. [21, 23]). It captures the heterogeneous impact of regressors on different
parts of the distribution [8], exhibits robustness to outliers [19], has excellent com-
putational properties [28], and has wide applicability [19]. The asymptotic theory
for quantile regression has been developed under both a fixed number of regressors
and an increasing number of regressors. The asymptotic theory under a fixed num-
ber of regressors is given in [13, 15, 17, 21, 27] and others. The asymptotic theory
under an increasing number of regressors is given in [16] and [1, 4], covering the
case where the number of regressors p is negligible relative to the sample size n

[i.e., p = o(n)].
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In this paper, we consider quantile regression in high-dimensional sparse mod-
els (HDSMs). In such models, the overall number of regressors p is very large,
possibly much larger than the sample size n. However, the number of significant re-
gressors for each conditional quantile of interest is at most s, which is smaller than
the sample size, that is, s = o(n). HDSMs [7, 12, 26] have emerged to deal with
many new applications arising in biometrics, signal processing, machine learning,
econometrics, and other areas of data analysis where high-dimensional data sets
have become widely available.

A number of papers have begun to investigate estimation of HDSMs, focus-
ing primarily on penalized mean regression, with the �1-norm acting as a penalty
function [7, 12, 22, 26, 32, 34]. References [7, 12, 22, 26, 34] demonstrated
the fundamental result that �1-penalized least squares estimators achieve the rate√

s/n
√

logp, which is very close to the oracle rate
√

s/n achievable when the true
model is known. Reference [32] demonstrated a similar fundamental result on the
excess forecasting error loss under both quadratic and nonquadratic loss functions.
Thus, the estimator can be consistent and can have excellent forecasting perfor-
mance even under very rapid, nearly exponential, growth of the total number of
regressors p. See [7, 9–11, 14, 25, 29] for many other interesting developments
and a detailed review of the existing literature.

Our paper’s contribution is to develop a set of results on model selection and
rates of convergence for quantile regression within the HDSM framework. Since
ordinary quantile regression is inconsistent in HDSMs, we consider quantile re-
gression penalized by the �1-norm of parameter coefficients, denoted �1-QR. First,
we show that under general conditions �1-QR estimates of regression coefficients
and regression functions are consistent at the near-oracle rate

√
s/n

√
log(p ∨ n),

uniformly in a compact interval U ⊂ (0,1) of quantile indices.2 (This result is dif-
ferent from, and hence complementary to [32]’s fundamental results on the rates
for excess forecasting error loss.) Second, in order to make �1-QR practical, we
propose a partly pivotal, data-driven choice of the penalty level, and show that this
choice leads to the same sharp convergence rate. Third, we show that �1-QR cor-
rectly selects the true model as a valid submodel when the nonzero coefficients of
the true model are well separated from zero. Fourth, we also propose and analyze
the post-penalized estimator (post-�1-QR), which applies ordinary, unpenalized
quantile regression to the model selected by the penalized estimator, and thus aims
at reducing the regularization bias of the penalized estimator. We show that un-
der similar conditions post-�1-QR can perform as well as �1-QR in terms of the
rate of convergence, uniformly over U , even if the �1-QR-based model selection
misses some components of the true models. This occurs because �1-QR-based
model selection only misses those components that have relatively small coeffi-
cients. Moreover, post-�1-QR can perform better than �1-QR if the �1-QR-based

2Under s → ∞, the oracle rate, uniformly over a proper compact interval U , is
√

(s/n) logn,
cf. [4]; the oracle rate for a single quantile index is

√
s/n; cf. [16].
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model selection correctly includes all components of the true model as a subset.
(Obviously, post-�1-QR can perform as well as the oracle if the �1-QR perfectly
selects the true model, which is, however, unrealistic for many designs of interest.)
Fifth, we illustrate the use of �1-QR and post-�1-QR with a Monte Carlo experi-
ment. To the best of our knowledge, all of the above results are new and contribute
to the literature on HDSMs. Our results on post-penalized estimators and some
proof techniques could also be of interest in other problems. We provide further
technical comparisons to the literature in Section 2.

1.1. Notation. In what follows, we implicitly index all parameter values by the
sample size n, but we omit the index whenever this does not cause confusion. We
use the empirical process notation as defined in [33]. In particular, given a random
sample Z1, . . . ,Zn, let Gn(f ) = Gn(f (Zi)) := n−1/2 ∑n

i=1(f (Zi) − E[f (Zi)])
and Enf = Enf (Zi) := ∑n

i=1 f (Zi)/n. We use the notation a � b to denote a =
O(b), that is, a ≤ cb for some constant c > 0 that does not depend on n; and
a �P b to denote a = OP (b). We also use the notation a ∨ b = max{a, b} and
a ∧ b = min{a, b}. We denote the �2-norm by ‖ · ‖, �1-norm by ‖ · ‖1, �∞-norm by
‖ · ‖∞ and the �0-“norm” by ‖ · ‖0 (i.e., the number of nonzero components). We
denote by ‖β‖1,n = ∑p

j=1 σ̂j |βj | the �1-norm weighted by σ̂j ’s. Finally, given a
vector δ ∈ R

p , and a set of indices T ⊂ {1, . . . , p}, we denote by δT the vector in
which δTj = δj if j ∈ T , δTj = 0 if j /∈ T .

2. The estimator, the penalty level and overview of rate results. In this
section, we formulate the setting and the estimator, and state primitive regularity
conditions. We also provide an overview of the main results.

2.1. Basic setting. The setting of interest corresponds to a parametric quantile
regression model, where the dimension p of the underlying model increases with
the sample size n. Namely, we consider a response variable y and p-dimensional
covariates x such that the uth conditional quantile function of y given x is given
by

F−1
yi |xi

(u|xi) = x′β(u), β(u) ∈ R
p for all u ∈ U ,(2.1)

where U ⊂ (0,1) is a compact set of quantile indices. Recall that the uth condi-
tional quantile F−1

yi |xi
(u|x) is the inverse of the conditional distribution function

Fyi |xi
(y|xi) of yi given xi . We consider the case where the dimension p of the

model is large, possibly much larger than the available sample size n, but the true
model β(u) has a sparse support

Tu = support(β(u)) = {
j ∈ {1, . . . , p} : |βj (u)| > 0

}
having only su ≤ s ≤ n/ log(n ∨ p) nonzero components for all u ∈ U .
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The population coefficient β(u) is known to minimize the criterion function

Qu(β) = E[ρu(y − x′β)],(2.2)

where ρu(t) = (u − 1{t ≤ 0})t is the asymmetric absolute deviation function [21].
Given a random sample (y1, x1), . . . , (yn, xn), the quantile regression estimator of
β(u) is defined as a minimizer of the empirical analog of (2.2):

Q̂u(β) = En[ρu(yi − x′
iβ)].(2.3)

In high-dimensional settings, particularly when p ≥ n, ordinary quantile regres-
sion is generally inconsistent, which motivates the use of penalization in order to
remove all, or at least nearly all, regressors whose population coefficients are zero,
thereby possibly restoring consistency. A penalization that has proven quite useful
in least squares settings is the �1-penalty leading to the Lasso estimator [30].

2.2. Penalized and post-penalized estimators. The �1-penalized quantile re-
gression estimator β̂(u) is a solution to the following optimization problem:

min
β∈Rp

Q̂u(β) + λ
√

u(1 − u)

n

p∑
j=1

σ̂j |βj |,(2.4)

where σ̂ 2
j = En[x2

ij ]. The criterion function in (2.4) is the sum of the criterion func-
tion (2.3) and a penalty function given by a scaled �1-norm of the parameter vector.
The overall penalty level λ

√
u(1 − u) depends on each quantile index u, while λ

will depend on the set U of quantile indices of interest. The �1-penalized quan-
tile regression has been considered in [18] under small (fixed) p asymptotics. It is
important to note that the penalized quantile regression problem (2.4) is equiva-
lent to a linear programming problem (see Appendix C) with a dual version that is
useful for analyzing the sparsity of the solution. When the solution is not unique,
we define β̂(u) as any optimal basic feasible solution (see, e.g., [6]). Therefore,
the problem (2.4) can be solved in polynomial time, avoiding the computational
curse of dimensionality. Our goal is to derive the rate of convergence and model
selection properties of this estimator.

The post-penalized estimator (post-�1-QR) applies ordinary quantile regression
to the model T̂u selected by the �1-penalized quantile regression. Specifically, set

T̂u = support(β̂(u)) = {
j ∈ {1, . . . , p} : |β̂j (u)| > 0

}
,

and define the post-penalized estimator β̃(u) as

β̃(u) ∈ arg min
β∈Rp : βT̂ c

u
=0

Q̂u(β),(2.5)

which removes from further estimation the regressors that were not selected. If the
model selection works perfectly—that is, T̂u = Tu—then this estimator is simply
the oracle estimator, whose properties are well known. However, perfect model
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selection might be unlikely for many designs of interest. Rather, we are interested
in the more realistic scenario where the first-step estimator β̂(u) fails to select
some components of β(u). Our goal is to derive the rate of convergence for the
post-penalized estimator and show it can perform well under this scenario.

2.3. The choice of the penalty level λ. In order to describe our choice of the
penalty level λ, we introduce the random variable

� = n sup
u∈ U

max
1≤j≤p

∣∣∣∣En

[
xij (u − 1{ui ≤ u})

σ̂j

√
u(1 − u)

]∣∣∣∣,(2.6)

where u1, . . . , un are i.i.d. uniform (0,1) random variables, independently distrib-
uted from the regressors, x1, . . . , xn. The random variable � has a known, that is,
pivotal, distribution conditional on X = [x1, . . . , xn]′. We then set

λ = c · �(1 − α|X),(2.7)

where �(1 − α|X) := (1 − α)-quantile of � conditional on X, and the constant
c > 1 depends on the design.3 Thus, the penalty level depends on the pivotal quan-
tity �(1 − α|X) and the design. Under assumptions D.1–D.4, we can set c = 2,
similar to [7]’s choice for least squares. Furthermore, we recommend computing
�(1 − α|X) using simulation of �.4 Our concrete recommendation for practice is
to set 1 − α = 0.9.

The parameter 1 − α is the confidence level in the sense that, as in [7], our
(nonasymptotic) bounds on the estimation error will contract at the optimal rate
with this probability. We refer the reader to Koenker [20] for an implementation
of our choice of penalty level and practical suggestions concerning the confidence
level. In particular, both here and in Koenker [20], the confidence level 1 − α =
0.9 gave good performance results in terms of balancing regularization bias with
estimation variance. Cross-validation may also be used to choose the confidence
level 1 −α. Finally, we should note that, as in [7], our theoretical bounds allow for
any choice of 1 − α and are stated as a function of 1 − α.

The formal rationale behind the choice (2.7) for the penalty level λ is that
this choice leads precisely to the optimal rates of convergence for �1-QR. (The
same or slightly higher choice of λ also guarantees good performance of post-
�1-QR.) Our general strategy for choosing λ follows [7], who recommend se-
lecting λ so that it dominates a relevant measure of noise in the sample crite-
rion function, specifically the supremum norm of a suitably rescaled gradient of
the sample criterion function evaluated at the true parameter value. In our case,

3c depends only on the constant c0 appearing in condition D.4; when c0 ≥ 9, it suffices to set
c = 2.

4We also provide analytical bounds on �(1−α|X) of the form C(α, U )
√

n logp for some numeric
constant C(α, U ). We recommend simulation because it accounts for correlation among the columns
of X in the sample.



PENALIZED QUANTILE REGRESSION 87

this general strategy leads precisely to the choice (2.7). Indeed, a (sub)gradient
Ŝu(β(u)) = En[(u − 1{yi ≤ x′

iβ(u)})xi] ∈ ∂Q̂u(β(u)) of the quantile regression
objective function evaluated at the truth has a pivotal representation, namely
Ŝu(β(u)) = En[(u − 1{ui ≤ u})xi] for u1, . . . , un i.i.d. uniform (0,1) conditional
on X, and so we can represent � as in (2.6), and, thus, choose λ as in (2.7).

2.4. General regularity conditions. We consider the following conditions on
a sequence of models indexed by n with parameter dimension p = pn → ∞. In
these conditions, all constants can depend on n, but we omit the explicit indexing
by n to ease exposition.

D.1 (Sampling and smoothness). Data (yi, x
′
i )

′, i = 1, . . . , n, are an i.i.d. se-
quence of real (1 + p)-vectors, with the conditional u-quantile function given by
(2.1) for each u ∈ U , with the first component of xi equal to one, and n∧p ≥ 3. For
each value x in the support of xi , the conditional density fyi |xi

(y|x) is continuously
differentiable in y at each y ∈ R, and fyi |xi

(y|x) and ∂
∂y

fyi |xi
(y|x) are bounded in

absolute value by constants f̄ and f̄ ′, uniformly in y ∈ R and x in the support xi .
Moreover, the conditional density of yi evaluated at the conditional quantile x′

iβ(u)

is bounded away from zero uniformly in U , that is, fyi |xi
(x′β(u)|x) > f > 0 uni-

formly in u ∈ U and x in the support of xi .

Condition D.1 imposes only mild smoothness assumptions on the conditional
density of the response variable given regressors, and does not impose any normal-
ity or homoscedasticity assumptions. The assumption that the conditional density
is bounded below at the conditional quantile is standard, but we can replace it by
the slightly more general condition infu∈ U infδ =0(δ

′Juδ)/(δ
′E[xix

′
i]δ) ≥ f > 0, on

the Jacobian matrices

Ju = E[fyi |xi
(x′

iβ(u)|xi)xix
′
i] for all u ∈ U ,

throughout the paper; see [3] for a further generalization.

D.2 [Sparsity and smoothness of u �→ β(u)]. Let U be a compact subset of
(0,1). The coefficients β(u) in (2.1) are sparse and smooth with respect to u ∈ U :

sup
u∈ U

‖β(u)‖0 ≤ s and ‖β(u) − β(u′)‖ ≤ L|u − u′| for all u,u′ ∈ U ,

where s ≥ 1, and logL ≤ CL log(p ∨ n) for some constant CL.

Condition D.2 imposes sparsity and smoothness on the behavior of the quantile
regression coefficients β(u) as we vary the quantile index u.

D.3 (Well-behaved covariates). Covariates are normalized such that σ 2
j =

E[x2
ij ] = 1 for all j = 1, . . . , p, and σ̂ 2

j = En[x2
ij ] obeys P(max1≤j≤p|σ̂j − 1| ≤

1/2) ≥ 1 − γ → 1 as n → ∞.
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Condition D.3 requires that σ̂j does not deviate too much from σj and normal-
izes σ 2

j = 1.
In order to state the next assumption, for some c0 ≥ 0 and each u ∈ U , define

Au := {δ ∈ R
p :‖δT c

u
‖1 ≤ c0‖δTu‖1,‖δT c

u
‖0 ≤ n},

which will be referred to as the restricted set. Define T u(δ,m) ⊂ {1, . . . , p} \Tu as
the support of the m largest in absolute value components of the vector δ outside
of Tu = support(β(u)), where T u(δ,m) is the empty set if m = 0.

D.4 (Restricted identifiability and nonlinearity). For some constants m ≥ 0
and c0 ≥ 9, the matrix E[xix

′
i] satisfies

κ2
m := inf

u∈ U
inf

δ∈Au,δ =0

δ′E[xix
′
i]δ

‖δTu∪T u(δ,m)‖2 > 0(RE(c0,m))

and log(f κ2
0 ) ≤ Cf log(n ∨ p) for some constant Cf . Moreover,

q := 3

8

f 3/2

f̄ ′ inf
u∈ U

inf
δ∈Au,δ =0

E[|x′
iδ|2]3/2

E[|x′
iδ|3]

> 0.(RNI(c0))

The restricted eigenvalue (RE) condition is analogous to the condition in [7]
and [12]; see [7] and [12] for different sufficient primitive conditions that yield
bounds on κm. Also, since κm is nonincreasing in m, (RE(c0,m)) for any m > 0
implies (RE(c0,0)). The restricted nonlinear impact (RNI) coefficient q appearing
in D.4 is a new concept, which controls the quality of minoration of the quantile
regression objective function by a quadratic function over the restricted set.

Finally, we state another condition needed to derive results on the post-model
selected estimator. In order to state the condition, define the sparse set Ãu(m̃) =
{δ ∈ R

p :‖δT c
u
‖0 ≤ m̃} for m̃ ≥ 0 and u ∈ U .

D.5 (Sparse identifiability and nonlinearity). The matrix E[xix
′
i] satisfies for

some m̃ ≥ 0

κ̃2
m̃ := inf

u∈ U
inf

δ∈Ãu(m̃),δ =0

δ′E[xix
′
i]δ

δ′δ
> 0(SE(m̃))

and

q̃m̃ := 3

8

f 3/2

f̄ ′ inf
u∈ U

inf
δ∈Ãu(m̃),δ =0

E[|x′
iδ|2]3/2

E[|x′
iδ|3]

> 0.(SNI(m̃))

We invoke the sparse eigenvalue (SE) condition in order to analyze the post-
penalized estimator (2.5). This assumption is similar to the conditions used in [26]
and [34] to analyze Lasso. Our form of the (SE) condition is neither less nor more
general than the (RE) condition. The SNI coefficient q̃m̃ controls the quality of
minoration of the quantile regression objective function by a quadratic function
over sparse neighborhoods of the true parameter.
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2.5. Examples of simple sufficient conditions. In order to highlight the nature
and usefulness of conditions D.1–D.5, it is instructive to state some simple suffi-
cient conditions (note that D.1–D.5 allow for much more general conditions). We
relegate the proofs of this section to [2] for brevity.

DESIGN 1 (Location model with correlated normal design). Let us consider
estimating a standard location model

y = x′βo + ε,

where ε ∼ N(0, σ 2), σ > 0 is fixed, x = (1, z′)′, with z ∼ N(0,�), where � has
ones in the diagonal, a minimum eigenvalue bounded away from zero by a constant
κ2 > 0, and a maximum eigenvalue bounded from above, uniformly in n.

LEMMA 1. Under Design 1 with U = [ξ,1 − ξ ], ξ > 0, conditions D.1–D.5
are satisfied with

f̄ = 1/
[√

2πσ
]
, f̄ ′ =

√
e/[2π ]/σ 2, f = 1/

√
2πξσ,

‖β(u)‖0 ≤ ‖βo‖0 + 1, γ = 2p exp(−n/24), L = σ/ξ,

κm ∧ κ̃m̃ ≥ κ, q ∧ q̃m̃ ≥ (3/[32ξ3/4])
√√

2πσ/e.

Note that the normality of errors can be easily relaxed by allowing for the dis-
turbance ε to have a smooth density that obeys the conditions stated in D.1. The
conditions on the population design matrix can also be replaced by more general
primitive conditions specified in Remark 2.1.

DESIGN 2 (Location-scale model with bounded regressors). Let us consider
estimating a standard location-scale model

y = x′βo + x′η · ε,
where ε ∼ F independent of x, with a continuously differentiable probability den-
sity function f . We assume that the population design matrix E[xx′] has ones
in the diagonal and has eigenvalues uniformly bounded away from zero and
from above, x1 = 1, max1≤j≤p |xj | ≤ KB . Moreover, the vector η is such that
0 < υ ≤ x′η ≤ ϒ < ∞ for all values of x.

LEMMA 2. Under Design 2 with U = [ξ,1 − ξ ], ξ > 0, conditions D.1–D.5
are satisfied with

f̄ ≤ max
ε

f (ε)/υ, f̄ ′ ≤ max
ε

f ′(ε)/υ2,

f = min
u∈ U

f (F−1(u))/ϒ, ‖β(u)‖0 ≤ ‖βo‖0 + ‖η‖0 + 1,
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γ = 2p exp(−n/[8K4
B]), κm ∧ κ̃m̃ ≥ κ, L = ‖η‖f ,

q ≥ 3

8

f 3/2

f̄ ′ κ/
[
10KB

√
s
]
, q̃m̃ ≥ 3

8

f 3/2

f̄ ′ κ/
[
KB

√
s + m̃

]
.

COMMENT 2.1 (Conditions on E[xix
′
i]). The conditions on the population

design matrix can also be replaced by more general primitive conditions of the
form stated in [7] and [12]. For example, conditions on sparse eigenvalues suffice
as shown in [7]. Denote the minimum and maximum eigenvalue of the population
design matrix by

ϕmin(m) = min‖δ‖=1,‖δ‖0≤m

δ′E[xix
′
i]δ

δ′δ
and

(2.8)

ϕmax(m) = max‖δ‖=1,‖δ‖0≤m

δ′E[xix
′
i]δ

δ′δ
.

Assuming that for some m ≥ s we have mϕmin(m + s) ≥ c2
0sϕmax(m), then

κm ≥ √
ϕmin(s + m)

(
1 − c0

√
sϕmax(s)/[mϕmin(s + m)])

and

κ̃m̃ ≥ ϕmin(s + m).

2.6. Overview of main results. Here, we discuss our results under the simple
setup of Design 1 and under 1/p ≤ α → 0 and γ → 0. These simple assumptions
allow us to straightforwardly compare our rate results to those obtained in the lit-
erature. We state our more general nonasymptotic results under general conditions
in the subsequent sections. Our first main rate result is that �1-QR, with our choice
(2.7) of parameter λ, satisfies

sup
u∈ U

‖β̂(u) − β(u)‖ �P

1

f κ0κs

√
s log(n ∨ p)

n
,(2.9)

provided that the upper bound on the number of nonzero components s satisfies
√

s log(n ∨ p)√
nf 1/2κ0q

→ 0.(2.10)

Note that κ0, κs , f and q are bounded away from zero in this example. Therefore,
the rate of convergence is

√
s/n · √

log(n ∨ p) uniformly in the set of quantile
indices u ∈ U , which is very close to the oracle rate when p grows polynomially
in n. Further, we note that our resulting restriction (2.10) on the dimension s of the
true models is very weak; when p is polynomial in n, s can be of almost the same
order as n, namely s = o(n/ logn).
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Our second main result is that the dimension ‖β̂(u)‖0 of the model selected by
the �1-penalized estimator is of the same stochastic order as the dimension s of the
true models, namely

sup
u∈ U

‖β̂(u)‖0 �P s.(2.11)

Further, if the parameter values of the minimal true model are well separated from
zero, then with a high probability the model selected by the �1-penalized estimator
correctly nests the true minimal model:

Tu = support(β(u)) ⊆ T̂u = support(β̂(u)) for all u ∈ U .(2.12)

Moreover, we provide conditions under which a hard-thresholded version of the
estimator selects the correct support.

Our third main result is that the post-penalized estimator, which applies ordinary
quantile regression to the selected model, obeys

sup
u∈ U

‖β̃(u) − β(u)‖ �P

1

f κ̃2
m̂

√
m̂ log(n ∨ p) + s logn

n
(2.13)

+ supu∈ U 1{Tu ⊆ T̂u}
f κ0κ̃m̂

√
s log(n ∨ p)

n
,

where m̂ = supu∈ U ‖β̂T c
u
(u)‖0 is the maximum number of wrong components se-

lected for any quantile index u ∈ U , provided that the bound on the number of
nonzero components s obeys the growth condition (2.10) and

√
m̂ log(n ∨ p) + s logn√

nf 1/2κ̃m̂q̃m̂

→P 0.(2.14)

[Note that when U is a singleton, the s logn factor in (2.13) becomes s.]
We see from (2.13) that post-�1-QR can perform well in terms of the rate of

convergence even if the selected model T̂u fails to contain the true model Tu.
Indeed, since in this design m̂ �P s, post-�1-QR has the rate of convergence√

s/n · √log(n ∨ p), which is the same as the rate of convergence of �1-QR. The
intuition for this result is that the �1-QR based model selection can only miss co-
variates with relatively small coefficients, which then permits post-�1-QR to per-
form as well or even better due to reductions in bias, as confirmed by our compu-
tational experiments.

We also see from (2.13) that post-�1-QR can perform better than �1-QR in terms
of the rate of convergence if the number of wrong components selected obeys
m̂ = oP (s) and the selected model contains the true model, {Tu ⊆ T̂u} with prob-
ability converging to one. In this case, post-�1-QR has the rate of convergence√

(oP (s)/n) log(n ∨ p) + (s/n) logn, which is faster than the rate of convergence
of �1-QR. In the extreme case of perfect model selection, that is, when m̂ = 0, the
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rate of post-�1-QR becomes
√

(s/n) logn uniformly in U . (When U is a single-
ton, the logn factor drops out.) Note that inclusion {Tu ⊆ T̂u} necessarily happens
when the coefficients of the true models are well separated from zero, as we stated
above. Note also that the condition m̂ = o(s) or even m̂ = 0 could occur under
additional conditions on the regressors (such as the mutual coherence conditions
that restrict the maximal pairwise correlation of regressors). Finally, we note that
our second restriction (2.14) on the dimension s of the true models is very weak
in this design; when p is polynomial in n, s can be of almost the same order as n,
namely s = o(n/ logn).

To the best of our knowledge, all of the results presented above are new, both
for the single �1-penalized quantile regression problem as well as for the infinite
collection of �1-penalized quantile regression problems. These results therefore
contribute to the rate results obtained for �1-penalized mean regression and re-
lated estimators in the fundamental papers of [7, 12, 22, 26, 32, 34]. The results
on post-�1 penalized quantile regression had no analogs in the literature on mean
regression, apart from the rather exceptional case of perfect model selection, in
which case the post-penalized estimator is simply the oracle. Building on the cur-
rent work these results have been extended to mean regression in [5]. Our results
on the sparsity of �1-QR and model selection also contribute to the analogous re-
sults for mean regression [26]. Also, our rate results for �1-QR are different from,
and hence complementary to, the fundamental results in [32] on the excess fore-
casting loss under possibly nonquadratic loss functions, which also specializes the
results to density estimation, mean regression, and logistic regression. In princi-
ple, we could apply theorems in [32] to the single quantile regression problem to
derive the bounds on the excess loss E[ρu(yi − x′

i β̂(u))] − E[ρu(yi − x′
iβ(u))].5

However, these bounds would not imply our results (2.7), (2.9), (2.11), (2.12) and
(2.13), which characterize the rates of estimating coefficients β(u) by �1-QR and
post-�1-QR, sparsity and model selection properties, and the data-driven choice of
the penalty level.

3. Main results and main proofs. In this section, we derive rates of conver-
gence for �1-QR and post-�1-QR, sparsity bounds, and model selection results.

3.1. Bounds on �(1 − α|X). We start with a characterization of � and its
(1 − α)-quantile, �(1 − α|X), which determines the magnitude of our suggested
penalty level λ via equation (2.7).

5Of course, such a derivation would entail some difficult work, since we must verify some high-
level assumptions made directly on the performance of the oracle and penalized estimators in popu-
lation and others (cf. [32], conditions I.1 and I.2, where I.2 assumes uniform in xi consistency of the
penalized estimator in the population, and does not hold in our main examples, e.g., in Design 1 with
normal regressors).
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THEOREM 1 [Bounds on �(1 − α|X)]. Let WU = maxu∈ U 1/
√

u(1 − u).
There is a universal constant C� such that:

(i) P(� ≥ k · C�WU
√

n logp|X) ≤ p−k2+1,
(ii) �(1 − α|X) ≤ √

1 + log(1/α)/ logp · C�WU
√

n logp with probability 1.

3.2. Rates of convergence. In this section, we establish the rate of convergence
of �1-QR. We start with the following preliminary result which shows that if the
penalty level exceeds the specified threshold, for each u ∈ U , the estimator β̂(u)−
β(u) will belong to the restricted set Au := {δ ∈ R

p :‖δT c
u
‖1 ≤ c0‖δTu‖1,‖δT c

u
‖0 ≤

n}.

LEMMA 3 (Restricted set). 1. Under D.3, with probability at least 1 − γ we
have for every δ ∈ R

p that

2
3‖δ‖1,n ≤ ‖δ‖1 ≤ 2‖δ‖1,n.(3.1)

2. Moreover, if for some α ∈ (0,1)

λ ≥ λ0 := c0 + 3

c0 − 3
�(1 − α|X),(3.2)

then with probability at least 1 − α − γ , uniformly in u ∈ U , we have (3.1) and

β̂(u) − β(u) ∈ Au = {δ ∈ R
p :‖δT c

u
‖1 ≤ c0‖δTu‖1,‖δT c

u
‖0 ≤ n}.

This result is inspired by the analogous result for least squares in [7].

LEMMA 4 (Identifiability relations over restricted set). Condition D.4, namely
(RE(c0,m)) and (RNI(c0)), implies that for any δ ∈ Au and u ∈ U ,

‖(E[xix
′
i])1/2δ‖ ≤ ‖J 1/2

u δ‖/f 1/2,(3.3)

‖δTu‖1 ≤ √
s‖J 1/2

u δ‖/[f 1/2κ0],(3.4)

‖δ‖1 ≤ √
s(1 + c0)‖J 1/2

u δ‖/[f 1/2κ0],(3.5)

‖δ‖ ≤ (
1 + c0

√
s/m

)‖J 1/2
u δ‖/[f 1/2κm],(3.6)

Qu

(
β(u) + δ

)− Qu(β(u)) ≥ (‖J 1/2
u δ‖2/4) ∧ (q‖J 1/2

u δ‖).(3.7)

This second preliminary result derives identifiability relations over Au. It shows
that the coefficients f , κ0 and κm control moduli of continuity between various
norms over the restricted set Au, and the RNI coefficient q controls the quality of
minoration of the objective function by a quadratic function over Au.

Finally, the third preliminary result derives bounds on the empirical error
over Au.
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LEMMA 5 (Control of empirical error). Under D.1–D.4, for any t > 0 let

ε(t) := sup
u∈ U ,δ∈Au,‖J 1/2

u δ‖≤t

∣∣Q̂u

(
β(u) + δ

)− Qu

(
β(u) + δ

)
− (

Q̂u(β(u)) − Qu(β(u))
)∣∣.

Then, there is a universal constant CE such that for any A > 1, with probability at
least 1 − 3γ − 3p−A2

ε(t) ≤ t · CE · (1 + c0)A

f 1/2κ0

√
s log(p ∨ [Lf 1/2κ0/t])

n
.

In order to prove the lemma, we use a combination of chaining arguments and
exponential inequalities for contractions [24]. Our use of the contraction principle
is inspired by its fundamentally innovative use in [32]; however, the use of the
contraction principle alone is not sufficient in our case. Indeed, first we need to
make some adjustments to obtain error bounds over the neighborhoods defined by
the intrinsic norm ‖J 1/2

u · ‖ instead of the ‖ · ‖1 norm; and second, we need to use
chaining over u ∈ U to get uniformity over U .

Armed with Lemmas 3–5, we establish the first main result. The result depends
on the constants C�, CE , CL and Cf defined in Theorem 1, Lemma 5, condi-
tions D.2 and D.4.

THEOREM 2 (Uniform bounds on estimation error of �1-QR). Assume condi-
tions D.1–D.4 hold, and let

C > 2C�

√
1 + log(1/α)/ logp ∨ [

CE

√
1 ∨ [CL + Cf + 1/2]].

Let λ0 be defined as in (3.2). Then uniformly in the penalty level λ such that

λ0 ≤ λ ≤ C · WU
√

n logp,(3.8)

we have that, for any A > 1 with probability at least 1 − α − 4γ − 3p−A2
,

sup
u∈ U

∥∥J 1/2
u

(
β̂(u) − β(u)

)∥∥ ≤ 8C · (1 + c0)WU A

f 1/2κ0
·
√

s log(p ∨ n)

n
,

sup
u∈ U

√
Ex

[
x′(β̂(u) − β(u)

)]2 ≤ 8C · (1 + c0)WU A

f κ0
·
√

s log(p ∨ n)

n

and

sup
u∈ U

‖β̂(u) − β(u)‖ ≤ 1 + c0
√

s/m

κm

· 8C · (1 + c0)WU A

f κ0
·
√

s log(p ∨ n)

n
,
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provided s obeys the growth condition

2C · (1 + c0)WU A ·
√

s log(p ∨ n) < qf 1/2κ0
√

n.(3.9)

This result derives the rate of convergence of the �1-penalized quantile regres-
sion estimator in the intrinsic norm and other norms of interest uniformly in u ∈ U
as well as uniformly in the penalty level λ in the range specified by (3.8), which
includes our recommended choice of λ0. We see that the rates of convergence for
�1-QR generally depend on the number of significant regressors s, the logarithm
of the number of regressors p, the strength of identification summarized by κ0, κm,
f and q , and the quantile indices of interest U (as expected, extreme quantiles can
slow down the rates of convergence). These rate results parallel the results of [7]
obtained for �1-penalized mean regression. Indeed, the role of the parameter f is
similar to the role of the standard deviation of the disturbance in mean regression. It
is worth noting, however, that our results do not rely on normality and homoscedas-
ticity assumptions, and our proofs have to address the nonquadratic nature of the
objective function, with parameter q controlling the quality of quadratization. This
parameter q enters the results only through the growth restriction (3.9) on s. At this
point, we refer the reader to Section 2.4 for a further discussion of this result in
the context of the correlated normal design. Finally, we note that our proof com-
bines the star-shaped geometry of the restricted set Au with classical convexity
arguments; this insight may be of interest in other problems.

PROOF OF THEOREM 2. We let

t := 8C · (1 + c0)WU A

f 1/2κ0
·
√

s log(p ∨ n)

n

and consider the following events:

(i) �1 := the event that (3.1) and β̂(u)−β(u) ∈ Au, uniformly in u ∈ U , hold;
(ii) �2 := the event that the bound on empirical error ε(t) in Lemma 5 holds;

(iii) �3 := the event in which �(1 − α|X) ≤ √
1 + log(1/α)/ logp · C�WU ×√

n logp.

By the choice of λ and Lemma 3, P(�1) ≥ 1 − α − γ ; by Lemma 5 P(�2) ≥
1 − 3γ − 3p−A2

; and by Theorem 1 P(�3) = 1, hence P(
⋂3

k=1 �k) ≥ 1 − α −
4γ − 3p−A2

.
Given the event

⋂3
k=1 �k , we want to show the event that

∃u ∈ U
∥∥J 1/2

u

(
β̂(u) − β(u)

)∥∥ > t(3.10)

is impossible, which will prove the first bound. The other two bounds then follow
from Lemma 4 and the first bound. First, note that the event in (3.10) implies that
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for some u ∈ U
0 > min

δ∈Au,‖J 1/2
u δ‖≥t

Q̂u

(
β(u) + δ

)− Q̂u(β(u))

+ λ
√

u(1 − u)

n

(‖β(u) + δ‖1,n − ‖β(u)‖1,n

)
.

The key observation is that by convexity of Q̂u(·) + ‖ · ‖1,nλ
√

u(1 − u)/n and by
the fact that Au is a cone, we can replace ‖J 1/2

u δ‖ ≥ t by ‖J 1/2
u δ‖ = t in the above

inequality and still preserve it:

0 > min
δ∈Au,‖J 1/2

u δ‖=t

Q̂u

(
β(u) + δ

)− Q̂u(β(u))

+ λ
√

u(1 − u)

n

(‖β(u) + δ‖1,n − ‖β(u)‖1,n

)
.

Also, by inequality (3.4) in Lemma 4, for each δ ∈ Au

‖β(u)‖1,n − ‖β(u) + δ‖1,n ≤ ‖δTu‖1,n ≤ 2‖δTu‖1 ≤ 2
√

s‖J 1/2
u δ‖/f 1/2κ0,

which then further implies

0 > min
δ∈Au,‖J 1/2

u δ‖=t

Q̂u

(
β(u) + δ

)− Q̂u(β(u))

(3.11)

− λ
√

u(1 − u)

n

2
√

s

f 1/2κ0
‖J 1/2

u δ‖.

Also by Lemma 5, under our choice of t ≥ 1/[f 1/2κ0
√

n], log(Lf κ2
0 ) ≤ (CL +

Cf ) log(n ∨ p), and under event �2

ε(t) ≤ tCE

√
1 ∨ [CL + Cf + 1/2](1 + c0)A

f 1/2κ0

√
s log(p ∨ n)

n
.(3.12)

Therefore, we obtain from (3.11) and (3.12)

0 ≥ min
δ∈Au,‖J 1/2

u δ‖=t

Qu

(
β(u) + δ

)− Qu(β(u)) − λ
√

u(1 − u)

n

2
√

s

f 1/2κ0
‖J 1/2

u δ‖

− tCE

√
1 ∨ [CL + Cf + 1/2](1 + c0)A

f 1/2κ0

√
s log(p ∨ n)

n
.

Using the identifiability relation (3.7) stated in Lemma 4, we further get

0 >
t2

4
∧ (qt) − t

λ
√

u(1 − u)

n

2
√

s

f 1/2κ0

− tCE

√
1 ∨ [CL + Cf + 1/2](1 + c0)A

f 1/2κ0

√
s log(p ∨ n)

n
.
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Using the upper bound on λ under event �3, we obtain

0 >
t2

4
∧ (qt) − tC

2
√

s logp√
n

WU

f 1/2κ0

− tCE

√
1 ∨ [CL + Cf + 1/2](1 + c0)A

f 1/2κ0

√
s log(p ∨ n)

n
.

Note that qt cannot be smaller than t2/4 under the growth condition (3.9) in the
theorem. Thus, using also the lower bound on C given in the theorem, WU ≥ 1,
and c0 ≥ 1, we obtain the relation

0 >
t2

4
− t · 2C

(1 + c0)WU A

f 1/2κ0
·
√

s log(p ∨ n)

n
= 0,

which is impossible. �

3.3. Sparsity properties. Next, we derive sparsity properties of the solution to
�1-penalized quantile regression. Fundamentally, sparsity is linked to the first or-
der optimality conditions of (2.4) and therefore to the (sub)gradient of the criterion
function. In the case of least squares, the gradient is a smooth (linear) function of
the parameters. In the case of quantile regression, the gradient is a highly non-
smooth (piece-wise constant) function. To control the sparsity of β̂(u), we rely
on empirical process arguments to approximate gradients by smooth functions. In
particular, we crucially exploit the fact that the entropy of all m-dimensional sub-
models of the p-dimensional model is of order m logp, which depends on p only
logarithmically.

The statement of the results will depend on the maximal k-sparse eigenvalue of
E[xix

′
i] and En[xix

′
i]:

ϕmax(k) = max
δ =0,‖δ‖0≤k

E[(x′
iδ)

2]
δ′δ

and

(3.13)

φ(k) = sup
δ =0,‖δ‖0≤k

En[(x′
iδ)

2]
δ′δ

∨ E[(x′
iδ)

2]
δ′δ

.

In order to establish our main sparsity result, we need two preliminary lemmas.

LEMMA 6 (Empirical pre-sparsity). Let ŝ = supu∈ U ‖β̂(u)‖0. Under D.1–D.4,
for any λ > 0, with probability at least 1 − γ we have

ŝ ≤ n ∧ p ∧ [4n2φ(̂s)W 2
U /λ2].

In particular, if λ ≥ 2
√

2WU
√

n log(n ∨ p)φ(n/ log(n ∨ p)) then ŝ ≤ n/ log(n ∨
p).
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This lemma establishes an initial bound on the number of nonzero components
ŝ as a function of λ and φ(̂s). Restricting

λ ≥ 2
√

2WU
√

n log(n ∨ p)φ
(
n/ log(n ∨ p)

)
makes the term φ(n/ log(n ∨ p)) appear in subsequent bounds instead of the term
φ(n), which in turn weakens some assumptions. Indeed, not only is the first term
smaller than the second, but also there are designs of interest where the second
term diverges while the first does not; for instance, in Design 1, if p ≥ 2n, we have
φ(n/ log(n ∨ p)) �P 1 while φ(n) �P

√
logp by [2].

The following lemma establishes a bound on the sparsity as a function of the
rate of convergence.

LEMMA 7 (Empirical sparsity). Assume D.1–D.4 and let

r = sup
u∈ U

∥∥J 1/2
u

(
β̂(u) − β(u)

)∥∥.
Then, for any ε > 0, there is a constant Kε ≥ √

2 such that with probability at least
1 − ε − γ ,

√
ŝ

WU
≤ μ(̂s)

n

λ
(r ∧ 1) + √

ŝKε

√
n log(n ∨ p)φ(̂s)

λ
,

μ(k) := 2
√

ϕmax(k)(1 ∨ 2f̄ /f 1/2).

Finally, we combine these results to establish the main sparsity result. In what
follows, we define φ̄ε as a constant such that φ(n/ log(n∨p)) ≤ φ̄ε with probabil-
ity 1 − ε.

THEOREM 3 (Uniform sparsity bounds). Let ε > 0 be any constant, assume
D.1–D.4 hold, and let λ satisfy λ ≥ λ0 and

KWU
√

n log(n ∨ p) ≤ λ ≤ K ′WU
√

n log(n ∨ p)

for some constant K ′ ≥ K ≥ 2Kεφ̄
1/2
ε , for Kε defined in Lemma 7. Then, for any

A > 1 with probability at least 1 − α − 2ε − 4γ − p−A2
,

ŝ := sup
u∈ U

‖β̂(u)‖0 ≤ s · [16μWU /f 1/2κ0]2[(1 + c0)AK ′/K]2,

where μ := μ(n/ log(n ∨ p)), provided that s obeys the growth condition

2K ′(1 + c0)AWU
√

s log(n ∨ p) < qf 1/2κ0
√

n.(3.14)
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The theorem states that by setting the penalty level λ to be possibly higher than
our initial recommended choice λ0, we can control ŝ, which will be crucial for
good performance of the post-penalized estimator. As a corollary, we note that if
(a) μ � 1, (b) 1/(f 1/2κ0) � 1 and (c) φ̄ε � 1 for each ε > 0, then ŝ � s with a
high probability, so the dimension of the selected model is about the same as the
dimension of the true model. Conditions (a), (b) and (c) easily hold for the corre-
lated normal design in Design 1. In particular, (c) follows from the concentration
inequalities and from results in classical random matrix theory; see [2] for proofs.
Therefore the possibly higher λ needed to achieve the stated sparsity bound does
not slow down the rate of �1-QR in this case. The growth condition (3.14) on s is
also weak in this case.

PROOF OF THEOREM 3. By the choice of K and Lemma 6, ŝ ≤ n/ log(n∨p)

with probability 1 − ε. With at least the same probability, the choice of λ yields

Kε

√
n log(n ∨ p)φ(̂s)

λ
≤ Kεφ̄

1/2
ε

KWU
≤ 1

2WU
,

so that by virtue of Lemma 7 and by μ(̂s) ≤ μ := μ(n/ log(n ∨ p)),
√

ŝ

WU
≤ μ

(r ∧ 1)n

λ
+

√
ŝ

2WU
or √

ŝ

WU
≤ 2μ

(r ∧ 1)n

λ
,

with probability 1 − 2ε. Since all conditions of Theorem 2 hold, we obtain the
result by plugging in the upper bound on r = supu∈ U ‖J 1/2

u (β̂(u) − β(u))‖ from
Theorem 2. �

3.4. Model selection properties. Next, we turn to the model selection proper-
ties of �1-QR.

THEOREM 4 (Model selection properties of �1-QR). Let ro = supu∈ U ‖β̂(u)−
β(u)‖. If infu∈ U minj∈Tu |βj (u)| > ro, then

Tu := support(β(u)) ⊆ T̂u := support(β̂(u)) for all u ∈ U .(3.15)

Moreover, the hard-thresholded estimator β̄(u), defined for any γ ≥ 0 by

β̄j (u) = β̂j (u)1{|β̂j (u)| > γ }, u ∈ U , j = 1, . . . , p,(3.16)

provided that γ is chosen such that ro < γ < infu∈ U minj∈Tu |βj (u)|− ro, satisfies

support(β̄(u)) = Tu for all u ∈ U .
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These results parallel analogous results in [26] for mean regression. The first
result says that if nonzero coefficients are well separated from zero, then the sup-
port of �1-QR includes the support of the true model. The inclusion of the true
support in (3.15) is in general one-sided; the support of the estimator can include
some unnecessary components having true coefficients equal to zero. The second
result states that if the further conditions are satisfied, additional hard thresholding
can eliminate inclusions of such unnecessary components. The value of the hard
threshold must explicitly depend on the unknown value minj∈Tu |βj (u)|, character-
izing the separation of nonzero coefficients from zero. The additional conditions
stated in this theorem are strong and perfect model selection appears quite un-
likely in practice. Certainly it does not work in all real empirical examples we
have explored. This motivates our analysis of the post-model-selected estimator
under conditions that allow for imperfect model selection, including cases where
we miss some nonzero components or have additional unnecessary components.

3.5. The post-penalized estimator. In this section, we establish a bound on the
rate of convergence of the post-penalized estimator. The proof relies crucially on
the identifiability and control of the empirical error over the sparse sets Ãu(m̃) :=
{δ ∈ R

p :‖δT c
u
‖0 ≤ m̃}.

LEMMA 8 (Sparse identifiability and control of empirical error). 1. Sup-
pose D.1 and D.5 hold. Then for all δ ∈ Ãu(m̃), u ∈ U , and m̃ ≤ n, we have that

Qu

(
β(u) + δ

)− Qu(β(u)) ≥ ‖J 1/2
u δ‖2

4
∧ (q̃m̃‖J 1/2

u δ‖).(3.17)

2. Suppose D.1, D.2 and D.5 hold and that |⋃u∈ U Tu| ≤ n. Then for any ε > 0,
there is a constant Cε such that with probability at least 1 − ε the empirical error

εu(δ) := ∣∣Q̂u

(
β(u) + δ

)− Qu

(
β(u) + δ

)− (
Q̂u(β(u)) − Qu(β(u))

)∣∣
obeys

sup
u∈ U ,δ∈Ãu(m̃),δ =0

εu(δ)

‖δ‖ ≤ Cε

√
(m̃ log(n ∨ p) + s logn)φ(m̃ + s)

n

for all m̃ ≤ n.

In order to prove this lemma, we exploit the crucial fact that the entropy of all
m-dimensional submodels of the p-dimensional model is of order m logp, which
depends on p only logarithmically. The following theorem establishes the proper-
ties of post-model-selection estimators.

THEOREM 5 (Uniform bounds on estimation error of post-�1-QR). Assume
the conditions of Theorem 2 hold, assume that |⋃u∈ U Tu| ≤ n, and assume D.5
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holds with m̂ := supu∈ U ‖β̂T c
u
(u)‖0 with probability 1 − ε. Then for any ε > 0

there is a constant Cε such that the bounds

sup
u∈ U

∥∥J 1/2
u

(
β̃(u) − β(u)

)∥∥
≤ 4Cε

√
φ(m̂ + s)

f 1/2κ̃m̂

·
√

m̂ log(n ∨ p) + s logn

n

+ sup
u∈ U

1{Tu ⊆ T̂u} · 4
√

2(1 + c0)A

f 1/2κ0
· C · WU

√
s log(n ∨ p)

n
,(3.18)

sup
u∈ U

√
Ex

[
x′(β̃(u) − β(u)

)]2 ≤ sup
u∈ U

∥∥J 1/2
u

(
β̃(u) − β(u)

)∥∥/f 1/2,

sup
u∈ U

‖β̃(u) − β(u)‖ ≤ sup
u∈ U

∥∥J 1/2
u

(
β̃(u) − β(u)

)∥∥/f 1/2κ̃m̂,

hold with probability at least 1 − α − 3γ − 3p−A2 − 2ε, provided that s obeys the
growth condition

q̃m̂

Cε

√
(m̂ log(n ∨ p) + s logn)φ(m̂ + s)√

nf 1/2κ̃m̂

+ sup
u∈ U

1{Tu ⊆ T̂u}2A(1 + c0) · C2W 2
U · s log(p ∨ n)

nf κ2
0

≤ q̃2
m̂.

This theorem describes the performance of post-�1-QR. However, an inspection
of the proof reveals that it can be applied to any post-model selection estima-
tor. From Theorem 5, we can conclude that in many interesting cases the rates
of post-�1-QR could be the same or faster than the rate of �1-QR. Indeed, first
consider the case where the model selection fails to contain the true model, that
is, supu∈ U 1{Tu ⊆ T̂u} = 1 with a nonnegligible probability. If (a) m̂ ≤ ŝ �P s,
(b) φ(m̂ + s) �P 1 and (c) the constants f and κ̃2

m̂ are of the same order as f and
κ0κm, respectively, then the rate of convergence of post-�1-QR is the same as the
rate of convergence of �1-QR. Recall that Theorem 3 provides sufficient condi-
tions needed to achieve (a), which hold in Design 1. Recall also that in Design 1,
(b) holds by concentration of measure and classical results in random matrix the-
ory, as shown in [2], and (c) holds by the calculations presented in Section 2. This
verifies our claim regarding the performance of post-�1-QR in the overview, Sec-
tion 2.4. The intuition for this result is that even though �1-QR misses true compo-
nents, it does not miss very important ones, allowing post-�1-QR still to perform
well. Second, consider the case where the model selection succeeds in containing
the true model, that is, supu∈ U 1{Tu ⊆ T̂u} = 0 with probability approaching one,
and that the number of unnecessary components obeys m̂ = oP (s). In this case,
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the rate of convergence of post-�1-QR can be faster than the rate of convergence
of �1-QR. In the extreme case of perfect model selection, when m̂ = 0 with a high
probability, post-�1-QR becomes the oracle estimator with a high probability. We
refer the reader to Section 2 for further discussion, and note that this result could
be of interest in other problems.

PROOF OF THEOREM 5. Let

δ̂(u) = β̂(u) − β(u), δ̃(u) := β̃(u) − β(u), tu := ‖J 1/2
u δ̃(u)‖,

and Bn be a random variable such that Bn = supu∈ U Q̂u(β̂(u))−Q̂u(β(u)). By the
optimality of β̂(u) in (3.16), with probability 1 − γ we have uniformly in u ∈ U

Q̂u(β̂(u)) − Q̂u(β(u)) ≤ λ
√

u(1 − u)

n

(‖β(u)‖1,n − ‖β̂(u)‖1,n

)
≤ λ

√
u(1 − u)

n
‖δ̂Tu(u)‖1,n(3.19)

≤ λ
√

u(1 − u)

n
2‖δ̂Tu(u)‖1,

where the last term in (3.19) is bounded by

λ
√

u(1 − u)

n

2
√

s‖J 1/2
u δ̂(u)‖

f 1/2κ0
(3.20)

≤ λ
√

u(1 − u)

n

2
√

s

f 1/2κ0
sup
u∈ U

∥∥J 1/2
u

(
β̂(u) − β(u)

)∥∥,
using that ‖J 1/2

u δ̂(u)‖ ≥ f 1/2κ0‖δ̂Tu(u)‖ from (RE(c0,0)) implied by D.4. There-
fore, by Theorem 2 we have

Bn ≤ λ
√

u(1 − u)

n

2
√

s

f 1/2κ0
8C · (1 + c0)WU A

f 1/2κ0
·
√

s log(p ∨ n)

n

with probability 1 − α − 3γ − 3p−A2
.

For every u ∈ U , by optimality of β̃(u) in (2.5),

Q̂u(β̃(u)) − Q̂u(β(u)) ≤ 1{Tu ⊆ T̂u}(Q̂u(β̂(u)) − Q̂u(β(u))
)

(3.21)
≤ 1{Tu ⊆ T̂u}Bn.

Also, by Lemma 8, with probability at least 1 − ε, we have

sup
u∈ U

εu(̃δ(u))

‖δ̃(u)‖ ≤ Cε

√
(m̂ log(n ∨ p) + s logn)φ(m̂ + s)

n
=: Aε,n.(3.22)
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Recall that supu∈ U ‖δ̃T c
u
(u)‖ ≤ m̂ ≤ n so that by D.5 tu ≥ f 1/2κ̃m̂‖δ̃(u)‖ for all

u ∈ U with probability 1 − ε. Thus, combining relations (3.21) and (3.22), for
every u ∈ U

Qu(β̃(u)) − Qu(β(u)) ≤ tuAε,n/[f 1/2κ̃m̂] + 1{Tu ⊆ T̂u}Bn

with probability at least 1 − 2ε. Invoking the sparse identifiability relation (3.17)
of Lemma 8, with the same probability, for all u ∈ U ,

(t2
u/4) ∧ (q̃m̂tu) ≤ tuAε,n/[f 1/2κ̃m̂] + 1{Tu ⊆ T̂u}Bn.

We then conclude that under the assumed growth condition on s, this inequality
implies

tu ≤ 4Aε,n/[f 1/2κ̃m̂] + 1{Tu ⊆ T̂u}
√

4Bn ∨ 0

for every u ∈ U , and the bounds stated in the theorem now follow from the defini-
tion of f and κ̃m. �

4. Empirical performance. In order to assess the finite sample practical per-
formance of the proposed estimators, we conducted a Monte Carlo study. We will
compare the performance of the �1-penalized, post-�1-penalized and the ideal ora-
cle quantile regression estimators. Recall that the post-penalized estimator applies
canonical quantile regression to the model selected by the penalized estimator.
The oracle estimator applies canonical quantile regression to the true model. (Of
course, such an estimator is not available outside Monte Carlo experiments.) We
focus our attention on the model selection properties of the penalized estimator
and biases and empirical risks of these estimators.

We begin by considering the following regression model:

y = x′β(0.5) + ε, β(0.5) = (1,1,1/2,1/3,1/4,1/5,0, . . . ,0)′,

where as in Design 1, x = (1, z′)′ consists of an intercept and covariates z ∼
N(0,�), and the errors ε are independently and identically distributed ε ∼
N(0, σ 2). The dimension p of covariates x is 500, and the dimension s of the
true model is 6, and the sample size n is 100. We set the regularization parameter
λ equal to the 0.9-quantile of the pivotal random variable �, following our pro-
posal in Section 2. The regressors are correlated with �ij = ρ|i−j | and ρ = 0.5.
We consider two levels of noise, namely σ = 1 and σ = 0.1.

We summarize the model selection performance of the penalized estimator in
Figures 1 and 2. In the left panels of the figures, we plot the frequencies of the
dimensions of the selected model; in the right panels, we plot the frequencies of
selecting the correct regressors. From the left panels, we see that the frequency
of selecting a much larger model than the true model is very small in both de-
signs. In the design with a larger noise, as the right panel of Figure 1 shows, the
penalized quantile regression never selects the entire true model correctly, always
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FIG. 1. The figure summarizes the covariate selection results for the design with σ = 1, based on
100 Monte Carlo repetitions. The left panel plots the histogram for the number of covariates selected
out of the possible 500 covariates. The right panel plots the histogram for the number of significant
covariates selected; there are in total 6 significant covariates amongst 500 covariates. The sample
size for each repetition was n = 100.

missing the regressors with small coefficients. However, it almost always includes
the three regressors with the largest coefficients. (Notably, despite this partial fail-

FIG. 2. The figure summarizes the covariate selection results for the design with σ = 0.1, based on
100 Monte Carlo repetitions. The left panel plots the histogram for the number of covariates selected
out of the possible 500 covariates. The right panel plots the histogram for the number of significant
covariates selected; there are in total 6 significant covariates amongst 500 covariates. The sample
size for each repetition was n = 100.
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TABLE 1
Monte Carlo results. The table displays the average �0 and �1 norm of the estimators

as well as mean bias and empirical risk. We obtained the results using 100
Monte Carlo repetitions for each design

Mean �0-norm Mean �1-norm Bias Empirical risk

Design A (σ = 1)

Penalized QR 3.67 1.28 0.92 1.22
Post-penalized QR 3.67 2.90 0.27 0.57
Oracle QR 6.00 3.31 0.03 0.33

Design B (σ = 0.1)

Penalized QR 6.09 2.98 0.13 0.19
Post-penalized QR 6.09 3.28 0.00 0.04
Oracle QR 6.00 3.28 0.00 0.03

ure of the model selection, post-penalized quantile regression still performs well,
as we report below.) On the other hand, we see from the right panel of Figure 2 that
in the design with a lower noise level penalized quantile regression rarely misses
any component of the true support. These results confirm the theoretical results
of Theorem 4, namely, that when the nonzero coefficients are well separated from
zero, the penalized estimator should select a model that includes the true model as
a subset. Moreover, these results also confirm the theoretical result of Theorem 3,
namely, that the dimension of the selected model should be of the same stochastic
order as the dimension of the true model. In summary, the model selection perfor-
mance of the penalized estimator agrees very well with our theoretical results.

We summarize results on estimation performance in Table 1, which records for
each estimator β̃ the norm of the bias ‖E[β̃] − β0‖ and also the empirical risk
[E[x′

i (β̃ − β0)]2]1/2 for recovering the regression function. Penalized quantile re-
gression has a substantial bias, as we would expect from the definition of the esti-
mator which penalizes large deviations of coefficients from zero. We see that the
post-penalized quantile regression drastically improves upon the penalized quan-
tile regression, particularly in terms of reducing the bias, which results in a much
lower overall empirical risk. Notably, despite that under the higher noise level the
penalized estimator never recovers the true model correctly the post-penalized esti-
mator still performs well. This is because the penalized estimator always manages
to select the most important regressors. We also see that the empirical risk of the
post-penalized estimator is within a factor of

√
logp of the empirical risk of the

oracle estimator, as we would expect from our theoretical results. Under the lower
noise level, the post-penalized estimator performs almost identically to the ideal
oracle estimator. We would expect this since in this case the penalized estima-
tor selects the model especially well, making the post-penalized estimator nearly
the oracle. In summary, we find the estimation performance of the penalized and
post-penalized estimators to be in close agreement with our theoretical results.
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APPENDIX A: PROOF OF THEOREM 1

PROOF OF THEOREM 1. We note � ≤ WU max1≤j≤p supu∈ U nEn[(u −
1{ui ≤ u})xij /σ̂j ]. For any u ∈ U , j ∈ {1, . . . , p}, we have by Lemma 1.5 in [24]
that P(|Gn[(u − 1{ui ≤ u})xij /σ̂j ]| ≥ K̃) ≤ 2 exp(−K̃2/2). Hence, by the sym-
metrization lemma for probabilities, Lemma 2.3.7 in [33], with K̃ ≥ 2

√
log 2 we

have

P
(
� > K̃

√
n|X)

≤ 4P
(

sup
u∈ U

max
1≤j≤p

|Go
n[(u − 1{ui ≤ u})xij /σ̂j ]| > K̃/(4WU )|X

)
(A.1)

≤ 4p max
1≤j≤p

P
(

sup
u∈ U

|Go
n[(u − 1{ui ≤ u})xij /σ̂j ]| > K̃/(4WU )|X

)
,

where G
o
n denotes the symmetrized empirical process (see [33]) generated by the

Rademacher variables εi, i = 1, . . . , n, which are independent of U = (u1, . . . , un)

and X = (x1, . . . , xn). Let us condition on U and X, and define Fj = {εixij (u −
1{ui ≤ u})/σ̂j :u ∈ U } for j = 1, . . . , p. The VC dimension of Fj is at most 6.
Therefore, by Theorem 2.6.7 of [33] for some universal constant C′

1 ≥ 1 the func-
tion class Fj with envelope function Fj obeys

N(ε‖Fj‖Pn,2, Fj ,L2(Pn)) ≤ n(ε, Fj ) = C′
1 · 6 · (16e)6(1/ε)10,

where N(ε, F ,L2(Pn)) denotes the minimal number of balls of radius ε with
respect to the L2(Pn) norm ‖ · ‖Pn,2 needed to cover the class of functions F ;
see [33].

Conditional on the data U = (u1, . . . , un) and X = (x1, . . . , xn), the sym-
metrized empirical process {Go

n(f ), f ∈ Fj } is sub-Gaussian with respect to
the L2(Pn) norm by the Hoeffding inequality; see, for example, [33]. Since
‖Fj‖Pn,2 ≤ 1 and ρ(Fj ,Pn) = supf ∈Fj

‖f ‖Pn,2/‖F‖Pn,2 ≤ 1, we have

‖Fj‖Pn,2

∫ ρ(Fj ,Pn)/4

0

√
logn(ε, Fj ) dε

≤ ē := (1/4)
√

log(6C′
1(16e)6) + (1/4)

√
10 log 4.

By Lemma 16 with D = 1, there is a universal constant c such that for any K ≥ 1:

P
(

sup
f ∈Fj

|Go
n(f )| > Kcē|X,U

)

≤
∫ 1/2

0
ε−1n(ε, Fj )

−(K2−1) dε(A.2)

≤ (1/2)[6C′
1(16e)6]−(K2−1) (1/2)10(K2−1)

10(K2 − 1)
.
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By (A.1) and (A.2) for any k ≥ 1, we have

P
(
� ≥ k · (4√

2cē
)
WU

√
n logp|X)

≤ 4p max
1≤j≤p

EUP
(

sup
f ∈Fj

|Go
n(f )| > k

√
2 logpcē|X,U

)
≤ p−6k2+1 ≤ p−k2+1

since (2k2 logp − 1) ≥ (log 2 − 0.5)k2 logp for p ≥ 2. Thus, result (i) holds with
C� := 4

√
2cē. Result (ii) follows immediately by choosing

k =
√

1 + log(1/α)/ logp

to make the right-hand side of the display above equal to α. �

APPENDIX B: PROOFS OF LEMMAS 3–5 (USED IN THEOREM 2)

PROOF OF LEMMA 3 (Restricted set). 1. By condition D.3, with probability
1 − γ , for every j = 1, . . . , p we have 1/2 ≤ σ̂j ≤ 3/2, which implies (3.1).

2. Denote the true rankscores by a∗
i (u) = u − 1{yi ≤ x′

iβ(u)} for i = 1, . . . , n.
Next, recall that Q̂u(·) is a convex function and En[xia

∗
i (u)] ∈ ∂Q̂u(β(u)). There-

fore, we have

Q̂u(β̂(u)) ≥ Q̂u(β(u)) + En[xia
∗
i (u)]′(β̂(u) − β(u)

)
.

Let D̂ = diag[σ̂1, . . . , σ̂p] and note that λ
√

u(1 − u)(c0 − 3)/(c0 + 3) ≥ n‖D̂−1 ×
En[xia

∗
i (u)]‖∞ with probability at least 1 − α. By optimality of β̂(u) for the �1-

penalized problem, we have

0 ≤ Q̂u(β(u)) − Q̂u(β̂(u))

+ λ
√

u(1 − u)

n
‖β(u)‖1,n − λ

√
u(1 − u)

n
‖β̂(u)‖1,n

≤ ∣∣En[xia
∗
i (u)]′(β̂(u) − β(u)

)∣∣
+ λ

√
u(1 − u)

n

(‖β(u)‖1,n − ‖β̂(u)‖1,n

)
= ‖D̂−1

En[xia
∗
i (u)]‖∞

∥∥D̂(
β̂(u) − β(u)

)∥∥
1

+ λ
√

u(1 − u)

n

(‖β(u)‖1,n − ‖β̂(u)‖1,n

)
≤ λ

√
u(1 − u)

n

p∑
j=1

(
c0 − 3

c0 + 3
σ̂j |β̂j (u) − βj (u)| + σ̂j |βj (u)| − σ̂j |β̂j (u)|

)
,
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with probability at least 1 − α. After canceling λ
√

u(1 − u)/n, we obtain(
1 − c0 − 3

c0 + 3

)
‖β̂(u) − β(u)‖1,n

(B.1)

≤
p∑

j=1

σ̂j

(|β̂j (u) − βj (u)| + |βj (u)| − |β̂j (u)|).
Furthermore, since |β̂j (u) − βj (u)| + |βj (u)| − |β̂j (u)| = 0 if βj (u) = 0, that is,
j ∈ T c

u ,

p∑
j=1

σ̂j

(|β̂j (u) − βj (u)| + |βj (u)| − |β̂j (u)|) ≤ 2‖β̂Tu(u) − β(u)‖1,n.(B.2)

Equations (B.1) and (B.2) establish that ‖β̂T c
u
(u)‖1,n ≤ (c0/3)‖β̂Tu(u) − β(u)‖1,n

with probability at least 1 − α. In turn, by part 1 of this lemma, ‖β̂T c
u
(u)‖1,n ≥

(1/2)‖β̂T c
u
(u)‖1 and ‖β̂Tu(u) − β(u)‖1,n ≤ (3/2)‖β̂Tu(u) − β(u)‖1, which holds

with probability at least 1 − γ . Intersection of these two event holds with prob-
ability at least 1 − α − γ . Finally, by Lemma 9, ‖β̂(u)‖0 ≤ n with probability 1
uniformly in u ∈ U . �

PROOF OF LEMMA 4 (Identification in population).
1. PROOFS OF CLAIMS (3.3)–(3.5). By (RE(c0,m)) and by δ ∈ Au

‖J 1/2
u δ‖ ≥ ‖(E[xix

′
i])1/2δ‖f 1/2 ≥ ‖δTu‖f 1/2κ0 ≥ f 1/2κ0√

s
‖δTu‖1

≥ f 1/2κ0√
s(1 + c0)

‖δ‖1.

2. PROOF OF CLAIM (3.6). Proceeding similarly to [7], we note that the kth
largest in absolute value component of δT c

u
is less than ‖δT c

u
‖1/k. Therefore, by

δ ∈ Au and |Tu| ≤ s

∥∥δ(Tu∪T u(δ,m))c

∥∥2 ≤ ∑
k≥m+1

‖δT c
u
‖2

1

k2 ≤ ‖δT c
u
‖2

1

m
≤ c2

0
‖δTu‖2

1

m

≤ c2
0‖δTu‖2 s

m
≤ c2

0
∥∥δTu∪T u(δ,m)

∥∥2 s

m
,

so that ‖δ‖ ≤ (1 + c0
√

s/m)‖δTu∪T u(δ,m)‖; and the last term is bounded by
(RE(c0,m)),(

1 + c0
√

s/m
)‖(E[xix

′
i])1/2δ‖/κm ≤ (

1 + c0
√

s/m
)‖J 1/2

u δ‖/[f 1/2κm].
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3. PROOF OF CLAIM (3.7) proceeds in two steps. Step 1 (Minoration). De-
fine the maximal radius over which the criterion function can be minorated by a
quadratic function

rAu = sup
r

{
r :Qu

(
β(u) + δ̃

)− Qu(β(u)) ≥ 1

4
‖J 1/2

u δ̃‖2

for all δ̃ ∈ Au,‖J 1/2
u δ̃‖ ≤ r

}
.

Step 2 below shows that rAu ≥ 4q . By construction of rAu and the convexity of
Qu,

Qu

(
β(u) + δ

)− Qu(β(u))

≥ ‖J 1/2
u δ‖2

4
∧
{‖J 1/2

u δ‖
rAu

· inf
δ̃∈Au,‖J 1/2

u δ̃‖≥rAu

Qu

(
β(u) + δ̃

)− Qu(β(u))

}

≥ ‖J 1/2
u δ‖2

4
∧
{‖J 1/2

u δ‖
rAu

r2
Au

4

}

≥ ‖J 1/2
u δ‖2

4
∧ {q‖J 1/2

u δ‖} for any δ ∈ Au.

Step 2. (rAu ≥ 4q). Let Fy|x denote the conditional distribution of y given x.
From [17], for any two scalars w and v we have that

ρu(w − v) − ρu(w) = −v(u − 1{w ≤ 0})
(B.3)

+
∫ v

0
(1{w ≤ z} − 1{w ≤ 0}) dz.

Using (B.3) with w = y − x′β(u) and v = x′δ, we conclude E[−v(u − 1{w ≤
0})] = 0. Using the law of iterated expectations and mean value expansion, we
obtain for z̃x,z ∈ [0, z]

Qu

(
β(u) + δ

)− Qu(β(u))

= E
[∫ x′δ

0
Fy|x

(
x′β(u) + z

)− Fy|x(x′β(u)) dz

]

= E
[∫ x′δ

0
zfy|x(x′β(u)) + z2

2
f ′

y|x
(
x′β(u) + z̃x,z

)
dz

]
(B.4)

≥ 1

2
‖J 1/2

u δ‖2 − 1

6
f̄ ′E[|x′δ|3]

≥ 1

4
‖J 1/2

u δ‖2 + 1

4
f E[|x′δ|2] − 1

6
f̄ ′E[|x′δ|3].
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Note that for δ ∈ Au, if ‖J 1/2
u δ‖ ≤ 4q ≤ (3/2) ·(f 3/2/f̄ ′) ·infδ∈Au,δ =0 E[|x′δ|2]3/2/

E[|x′δ|3], it follows that (1/6)f̄ ′E[|x′δ|3] ≤ (1/4)f E[|x′δ|2]. This and (B.4) imply
rAu ≥ 4q . �

PROOF OF LEMMA 5 (Control of empirical error). We divide the proof in four
steps.

Step 1 (Main argument). Let

A(t) := ε(t)
√

n

= sup
u∈ U ,‖J 1/2

u δ‖≤t,δ∈Au

∣∣Gn

[
ρu

(
yi − x′

i

(
β(u) + δ

))− ρu

(
yi − x′

iβ(u)
)]∣∣.

Let �1 be the event in which max1≤j≤p |σ̂j − 1| ≤ 1/2, where P(�1) ≥ 1 − γ .
In order to apply the symmetrization lemma, Lemma 2.3.7 in [33], to bound the

tail probability of A(t) first note that for any fixed δ ∈ Au, u ∈ U we have

var
(
Gn

[
ρu

(
yi − x′

i

(
β(u) + δ

))− ρu

(
yi − x′

iβ(u)
)]) ≤ E[(x′

iδ)
2] ≤ t2/f .

Then application of the symmetrization lemma for probabilities, Lemma 2.3.7
in [33], yields

P
(

A(t) ≥ M
) ≤ 2P(Ao(t) ≥ M/4)

1 − t2/(f M2)
(B.5)

≤ 2P(Ao(t) ≥ M/4|�1) + 2P(�c
1)

1 − t2/(f M2)
,

where Ao(t) is the symmetrized version of A(t), constructed by replacing the
empirical process Gn with its symmetrized version G

o
n, and P(�c

1) ≤ γ . We set
M > M1 := t (3/f )1/2, which makes the denominator on right-hand side of (B.5)

greater than 2/3. Further, Step 3 below shows that P(Ao(t) ≥ M/4|�1) ≤ p−A2

for

M/4 ≥ M2 := t · A · 18
√

2 · � ·
√

2 logp + log
(
2 + 4

√
2Lf 1/2κ0/t

)
,

� = √
s(1 + c0)/[f 1/2κ0].

We conclude that with probability at least 1 − 3γ − 3p−A2
, A(t) ≤ M1 ∨ (4M2).

Therefore, there is a universal constant CE such that with probability at least
1 − 3γ − 3p−A2

,

A(t) ≤ t · CE · (1 + c0)A

f 1/2κ0

√
s log(p ∨ [Lf 1/2κ0/t])

and the result follows.
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Step 2 [Bound on P(Ao(t) ≥ K|�1)]. We begin by noting that Lemmas 3 and 4
imply that ‖δ‖1,n ≤ 3

2

√
s(1 + c0)‖J 1/2

u δ‖/[f 1/2κ0] so that for all u ∈ U

{δ ∈ Au :‖J 1/2
u δ‖ ≤ t} ⊆ {δ ∈ R

p :‖δ‖1,n ≤ 2t�},
(B.6)

� := √
s(1 + c0)/[f 1/2κ0].

Further, we let Uk = {û1, . . . , ûk} be an ε-net of quantile indices in U with

ε ≤ t�/
(
2
√

2sL
)

and k ≤ 1/ε.(B.7)

By ρu(yi − x′
i (β(u) + δ)) − ρu(yi − x′

iβ(u)) = ux′
iδ + wi(x

′
iδ, u), for wi(b,u) :=

(yi − x′
iβ(u) − b)− − (yi − x′

iβ(u))−, and by (B.6) we have that Ao(t) ≤ Bo(t) +
Co(t), where

Bo(t) := sup
u∈ U ,‖δ‖1,n≤2t�

|Go
n[x′

iδ]| and Co(t) := sup
u∈ U ,‖δ‖1,n≤2t�

|Go
n[wi(δ, u)]|.

Then we compute the bounds

P [Bo(t) > K|�1]
≤ min

λ≥0
e−λKE

[
eλBo(t)|�1

]
by Markov

≤ min
λ≥0

e−λK2p exp
(
(2λt�)2/2

)
by Step 3

≤ 2p exp
(−K2/

(
2
√

2t�
)2) by setting λ = K/(2t�)2

P [Co(t) > K|�1]
≤ min

λ≥0
e−λKE

[
eλCo(t)|�1,X

]
by Markov

≤ min
λ≥0

exp(−λK)2(p/ε) exp
(
(16λt�)2/2

)
by Step 4

≤ ε−12p exp
(−K2/

(
16

√
2t�

)2) by setting λ = K/(16t�)2,

so that

P
[

Ao(t) > 2
√

2K + 16
√

2K|�1
]

≤ P
[

Bo(t) > 2
√

2K|�1
]+ P

[
Co(t) > 16

√
2K|�1

]
≤ 2p(1 + ε−1) exp

(−K2/(t�)2).
Setting K = A · t · � ·

√
log{2p2(1 + ε−1)}, for A ≥ 1, we get P [Ao(t) ≥ 18

√
2 ×

K|�1] ≤ p−A2
.
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Step 3 (Bound on E[eλBo(t)|�1]). We bound

E
[
eλBo(t)|�1

] ≤ E
[
exp

(
2λt� max

j≤p
|Go

n(xij )/σ̂j |
)∣∣�1

]
≤ 2p max

j≤p
E
[
exp

(
2λt�G

o
n(xij )/σ̂j

)|�1
]

≤ 2p exp
(
(2λt�)2/2

)
,

where the first inequality follows from |Go
n[x′

iδ]| ≤ 2‖δ‖1,n max1≤j≤p|Go
n(xij )/

σ̂j | holding under event �1, the penultimate inequality follows from the simple
bound

E
[
max
j≤p

e|zj |] ≤ p max
j≤p

E
[
e|zj |] ≤ p max

j≤p
E[ezj + e−zj ] ≤ 2p max

j≤p
E[ezj ]

holding for symmetric random variables zj , and the last inequality follows
from the law of iterated expectations and from E[exp(2λt�G

o
n(xij )/σ̂j )|�1,X] ≤

exp((2λt�)2/2) holding by the Hoeffding inequality (more precisely, by the inter-
mediate step in the proof of the Hoeffding inequality; see, e.g., page 100 in [33]).
Here, E[·|�1,X] denotes the expectation over the symmetrizing Rademacher vari-
ables entering the definition of the symmetrized process G

o
n.

Step 4 (Bound on E[eλCo(t)|�1]). We bound

Co(t) ≤ sup
u∈ U ,|u−û|≤ε,û∈ Uk

sup
‖δ‖1,n≤2t�

∣∣Go
n

[
wi

(
x′
i

(
δ + β(u) − β(û)

)
, û

)]∣∣
+ sup

u∈ U ,|u−û|≤ε,û∈ Uk

∣∣Gn

[
wi

(
x′
i

(
β(u) − β(û)

)
, û

)]∣∣
≤ 2 sup

û∈ Uk,‖δ‖1,n≤4t�

|Go
n[wi(x

′
iδ, û)]| =: Do(t),

where the first inequality is elementary, and the second inequality follows from the
inequality

sup
|u−û|≤ε

‖β(u) − β(û)‖1,n ≤ √
2sL

(
2 max

1≤j≤p
σj

)
ε ≤ √

2sL(2 · 3/2)ε ≤ 2t�,

holding by our choice (B.7) of ε and by event �1.
Next, we bound E[eDo(t)|�1]

E
[
eλDo(t)|�1

] ≤ (1/ε) max
û∈ Uk

E
[
exp

(
2λ sup

‖δ‖1,n≤4t�

|Go
n[wi(x

′
iδ, û)]|

)∣∣�1

]
≤ (1/ε) max

û∈ Uk

E
[
exp

(
4λ sup

‖δ‖1,n≤4t�

|Go
n[x′

iδ]|
)∣∣�1

]
≤ 2(p/ε)max

j≤p
E
[
exp

(
16λt�G

o
n(xij )/σ̂j

)|�1
]

≤ 2(p/ε) exp
(
(16λt�)2/2

)
,
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where the first inequality follows from the definition of wi and by k ≤ 1/ε, the
second inequality follows from the exponential moment inequality for contractions
(Theorem 4.12 of Ledoux and Talagrand [24]) and from the contractive property
|wi(a, û) − wi(b, û)| ≤ |a − b|, and the last two inequalities follow exactly as in
Step 3. �

APPENDIX C: PROOFS OF LEMMAS 6, 7 (USED IN THEOREM 3)

In order to characterize the sparsity properties of β̂(u), we will exploit the fact
that (2.4) can be written as the following linear programming problem:

min
ξ+,ξ−,β+,β−∈R

2n+2p
+

En[uξ+
i + (1 − u)ξ−

i ]

+ λ
√

u(1 − u)

n

p∑
j=1

σ̂j (β
+
j + β−

j )(C.1)

ξ+
i − ξ−

i = yi − x′
i (β

+ − β−), i = 1, . . . , n.

Our theoretical analysis of the sparsity of β̂(u) relies on the dual of (C.1):

max
a∈Rn

En[yiai]|En[xij ai]| ≤ λ
√

u(1 − u)σ̂j /n, j = 1, . . . , p,

(C.2)
(u − 1) ≤ ai ≤ u, i = 1, . . . , n.

The dual program maximizes the correlation between the response variable and the
rank scores subject to the condition requiring the rank scores to be approximately
uncorrelated with the regressors. The optimal solution â(u) to (C.2) plays a key
role in determining the sparsity of β̂(u).

LEMMA 9 (Signs and interpolation property). (1) For any j ∈ {1, . . . , p}
β̂j (u) > 0 iff En[xij âi(u)] = λ

√
u(1 − u)σ̂j /n,

(C.3)
β̂j (u) < 0 iff En[xij âi(u)] = −λ

√
u(1 − u)σ̂j /n.

(2) ‖β̂(u)‖0 ≤ n ∧ p uniformly over u ∈ U . (3) If y1, . . . , yn are absolutely con-
tinuous conditional on x1, . . . , xn, then the number of interpolated data points,
Iu = |{i :yi = x′

i β̂(u)}|, is equal to ‖β̂(u)‖0 with probability one uniformly over
u ∈ U .

PROOF OF LEMMA 9. Step 1. Part (1) follows from the complementary slack-
ness condition for linear programming problems; see Theorem 4.5 of [6]. Step 2.
For proof of part (2), see [2]. �

PROOF OF LEMMA 6 (Empirical pre-sparsity). That ŝ ≤ n ∧ p follows from
Lemma 9. We proceed to show the last bound.
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Let â(u) be the solution of the dual problem (C.2), T̂u = support(β̂(u)),
and ŝu = ‖β̂(u)‖0 = |T̂u|. For any j ∈ T̂u, from (C.3) we have (X′â(u))j =
sign(β̂j (u))λσ̂j

√
u(1 − u) and, for j /∈ T̂u we have sign(β̂j (u)) = 0. Therefore,

by the Cauchy–Schwarz inequality, and by D.3, with probability 1 − γ we have

ŝuλ = sign(β̂(u))′ sign(β̂(u))λ ≤ sign(β̂(u))′(X′â(u))
/

min
j=1,...,p

σ̂j

√
u(1 − u)

≤ 2‖X sign(β̂(u))‖‖â(u)‖/√u(1 − u)

≤ 2
√

nφ(̂su)‖sign(β̂(u))‖‖â(u)‖/√u(1 − u),

where we used that ‖sign(β̂(u))‖0 = ŝu and min1≤j≤p σ̂j ≥ 1/2 with proba-
bility 1 − γ . Since ‖â(u)‖ ≤ √

n, and ‖ sign(β̂(u))‖ = √
ŝu we have ŝuλ ≤

2n
√

ŝuφ(̂su)WU . Taking the supremum over u ∈ U on both sides yields the first
result.

To establish the second result, note that ŝ ≤ m̄ = max{m :m ≤ n ∧ p ∧
4n2φ(m)W 2

U /λ2}. Suppose that m̄ > m0 = n/ log(n ∨ p), so that m̄ = m0� for
some � > 1, since m̄ ≤ n is finite. By definition, m̄ satisfies m̄ ≤ 4n2φ(m̄)W 2

U /λ2.
Insert the lower bound on λ, m0 and m̄ = m0� in this inequality, and using
Lemma 13 we obtain

m̄ = m0� ≤ 4n2W 2
U

8W 2
U n log(n ∨ p)

φ(m0�)

φ(m0)
≤ n

2 log(n ∨ p)
��� <

n

log(n ∨ p)
� = m0�,

which is a contradiction. �

PROOF OF LEMMA 7 (Empirical sparsity). It is convenient to define:

1. the true rank scores, a∗
i (u) = u − 1{yi ≤ x′

iβ(u)} for i = 1, . . . , n;
2. the estimated rank scores, ai(u) = u − 1{yi ≤ x′

i β̂(u)} for i = 1, . . . , n;
3. the dual optimal rank scores, â(u), that solve the dual program (C.2).

Let T̂u denote the support of β̂(u), and ŝu = ‖β̂(u)‖0. Let x̃iT̂u
= (xij /σ̂j , j ∈

T̂u)
′, and β̂T̂u

(u) = (β̂j (u), j ∈ T̂u)
′. From the complementary slackness charac-

terizations (C.3),
√

ŝu = ‖sign(β̂T̂u
(u))‖ =

∥∥∥∥nEn[x̃iT̂u
âi(u)]

λ
√

u(1 − u)

∥∥∥∥.(C.4)

Therefore, we can bound the number ŝu of nonzero components of β̂(u) provided
we can bound the empirical expectation in (C.4). This is achieved in the next step
by combining the maximal inequalities and assumptions on the design matrix.

Using the triangle inequality in (C.4), write

λ
√

ŝ ≤ sup
u∈ U

{(∥∥nEn

[
x̃iT̂u

(
âi (u) − ai(u)

)]∥∥
+ ∥∥nEn

[
x̃iT̂u

(
ai(u) − a∗

i (u)
)]∥∥

+ ‖nEn[x̃iT̂u
a∗
i (u)]‖)(√u(1 − u)

)−1}
.
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This leads to the inequality

λ
√

ŝ ≤ WU
minj=1,...,p σ̂j

(
sup
u∈ U

∥∥nEn

[
xiT̂u

(
âi (u) − ai(u)

)]∥∥
+ sup

u∈ U

∥∥nEn

[
xiT̂u

(
ai(u) − a∗

i (u)
)]∥∥)

+ sup
u∈ U

∥∥nEn

[
x̃iT̂u

a∗
i (u)/

√
u(1 − u)

]∥∥.
Then we bound each of the three components in this display.

(a) To bound the first term, we observe that âi (u) = ai(u) only if yi = x′
i β̂(u).

By Lemma 9, the penalized quantile regression fit can interpolate at most ŝu ≤ ŝ

points with probability one uniformly over u ∈ U . This implies that En[|̂ai(u) −
ai(u)|2] ≤ ŝ/n. Therefore,

sup
u∈ U

∥∥nEn

[
xiT̂u

(
âi(u) − ai(u)

)]∥∥
≤ n sup

‖α‖0≤ ŝ,‖α‖≤1
sup
u∈ U

En[|α′xi ||̂ai(u) − ai(u)|]

≤ n sup
‖α‖0≤ ŝ,‖α‖≤1

√
En[|α′xi |2] sup

u∈ U

√
En[|̂ai(u) − ai(u)|2] ≤

√
nφ(̂s)̂s.

(b) To bound the second term, note that

sup
u∈ U

∥∥nEn

[
xiT̂u

(
ai(u) − a∗

i (u)
)]∥∥

≤ sup
u∈ U

∥∥√nGn

(
xiT̂u

(
ai(u) − a∗

i (u)
))∥∥+ sup

u∈ U

∥∥nE
[
xiT̂u

(
ai(u) − a∗

i (u)
)]∥∥

≤ √
nε1(r, ŝ) + √

nε2(r, ŝ),

where for ψi(β,u) = (1{yi ≤ x′
iβ} − u)xi ,

ε1(r,m) := sup
u∈ U ,β∈Ru(r,m),α∈S(β)

|Gn(α
′ψi(β,u)) − Gn(α

′ψi(β(u),u))|,
(C.5)

ε2(r,m) := sup
u∈ U ,β∈Ru(r,m),α∈S(β)

√
n|E[α′ψi(β,u)] − E[α′ψi(β(u),u)]|

and

Ru(r,m) := {
β ∈ R

p :β − β(u) ∈ Au :‖β‖0 ≤ m,
∥∥J 1/2

u

(
β − β(u)

)∥∥ ≤ r
}
,

(C.6)
S(β) := {α ∈ R

p :‖α‖ ≤ 1, support(α) ⊆ support(β)}.
By Lemma 12, there is a constant A1

ε/2 such that

√
nε1(r, ŝ) ≤ A1

ε/2

√
n̂s log(n ∨ p)

√
φ(̂s)
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with probability 1 − ε/2. By Lemma 10, we have
√

nε2(r, ŝ) ≤ n(μ(̂s)/2)(r ∧ 1).
(c) To bound the last term, by Theorem 1 there exists a constant A0

ε/2 such that
with probability 1 − ε/2

sup
u∈ U

∥∥nEn

[
x̃iT̂u

a∗
i (u)/

√
u(1 − u)

]∥∥ ≤ √
ŝ� ≤ √

ŝA0
ε/2WU

√
n logp,

where we used that a∗
i (u) = u − 1{ui ≤ u}, i = 1, . . . , n, for u1, . . . , un i.i.d. uni-

form (0,1).
Combining bounds in (a)–(c), using that minj=1,...,p σ̂j ≥ 1/2 by condition D.3

with probability 1 − γ , we have
√

ŝ

WU
≤ μ(̂s)

n

λ
(r ∧ 1) + √

ŝKε

√
n log(n ∨ p)φ(̂s)

λ
,

with probability at least 1 − ε − γ , for Kε = 2(1 + A0
ε/2 + A1

ε/2). �

Next we control the linearization error ε2 defined in (C.5).

LEMMA 10 (Controlling linearization error ε2). Under D.1, D.2,

ε2(r,m) ≤ √
n
√

ϕmax(m){1 ∧ (2[f̄ /f 1/2]r)} for all r > 0 and m ≤ n.

PROOF. By definition

ε2(r,m) = sup
u∈ U ,β∈Ru(r,m),α∈S(β)

√
n
∣∣E[(α′xi)

(
1{yi ≤ x′

iβ} − 1{yi < x′
iβ(u)})]∣∣.

By Cauchy–Schwarz, and using that ϕmax(m) = sup‖α‖≤1,‖α‖0≤m E[|α′xi |2],

ε2(r,m) ≤ √
n
√

ϕmax(m) sup
u∈ U ,β∈Ru(r,m)

√
E
[(

1{yi ≤ x′
iβ} − 1{yi < x′

iβ(u)})2]
.

Then, since for any β ∈ Ru(r,m), u ∈ U ,

E
[(

1{yi ≤ x′
iβ} − 1{yi < x′

iβ(u)})2]
≤ E

[
1
{|yi − x′

iβ(u)| ≤ ∣∣x′
i

(
β − β(u)

)∣∣}]
≤ E

[(
2f̄

∣∣x′
i

(
β − β(u)

)∣∣)∧ 1
] ≤ {

2f̄
(
E
[∣∣x′

i

(
β − β(u)

)∣∣2])1/2}∧ 1

and (E[|x′
i (β − β(u))|2])1/2 ≤ ‖J 1/2

u (β − β(u))‖/f 1/2 by Lemma 4, the result
follows. �

Next, we proceed to control the empirical error ε1 defined in (C.5). We shall
need the following preliminary result on the uniform L2 covering numbers [33] of
a relevant function class.
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LEMMA 11. (1) Consider a fixed subset T ⊂ {1,2, . . . , p}, |T | = m. The class
of functions

FT = {
α′(ψi(β,u) − ψi(β(u),u)

)
:u ∈ U , α ∈ S(β), support(β) ⊆ T

}
has a VC index bounded by cm for some universal constant c.

(2) There are universal constants C and c such that for any m ≤ n the function
class

Fm = {
α′(ψi(β,u) − ψi(β(u),u)

)
:u ∈ U , β ∈ R

p,‖β‖0 ≤ m,α ∈ S(β)
}

has the the uniform covering numbers bounded as

sup
Q

N(ε‖Fm‖Q,2, Fm,L2(Q)) ≤ C

(
16e

ε

)2(cm−1)(ep

m

)m

, ε > 0.

PROOF. The proof involves standard combinatorial arguments and is relegated
to [2]. �

LEMMA 12 (Controlling empirical error ε1). Under D.1, D.2 there exists a
universal constant A such that with probability 1 − δ

ε1(r,m) ≤ Aδ−1/2
√

m log(n ∨ p)
√

φ(m) uniformly for all r > 0 and m ≤ n.

PROOF. By definition, ε1(r,m) ≤ supf ∈Fm
|Gn(f )|. From Lemma 11, the uni-

form covering number of Fm is bounded by C(16e/ε)2(cm−1)(ep/m)m. Using
Lemma 19 with N = n and θm = p, we have that uniformly in m ≤ n, with proba-
bility at least 1 − δ

sup
f ∈Fm

|Gn(f )| ≤ Aδ−1/2
√

m log(n ∨ p)

(C.7)
× max

{
sup

f ∈Fm

E[f 2]1/2, sup
f∈Fm

En[f 2]1/2
}
.

By |α′(ψi(β,u) − ψi(β(u),u))| ≤ |α′xi | and definition of φ(m)

En[f 2] ≤ En[|α′xi |2] ≤ φ(m) and E[f 2] ≤ E[|α′xi |2] ≤ φ(m).(C.8)

Combining (C.8) with (C.7), we obtain the result. �

(c) The next lemma provides a bound on maximum k-sparse eigenvalues, which
we used in some of the derivations presented earlier.

LEMMA 13. Let M be a semi-definite positive matrix and φM(k) = sup{α′ ×
Mα :α ∈ R

p,‖α‖ = 1,‖α‖0 ≤ k}. For any integers k and �k with � ≥ 1, we have
φM(�k) ≤ ���φM(k).

PROOF. See [2]. �
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APPENDIX D: PROOF OF THEOREM 4

PROOF OF THEOREM 4. See [2]. �

APPENDIX E: PROOF OF LEMMA 8 (USED IN THEOREM 5)

PROOF OF LEMMA 8 (Sparse identifiability and control of empirical error).
The proof of claim (3.17) of this lemma identically follows the proof of claim
(3.7) of Lemma 4, given in Appendix B, after replacing Au with Ãu. Next, we
bound the empirical error

sup
u∈ U ,δ∈Ãu(m̃),δ =0

|εu(δ)|
‖δ‖

≤ sup
u∈ U ,δ∈Ãu(m̃),δ =0

1

‖δ‖√n

∣∣∣∣∫ 1

0
δ′

Gn

(
ψi

(
β(u) + γ δ,u

))
dγ

∣∣∣∣(E.1)

≤ 1√
n
ε3(m̃),

where ε3(m̃) := supf ∈F̃m̃
|Gn(f )| and the class of functions F̃m̃ is defined in

Lemma 14. The result follows from the bound on ε3(m̃) holding uniformly in
m̃ ≤ n given in Lemma 15. �

Next, we control the empirical error ε3 defined in (E.1) for F̃m̃ defined below.
We first bound uniform covering numbers of F̃m̃.

LEMMA 14. Consider a fixed subset T ⊂ {1,2, . . . , p}, Tu = support(β(u))

such that |T \ Tu| ≤ m̃ and |Tu| ≤ s for some u ∈ U . The class of functions

FT ,u = {
α′xi(1{yi ≤ x′

iβ} − u) :α ∈ S(β), support(β) ⊆ T
}

has a VC index bounded by c(m̃ + s) + 2. The class of functions

F̃m̃ = {
FT ,u :u ∈ U , T ⊂ {1,2, . . . , p}, |T \ Tu| ≤ m̃

}
,

obeys, for some universal constants C and c and each ε > 0,

sup
Q

N(ε‖F̃m̃‖Q,2, F̃m̃,L2(Q)) ≤ C(32e/ε)4(c(m̃+s)+2)p2m̃

∣∣∣∣ ⋃
u∈ U

Tu

∣∣∣∣2s

.

PROOF. The proof involves standard combinatorial arguments and is relegated
to [2]. �
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LEMMA 15 (Controlling empirical error ε3). Suppose that D.1 holds and
|⋃u∈ U Tu| ≤ n. There exists a universal constant A such that with probability at
least 1 − δ,

ε3(m̃) := sup
f ∈F̃m̃

|Gn(f )| ≤ Aδ−1/2
√(

m̃ log(n ∨ p) + s logn
)
φ(m̃ + s)

for all m̃ ≤ n.

PROOF. Lemma 14 bounds the uniform covering number of F̃m̃. Using
Lemma 19 with N ≤ 2n, m = m̃+ s and θm = p2([m−s]/m) ·n2(s/m) = p2(m̃/[m̃+s]) ·
n2(s/[m̃+s]), we conclude that uniformly in 0 ≤ m̃ ≤ n

sup
f ∈F̃m̃

|Gn(f )| ≤ Aδ−1/2
√

(m̃ + s) log(n ∨ θm)

× max
{

sup
f ∈F̃m̃

E[f 2]1/2, sup
f ∈F̃m̃

En[f 2]1/2
}

(E.2)
≤ A′δ−1/2

√
m̃ log(n ∨ p) + s logn

× max
{

sup
f ∈F̃m̃

E[f 2]1/2, sup
f ∈F̃m̃

En[f 2]1/2
}

with probability at least 1 − δ. The result follows, since for any f ∈ F̃m̃, the corre-
sponding vector α obeys ‖α‖0 ≤ m̃ + s, so that En[f 2] ≤ En[|α′xi |2] ≤ φ(m̃ + s)

and E[f 2] ≤ E[|α′xi |2] ≤ φ(m̃ + s) by definition of φ(m̃ + s). �

APPENDIX F: MAXIMAL INEQUALITIES FOR A COLLECTION
OF EMPIRICAL PROCESSES

The main results here are Lemma 16 and Lemma 19, used in the proofs of
Theorem 1 and Theorems 3 and 5, respectively. Lemma 19 gives a maximal in-
equality that controls the empirical process uniformly over a collection of classes
of functions using class-dependent bounds. We need this lemma because the stan-
dard maximal inequalities applied to the union of function classes yield a single
class-independent bound that is too large for our purposes. We prove Lemma 19
by first stating Lemma 16, giving a bound on tail probabilities of a separable sub-
Gaussian process, stated in terms of uniform covering numbers. Here we want to
explicitly trace the impact of covering numbers on the tail probability, since these
covering numbers grow rapidly under increasing parameter dimension and thus
help to tighten the probability bound. Using the symmetrization approach, we then
obtain Lemma 18, giving a bound on tail probabilities of a general separable em-
pirical process, also stated in terms of uniform covering numbers. Finally, given a
growth rate on the covering numbers, we obtain Lemma 19.
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LEMMA 16 (Exponential inequality for sub-Gaussian process). Consider any
linear zero-mean separable process {G(f ) :f ∈ F }, whose index set F includes
zero, is equipped with a L2(P ) norm, and has envelope F . Suppose further
that the process is sub-Gaussian, namely for each g ∈ F − F : P{|G(g)| > η} ≤
2 exp(−1

2η2/D2‖g‖2
P,2) for any η > 0, with D a positive constant; and suppose

that we have the following upper bound on the L2(P ) covering numbers for F :

N(ε‖F‖P,2, F ,L2(P )) ≤ n(ε, F ,P ) for each ε > 0,

where n(ε, F ,P ) is increasing in 1/ε, and ε
√

logn(ε, F ,P ) → 0 as 1/ε → ∞
and is decreasing in 1/ε. Then for K > D, for some universal constant c < 30,
ρ(F ,P ) := supf ∈F ‖f ‖P,2/‖F‖P,2,

P

{ supf ∈F |G(f )|
‖F‖P,2

∫ ρ(F ,P )/4
0

√
logn(x, F ,P )dx

> cK

}

≤
∫ ρ(F ,P )/2

0
ε−1n(ε, F ,P )−{(K/D)2−1} dε.

The result of Lemma 16 is in spirit of the Talagrand tail inequality for Gaussian
processes. Our result is less sharp than Talagrand’s result in the Gaussian case (by
a log factor), but it applies to more general sub-Gaussian processes.

In order to prove a bound on tail probabilities of a general separable empiri-
cal process, we need to go through a symmetrization argument. Since we use a
data-dependent threshold, we need an appropriate extension of the classical sym-
metrization lemma to allow for this. Let us call a threshold function x : Rn �→ R

k-sub-exchangeable if, for any v,w ∈ R
n and any vectors ṽ, w̃ created by the

pairwise exchange of the components in v with components in w, we have that
x(ṽ) ∨ x(w̃) ≥ [x(v) ∨ x(w)]/k. Several functions satisfy this property, in par-
ticular x(v) = ‖v‖ with k = √

2 and constant functions with k = 1. The follow-
ing result generalizes the standard symmetrization lemma for probabilities (Lem-
ma 2.3.7 of [33]) to the case of a random threshold x that is sub-exchangeable.

LEMMA 17 (Symmetrization with data-dependent thresholds). Consider ar-
bitrary independent stochastic processes Z1, . . . ,Zn and arbitrary functions
μ1, . . . ,μn : F �→ R. Let x(Z) = x(Z1, . . . ,Zn) be a k-sub-exchangeable ran-
dom variable and for any τ ∈ (0,1) let qτ denote the τ quantile of x(Z),
p̄τ := P(x(Z) ≤ qτ ) ≥ τ and pτ := P(x(Z) < qτ ) ≤ τ . Then

P

(∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
F

> x0 ∨ x(Z)

)
≤ 4

p̄τ

P

(∥∥∥∥∥
n∑

i=1

εi(Zi − μi)

∥∥∥∥∥
F

>
x0 ∨ x(Z)

4k

)
+ pτ ,

where x0 is a constant such that inff ∈F P(|∑n
i=1 Zi(f )| ≤ x0

2 ) ≥ 1 − p̄τ

2 .
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Note that we can recover the classical symmetrization lemma for fixed thresh-
olds by setting k = 1, p̄τ = 1 and pτ = 0.

LEMMA 18 (Exponential inequality for separable empirical process). Con-
sider a separable empirical process Gn(f ) = n−1/2 ∑n

i=1{f (Zi)− E[f (Zi)]} and
the empirical measure Pn for Z1, . . . ,Zn, an underlying i.i.d. data sequence. Let
K > 1 and τ ∈ (0,1) be constants, and en(F ,Pn) = en(F ,Z1, . . . ,Zn) be a k-
sub-exchangeable random variable, such that

‖F‖Pn,2

∫ ρ(F ,Pn)/4

0

√
logn(ε, F ,Pn) dε ≤ en(F ,Pn)

and

sup
f ∈F

var
P

f ≤ τ

2
(4kcKen(F ,Pn))

2

for the same constant c > 0 as in Lemma 16, then

P

{
sup
f ∈F

|Gn(f )| ≥ 4kcKen(F ,Pn)
}

≤ 4

τ
EP

([∫ ρ(F ,Pn)/2

0
ε−1n(ε, F ,Pn)

−{K2−1} dε

]
∧ 1

)
+ τ.

Finally, our main result in this section is as follows.

LEMMA 19 (Maximal inequality for a collection of empirical processes).
Consider a collection of separable empirical processes

Gn(f ) = n−1/2
n∑

i=1

{f (Zi) − E[f (Zi)]},

where Z1, . . . ,Zn is an underlying i.i.d. data sequence, defined over function
classes Fm,m = 1, . . . ,N with envelopes Fm = supf ∈Fm

|f (x)|,m = 1, . . . ,N ,
and with upper bounds on the uniform covering numbers of Fm given for all m

by

n(ε, Fm,Pn) = (N ∨ n ∨ θm)m(ω/ε)υm, 0 < ε < 1,

with some constants ω > 1, υ > 1 and θm ≥ θ0. For a constant C := (1 + √
2υ)/4

set

en(Fm,Pn) = C
√

m log(N ∨ n ∨ θm ∨ ω)max
{

sup
f ∈Fm

‖f ‖P,2, sup
f ∈Fm

‖f ‖Pn,2

}
.

Then, for any δ ∈ (0,1/6), and any constant K ≥ √
2/δ we have

sup
f ∈Fm

|Gn(f )| ≤ 4
√

2cKen(Fm,Pn) for all m ≤ N,

with probability at least 1 − δ, provided that N ∨ n ∨ θ0 ≥ 3; the constant c is the
same as in Lemma 16.



122 A. BELLONI AND V. CHERNOZHUKOV

PROOF OF LEMMA 16. The strategy of the proof is similar to the proof of
Lemma 19.34 in [31], page 286, given for the expectation of a supremum of a
process; here we instead bound tail probabilities and also compute all constants
explicitly.

Step 1. There exists a sequence of nested partitions of F , {(Fqi, i = 1, . . . ,Nq),
q = q0, q0 +1, . . .} where the qth partition consists of sets of L2(P ) radius at most
‖F‖P,22−q , and q0 is the largest positive integer such that 2−q0 ≤ ρ(F ,P )/4 so
that q0 ≥ 2. The existence of such a partition follows from a standard argument,
for example, [31], page 286.

Let fqi be an arbitrary point of Fqi . Set πq(f ) = fqi if f ∈ Fqi . By sep-
arability of the process, we can replace F by

⋃
q,i fqi , since the supremum

norm of the process can be computed by taking this set only. In this case, we
can decompose f − πq0(f ) = ∑∞

q=q0+1(πq(f ) − πq−1(f )). Hence by linearity
G(f ) − G(πq0(f )) = ∑∞

q=q0+1 G(πq(f ) − πq−1(f )), so that

P

{
sup
f ∈F

|G(f )| >
∞∑

q=q0

ηq

}
≤

∞∑
q=q0+1

P

{
max

f

∣∣G(
πq(f ) − πq−1(f )

)∣∣ > ηq

}
+ P

{
max

f
|G(πq0(f ))| > ηq0

}
,

for constants ηq chosen below.
Step 2. By construction of the partition sets ‖πq(f ) − πq−1(f )‖P,2 ≤ 2 ×

‖F‖P,22−(q−1) ≤ 4‖F‖P,22−q , for q ≥ q0 + 1. Setting ηq = 8K‖F‖P,22−q ×√
logNq, using sub-Gaussianity, setting K > D, using that 2 logNq ≥ logNq ×

Nq−1 ≥ lognq , using that q �→ lognq is increasing in q , and 2−q0 ≤ ρ(F ,P )/4,
we obtain

∞∑
q=q0+1

P

{
max

f

∣∣G(
πq(f ) − πq−1(f )

)∣∣ > ηq

}

≤
∞∑

q=q0+1

NqNq−12 exp
(−η2

q/(4D‖F‖P,22−q)2)

≤
∞∑

q=q0+1

NqNq−12 exp
(−(K/D)22 logNq

)

≤
∞∑

q=q0+1

2 exp
(−{(K/D)2 − 1} lognq

)
≤
∫ ∞
q0

2 exp
(−{(K/D)2 − 1} lognq

)
dq

=
∫ ρ(F ,P )/4

0
(x ln 2)−12n(x, F ,P )−{(K/D)2−1} dx.
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By Jensen’s inequality, we have
√

logNq ≤ aq := ∑q
j=q0

√
lognj , so that we

obtain
∑∞

q=q0+1 ηq ≤ 8
∑∞

q=q0+1 K‖F‖P,22−qaq . Letting bq = 2 · 2−q , noting

aq+1 − aq =
√

lognq+1 and bq+1 − bq = −2−q , we get using summation by parts

∞∑
q=q0+1

2−qaq = −
∞∑

q=q0+1

(bq+1 − bq)aq

= −aqbq |∞q0+1 +
∞∑

q=q0+1

bq+1(aq+1 − aq)

= 2 · 2−(q0+1)
√

lognq0+1 +
∞∑

q=q0+1

2 · 2−(q+1)
√

lognq+1

= 2
∞∑

q=q0+1

2−q
√

lognq,

where we use the assumption that 2−q
√

lognq → 0 as q → ∞, so that

−aqbq |∞q0+1 = 2 · 2−(q0+1)
√

lognq0+1.

Using that 2−q
√

lognq is decreasing in q by assumption,

2
∞∑

q=q0+1

2−q
√

lognq ≤ 2
∫ ∞
q0

2−q
√

logn(2−q, F ,P )dq.

Using a change of variables and that 2−q0 ≤ ρ(F ,P )/4, we finally conclude that

∞∑
q=q0+1

ηq ≤ K‖F‖P,2
16

log 2

∫ ρ(F ,P )/4

0

√
logn(x, F ,P )dx.

Step 3. Letting ηq0 = K‖F‖P,2ρ(F ,P )
√

2 logNq0 , recalling that Nq0 = nq0 ,
using that ‖πq0(f )‖P,2 ≤ ‖F‖P,2 and sub-Gaussianity, we conclude

P

{
max

f
|G(πq0(f ))| > ηq0

}
≤ nq2 exp

(−(K/D)2 lognq

) ≤ 2 exp
(−{(K/D)2 − 1} lognq

)
≤
∫ q0

q0−1
2 exp

(−{(K/D)2 − 1} lognq

)
dq

=
∫ ρ(F ,P )/2

ρ(F ,P )/4
(x ln 2)−12n(x, F ,P )−{(K/D)2−1} dx.
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Also, since nq0 = n(2−q0, F ,P ), 2−q0 ≤ ρ(F ,P )/4 and n(x, F ,P ) is increasing

in 1/x, we obtain ηq0 ≤ 4
√

2K‖F‖P,2
∫ ρ(F ,P )/4

0
√

logn(x, F ,P )dx.
Step 4. Finally, adding the bounds on tail probabilities from Steps 2 and 3

we obtain the tail bound stated in the main text. Further, adding bounds on ηq

from Steps 2 and 3, and using c = 16/log 2 + 4
√

2 < 30, we obtain
∑∞

q=q0
ηq ≤

cK‖F‖P,2
∫ ρ(F ,P )/4

0
√

logn(x, F ,P )dx. �

PROOF OF LEMMA 17. The proof proceeds analogously to the proof of
Lemma 2.3.7 (page 112) in [33] with the necessary adjustments. Letting qτ be
the τ quantile of x(Z) we have

P

{∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
F

> x0 ∨ x(Z)

}
≤ P

{
x(Z) ≥ qτ ,

∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
F

> x0 ∨ x(Z)

}
+ P {x(Z) < qτ }.

Next we bound the first term of the expression above. Let Y = (Y1, . . . , Yn) be an
independent copy of Z = (Z1, . . . ,Zn), suitably defined on a product space. Fix
a realization of Z such that x(Z) ≥ qτ and ‖∑n

i=1 Zi‖F > x0 ∨ x(Z). Therefore,
∃fZ ∈ F such that |∑n

i=1 Zi(fZ)| > x0 ∨x(Z). Conditional on such a Z and using
the triangular inequality, we have that

PY

{
x(Y ) ≤ qτ ,

∣∣∣∣∣
n∑

i=1

Yi(fZ)

∣∣∣∣∣ ≤ x0

2

}

≤ PY

{∣∣∣∣∣
n∑

i=1

(Yi − Zi)(fZ)

∣∣∣∣∣ > x0 ∨ x(Z) ∨ x(Y )

2

}

≤ PY

{∥∥∥∥∥
n∑

i=1

(Yi − Zi)

∥∥∥∥∥
F

>
x0 ∨ x(Z) ∨ x(Y )

2

}
.

By definition of x0, we have inff ∈F P {|∑n
i=1 Yi(f )| ≤ x0

2 } ≥ 1 − p̄τ /2. Since
PY {x(Y ) ≤ qτ } = p̄τ , by Bonferroni inequality we have that the left-hand side
is bounded from below by p̄τ − p̄τ /2 = p̄τ /2. Therefore, over the set {Z :x(Z) ≥
qτ ,‖∑n

i=1 Zi‖F > x0 ∨ x(Z)} we have

p̄τ

2
≤ PY

{∥∥∥∥∥
n∑

i=1

(Yi − Zi)

∥∥∥∥∥
F

>
x0 ∨ x(Z) ∨ x(Y )

2

}
.

Integrating over Z, we obtain

p̄τ

2
P

{
x(Z) ≥ qτ ,

∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
F

> x0 ∨ x(Z)

}

≤ PZPY

{∥∥∥∥∥
n∑

i=1

(Yi − Zi)

∥∥∥∥∥
F

>
x0 ∨ x(Z) ∨ x(Y )

2

}
.
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Let ε1, . . . , εn be an independent sequence of Rademacher random variables.
Given ε1, . . . , εn, set (Ỹi = Yi, Z̃i = Zi) if εi = 1 and (Ỹi = Zi, Z̃i = Yi) if
εi = −1. That is, we create vectors Ỹ and Z̃ by pairwise exchanging their compo-
nents; by construction, conditional on each ε1, . . . , εn, (Ỹ , Z̃) has the same distri-
bution as (Y,Z). Therefore,

PZPY

{∥∥∥∥∥
n∑

i=1

(Yi − Zi)

∥∥∥∥∥
F

>
x0 ∨ x(Z) ∨ x(Y )

2

}

= EεPZPY

{∥∥∥∥∥
n∑

i=1

(Ỹi − Z̃i)

∥∥∥∥∥
F

>
x0 ∨ x(Z̃) ∨ x(Ỹ )

2

}
.

By x(·) being k-sub-exchangeable, and since εi(Yi − Zi) = (Ỹi − Z̃i), we have
that

EεPZPY

{∥∥∥∥∥
n∑

i=1

(Ỹi − Z̃i)

∥∥∥∥∥
F

>
x0 ∨ x(Z̃) ∨ x(Ỹ )

2

}

≤ EεPZPY

{∥∥∥∥∥
n∑

i=1

εi(Yi − Zi)

∥∥∥∥∥
F

>
x0 ∨ x(Z) ∨ x(Y )

2k

}
.

By the triangular inequality and removing x(Y ) or x(Z), the latter is bounded by

P

{∥∥∥∥∥
n∑

i=1

εi(Yi − μi)

∥∥∥∥∥
F

>
x0 ∨ x(Y )

4k

}

+ P

{∥∥∥∥∥
n∑

i=1

εi(Zi − μi)

∥∥∥∥∥
F

>
x0 ∨ x(Z)

4k

}
.

�

PROOF OF LEMMA 18. Let G
o
n(f ) = n−1/2 ∑n

i=1{εif (Zi)} be the sym-
metrized empirical process, where ε1, . . . , εn are i.i.d. Rademacher random
variables, that is, P(εi = 1) = P(εi = −1) = 1/2, which are independent of
Z1, . . . ,Zn. By the Chebyshev’s inequality and the assumption on en(F ,Pn), we
have for the constant τ fixed in the statement of the lemma

P
(|Gn(f )| > 4kcKen(F ,Pn)

) ≤ supf varP Gn(f )

(4kcKen(F ,Pn))2 = supf ∈F varP f

(4kcKen(F ,Pn))2

≤ τ/2.

Therefore, by the symmetrization Lemma 17, we obtain

P

{
sup
f ∈F

|Gn(f )| > 4kcKen(F ,Pn)
}

≤ 4

τ
P

{
sup
f ∈F

|Go
n(f )| > cKen(F ,Pn)

}
+ τ.

We then condition on the values of Z1, . . . ,Zn, denoting the conditional prob-
ability measure as Pε . Conditional on Z1, . . . ,Zn, by the Hoeffding inequality
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the symmetrized process G
o
n is sub-Gaussian for the L2(Pn) norm, namely, for

g ∈ F − F , Pε{Go
n(g) > x} ≤ 2 exp(−x2/[2‖g‖2

Pn,2]). Hence, by Lemma 16 with
D = 1, we can bound

Pε

{
sup
f ∈F

|Go
n(f )| ≥ cKen(F ,Pn)

}
≤
[∫ ρ(F ,Pn)/2

0
ε−1n(ε, F ,P )−{K2−1} dε

]
∧ 1.

The result follows from taking the expectation over Z1, . . . ,Zn. �

PROOF OF LEMMA 19. Step 1 (Main step). In this step, we prove the main re-
sult. First, we observe that the bound ε �→ n(ε, Fm,Pn) satisfies the monotonicity
hypotheses of Lemma 18 uniformly in m ≤ N .

Second, recall en(Fm,Pn) := C
√

m log(N ∨ n ∨ θm ∨ ω)max{supf ∈Fm
‖f ‖P,2,

supf ∈Fm
‖f ‖Pn,2} for C = (1 + √

2υ)/4. Note that supf ∈Fm
‖f ‖Pn,2 is

√
2-sub-

exchangeable and ρ(Fm,Pn) := supf ∈Fm
‖f ‖Pn,2/‖Fm‖Pn,2 ≥ 1/

√
n by Step 2

below. Thus, uniformly in m ≤ N ,

‖Fm‖Pn,2

∫ ρ(Fm,Pn)/4

0

√
logn(ε, Fm,Pn) dε

≤ ‖Fm‖Pn,2

∫ ρ(Fm,Pn)/4

0

√
m log(N ∨ n ∨ θm) + υm log(ω/ε) dε

≤ (1/4)
√

m log(N ∨ n ∨ θm) sup
f ∈Fm

‖f ‖Pn,2

+ ‖Fm‖Pn,2

∫ ρ(Fm,Pn)/4

0

√
υm log(ω/ε) dε

≤
√

m log(N ∨ n ∨ θm ∨ ω) sup
f ∈Fm

‖f ‖Pn,2
(
1 + √

2υ
)
/4

≤ en(Fm,Pn),

which follows by

∫ ρ

0

√
log(ω/ε) dε ≤

(∫ ρ

0
1dε

)1/2(∫ ρ

0
log(ω/ε) dε

)1/2

≤ ρ
√

2 log(n ∨ ω) for 1/
√

n ≤ ρ ≤ 1.

Third, for any K ≥ √
2/δ > 1 we have (K2 − 1) ≥ 1/δ, and let τm = δ/

(4m log(N ∨ n ∨ θ0)). Recall that 4
√

2cC > 4 where 4 < c < 30 is defined in
Lemma 16. Note that for any m ≤ N and f ∈ Fm, we have by Chebyshev’s in-
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equality

P
(|Gn(f )| > 4

√
2cKen(Fm,Pn)

) ≤ supf ∈Fm
‖f ‖2

P,2

(4
√

2cKen(Fm,Pn))2

≤ δ/2

(4
√

2cC)2m log(N ∨ n ∨ θ0)

≤ τm/2.

By Lemma 18 with our choice of τm, m ≤ N , ω > 1, υ > 1 and ρ(Fm,Pn) ≤ 1,

P

{
sup

f ∈Fm

|Gn(f )| > 4
√

2cKen(Fm,Pn),∃m ≤ N
}

≤
N∑

m=1

P

{
sup

f ∈Fm

|Gn(f )| > 4
√

2cKen(Fm,Pn)
}

≤
N∑

m=1

[
4(N ∨ n ∨ θm)−m/δ

τm

∫ 1/2

0
(ω/ε)(−υm/δ)+1 dε + τm

]

≤ 4
N∑

m=1

(N ∨ n ∨ θm)−m/δ

τm

1

υm/δ
+

N∑
m=1

τm

< 16
(N ∨ n ∨ θ0)

−1/δ

1 − (N ∨ n ∨ θ0)−1/δ
log(N ∨ n ∨ θ0) + δ

4

(1 + logN)

log(N ∨ n ∨ θ0)
≤ δ,

where the last inequality follows by N ∨ n ∨ θ0 ≥ 3 and δ ∈ (0,1/6).
Step 2 (Auxiliary calculations). To establish that supf ∈Fm

‖f ‖Pn,2 is
√

2-sub-
exchangeable, let Z̃ and Ỹ be created by exchanging any components in Z with
corresponding components in Y . Then

√
2
(

sup
f ∈Fm

‖f ‖
Pn(Z̃),2 ∨ sup

f ∈Fm

‖f ‖
Pn(Ỹ ),2

)
≥
(

sup
f ∈Fm

‖f ‖2
Pn(Z̃),2 + sup

f ∈Fm

‖f ‖2
Pn(Ỹ ),2

)1/2

≥
(

sup
f ∈Fm

En[f (Z̃i)
2] + En[f (Ỹi)

2]
)1/2

=
(

sup
f ∈Fm

En[f (Zi)
2] + En[f (Yi)

2]
)1/2

≥
(

sup
f ∈Fm

‖f ‖2
Pn(Z),2 ∨ sup

f ∈Fm

‖f ‖2
Pn(Y ),2

)1/2

= sup
f ∈Fm

‖f ‖Pn(Z),2 ∨ sup
f ∈Fm

‖f ‖Pn(Y ),2.
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Next we show that ρ(Fm,Pn) := supf ∈Fm
‖f ‖Pn,2/‖Fm‖Pn,2 ≥ 1/

√
n for

m ≤ N . The latter bound follows from En[F 2
m] = En[supf ∈Fm

|f (Zi)|2] ≤
supi≤n supf ∈Fm

|f (Zi)|2, and from

sup
f ∈Fm

En[|f (Zi)|2] ≥ sup
f ∈Fm

sup
i≤n

|f (Zi)|2/n. �
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