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Overview

We focus on how to get the most out of your optimizer(s):
1. Scaling
2. Initial Guess
3. Solver Options
4. Gradients & Hessians
5. Dangers with Hessians
6. Verification
7. Diagnosing Problems
8. Ipopt
9. Floating Point Issues

10. The Evils of the Logit



Scaling

Scaling can help solve convergence problems and improve numerical
stability:

� Naive scaling: scale variables so their magnitudes are ∼ 1
� Better: scale variables so solution has magnitude ∼ 1
� A good solver may automatically scale the problem
� Goal: make problem equally sensitive to steps along any

direction



Computing an Initial Guess

Computing a good initial guess is crucial:
� To avoid bad regions in parameter space
� To facilitate convergence
� To satisfy constraints
� Possible methods:

� Use a simpler but consistent estimator such as OLS
� Use logit + 2SLS when estimating a mixed logit/BLP
� Estimate a restricted version of the problem
� Use Nelder-Mead or other derivative-free method (beware of

fminsearch)
� Use pseudo-Monte Carlo, quasi-Monte Carlo, or a ‘voodoo’

method (Simulated Annealing, Genetic Algorithm)

� Beware: the optimizer may only find a local max!



Solver Options

A state of the art optimizer such as knitro is highly tunable:
� You should configure the options to suit your problem: scale,

linear or non-linear, concavity, constraints, etc.
� Experimentation is required:

� Algorithm: Interior/CG, Interior/Direct, Active Set
� Barrier parameters: bar_murule, bar_feasible
� Tolerances: X, function, constraints
� Diagnostics

� See Nocedal & Wright for the gory details of how optimizers
work



Which Algorithm?

Different algorithms work better on different problems:
Interior/CG

� Direct step is poor quality
� There is negative curvature
� Large or dense Hessian

Interior/Direct
� Ill-conditioned Hessian of Lagrangian
� Large or dense Hessian
� Dependent or degenerate constraints

Active Set
� Small and medium scale problems
� You can choose a (good) initial guess

The default is that knitro chooses the algorithm.
⇒ There are no hard rules. You must experiment!!!



Knitro Configuration

Knitro is highly configurable:
� Set options via:

� C, C++, FORTRAN, or Java API
� MATLAB options file

� Documentation in
${KNITRO_DIR}/Knitro70_UserManual.pdf

� Example options file in
${KNITRO_DIR}/examples/Matlab/knitro.opt



Calling Knitro From MATLAB

To call Knitro from MATLAB:
1. Follow steps in InstallGuide.pdf I sent out
2. Call ktrlink:

% Call Knitro
[ xOpt, fval, exitflag, output, lambda ] = ktrlink( ...

@(xFree) myLogLikelihood( xFree, myData ), ...
xFree, [], [], [], [], lb, ub, [], [], ’knitro.opt’ ) ;

% Check exit flag
if exitflag <= -100 | exitflag >= -199

% Success
end

� Note: older versions of Knitro modify fmincon to call ktrlink
� Best to pass options via a file such as ’knitro.opt’



Listing 1: knitro.opt Options File

# KNITRO 6 . 0 . 0 Opt ions f i l e
# ht tp : // z i e n a . com/ documentat ion . html

# Which a l g o r i t hm to use .
# auto = 0 = l e t KNITRO choose the a l g o r i t hm
# d i r e c t = 1 = use I n t e r i o r ( b a r r i e r ) D i r e c t a l g o r i t hm
# cg = 2 = use I n t e r i o r ( b a r r i e r ) CG a l g o r i t hm
# a c t i v e = 3 = use Ac t i v e Set a l g o r i t hm
a l g o r i t hm 0

# Whether f e a s i b i l i t y i s g i v e n s p e c i a l emphas i s .
# no = 0 = no emphas i s on f e a s i b i l i t y
# s t a y = 1 = i t e r a t e s must honor i n e q u a l i t i e s
# get = 2 = emphas ize f i r s t g e t t i n g f e a s i b l e b e f o r e o p t im i z i n g
# get_stay = 3 = implement both op t i o n s 1 and 2 above
b a r_ f e a s i b l e no

# Which b a r r i e r paramete r update s t r a t e g y .
# auto = 0 = l e t KNITRO choose the s t r a t e g y
# monotone = 1
# adap t i v e = 2
# prob i ng = 3
# dampmpc = 4
# fu l lmpc = 5
# q u a l i t y = 6
bar_murule auto



# I n i t i a l t r u s t r e g i o n r a d i u s s c a l i n g f a c t o r , used to de t e rm ine
# the i n i t i a l t r u s t r e g i o n s i z e .
d e l t a 1

# S p e c i f i e s the f i n a l r e l a t i v e s t opp i n g t o l e r a n c e f o r the f e a s i b i l i t y
# e r r o r . Sma l l e r v a l u e s o f f e a s t o l r e s u l t i n a h i g h e r deg r ee o f a c cu racy
# i n the s o l u t i o n wi th r e s p e c t to f e a s i b i l i t y .
f e a s t o l 1e−06

# How to compute/ approx imate the g r a d i e n t o f the o b j e c t i v e
# and c o n s t r a i n t f u n c t i o n s .
# exac t = 1 = us e r s u p p l i e s e xac t f i r s t d e r i v a t i v e s
# fo rwa rd = 2 = g r a d i e n t s computed by fo rwa rd f i n i t e d i f f e r e n c e s
# c e n t r a l = 3 = g r a d i e n t s computed by c e n t r a l f i n i t e d i f f e r e n c e s
g radopt exac t

# How to compute/ approx imate the Hes s i an o f the Lag rang i an .
# exac t = 1 = us e r s u p p l i e s e xac t second d e r i v a t i v e s
# b fg s = 2 = KNITRO computes a dense quas i−Newton BFGS Hes s i an
# s r 1 = 3 = KNITRO computes a dense quas i−Newton SR1 Hes s i an
# f i n i t e _ d i f f = 4 = KNITRO computes Hess ian−v e c t o r p r oduc t s by f i n i t e d i f f e r e n c e s
# product = 5 = us e r s u p p l i e s e xac t Hess ian−v e c t o r p r oduc t s
# l b f g s = 6 = KNITRO computes a l im i t e d −memory quas i−Newton BFGS Hes s i an
he s s op t e xac t



# Whether to e n f o r c e s a t i s f a c t i o n o f s imp l e bounds at a l l i t e r a t i o n s .
# no = 0 = a l l ow i t e r a t i o n s to v i o l a t e the bounds
# a lways = 1 = en f o r c e bounds s a t i s f a c t i o n o f a l l i t e r a t e s
# i n i t p t = 2 = en f o r c e bounds s a t i s f a c t i o n o f i n i t i a l p o i n t
honorbnds i n i t p t

# Maximum number o f i t e r a t i o n s to a l l ow
# ( i f 0 then KNITRO de t e rm in e s the be s t v a l u e ) .
# De f au l t v a l u e s a r e 10000 f o r NLP and 3000 f o r MIP .
maxi t 0

# Maximum a l l ow a b l e CPU t ime i n seconds .
# I f m u l t i s t a r t i s a c t i v e , t h i s l i m i t s t ime spen t on one s t a r t p o i n t . maxtime_cpu
1e+08

# S p e c i f i e s the f i n a l r e l a t i v e s t opp i n g t o l e r a n c e f o r the KKT ( o p t im a l i t y )
# e r r o r . Sma l l e r v a l u e s o f o p t t o l r e s u l t i n a h i g h e r deg r ee o f a ccu racy i n
# the s o l u t i o n wi th r e s p e c t to o p t im a l i t y .
o p t t o l 1e−06

# Step s i z e t o l e r a n c e used f o r t e rm i n a t i n g the o p t im i z a t i o n .
x t o l 1e−15 # Should be s q r t ( machine e p s i l o n )



Numerical Gradients and Hessians Overview

Gradients and Hessians are often quite important:
� Choosing direction and step for Newtonian methods
� Evaluating convergence/non-convergence
� Estimating the information matrix (MLE)
� Note:

� Solvers need accurate gradients to converge correctly
� Solvers do not usually need precise Hessians
� Must compute the information matrix accurately to get correct

standard errors!

� Consequently, quick and accurate evaluation is important:
� Hand-coded, analytic gradient/Hessian
� Automatic differentiation
� Numerical gradient/Hessian



Benefits of Analytic Gradient and Hessian

Where possible, you should use an analytic gradient and Hessian:
� Analytic Gradient

� More accurate calculation of step and direction
� Faster

� Analytic Hessian
� Mostly provides faster convergence
� Only code if used by your solver!

� An analytic gradient or Hessian is not a guarantee of numerical
accuracy:

� Numerical truncation from adding positive and negative
numbers

� Subtracting numbers is often dangerous
� Summation error
� Work in higher precision, e.g. in Matlab write a MEX file and

use quad double



Forward Finite Difference Gradient

function [ fgrad ] = NumGrad( hFunc, x0, dx )
x1 = x0 + dx ;
f1 = feval( hFunc, x1 ) ;
f0 = feval( hFunc, x0) ;
fgrad = ( f1 - f0 ) / ( x1 - x0 ) ;

Need to tune step size: h ∼ 1e − 6 is a good start



Centered Finite Difference Gradient

function [ fgrad ] = NumGrad( hFunc, x0, dx )
x1 = x0 + dx ;
x2 = 2 * x0 - x1 ;
f1 = feval( hFunc, x1 ) ;
f2 = feval( hFunc, x2 ) ;
fgrad = ( f1 - f2 ) / ( x1 - x2 ) ;



Overview of Hessian Pitfalls

‘The only way to do a Hessian is to do a Hessian’ – Ken Judd

� The ‘Hessian’ returned by fmincon is not a Hessian:
� Computed by BFGS, sr1, or some other approximation scheme
� A rank 1 update of the identity matrix
� Requires at least as many iterations as the size of the problem
� Dependent on quality of initial guess, x0
� Often built with convexity restriction

� Therefore, you must compute the Hessian either numerically or
analytically

� fmincon’s ‘Hessian’ often differs considerably from the true
Hessian – just check eigenvalues or condition number



Condition Number

Use the condition number to evaluate the stability of your problem:

� cond (A) = log10

�
max [eig (A)]
min [eig (A)]

�

� Large values ⇒ trouble
� Also check eigenvalues: negative or nearly zero eigenvalues ⇒

problem is not concave
� If the Hessian is not full rank, parameters will not be identified

⇒ beware of problems which are not numerically identified
� Number of significant digits of precision lost == cond (A)



Estimating the Information Matrix

To estimate the information matrix:
1. Calculate the Hessian – either analytically or numerically
2. Invert the Hessian
3. Calculate standard errors

StandardErrors = sqrt( diag( inv( YourHessian ) ) ) ;

Assuming, of course, that your objective function is the likelihood...



Verification
Verifying your results is a crucial part of the scientific method:

� Generate a Monte Carlo data set: does your estimation code
recover the target parameters?

� Test Driven Development:
1. Develop a unit test (code to exercise your function)
2. Write your function
3. Check that your function behaves correctly for all execution

paths even if you have to write extra code to do so!
4. The sooner you find a bug, the cheaper it is to fix!!!

� Start simple: e.g. logit with linear utility
� Then slowly add features one at a time, such as interactions or

non-linearities
� Verify results via Monte Carlo
� Always compare analytic derivatives to finite difference
� Or, feed it a simple problem with an analytical solution



Diagnosing Problems

The solver provides information about its progress which can be
used to diagnose problems:

� Enable diagnostic output during development
� The meaning of output depends on the type of solver: Interior

Point, Active Set, etc.
� In general, you must RTM: each solver is different

Information includes:
� Exit codes specifying type of failure
� Diagnositic output about progress
� Look for quadratic convergence – otherwise you may not have

really solved the problem



Exit Codes

It is crucial that you check the optimizer’s exit code and the
gradient and Hessian of the objective function:

� Optimizer may not have converged:
� Exceeded CPU time
� Exceeded maximum number of iterations
� Encountered numerical problems such as infeasible constraints,

singular basis, ran out of memory

� Optimizer may not have found a global max
� Constraints may bind when they shouldn’t (i.e., Lagrange

multipliers λ �= 0)
� Failure to check exit flags could lead to public humiliation and

flogging



Interpreting Solver Output
Things to look for:

� Residual should decrease geometrically towards the end
(Gaussian)

� Then solver has converged
� Geometric decrease followed by wandering around:

� At limit of numerical precision
� Increase precision and check scaling

� Linear convergence:
� �residual� → 0: rank deficient Jacobian ⇒ lack of

identification
� Far from solution ⇒ convergence to local min of �residual�

� Check values of Lagrange multipliers:
� lambda.{ upper, lower, ineqlin, eqlin, ineqnonlin,

eqnonlin }
� Local min of constraint ⇒ infeasible or locally inconsistent (IP)
� Non convergence: failure of constraint qualification (NLP)

� Unbounded: λ or x → ±∞



Solver Convergence

Listing 2: PATH: quadratic convergence
Major Iteration Log
major minor func grad residual

0 0 2 2 1.9982e+01
1 1 3 3 5.3080e+00
2 1 4 4 1.4611e+00
3 1 5 5 2.6640e-01
4 1 6 6 4.0062e-03
5 1 7 7 1.0141e-06
6 1 8 8 9.4265e-14



Solver Convergence

Listing 3: PATH: poor convergence
Major Iteration Log
major minor func grad residual

0 0 3 2 2.5101e+01
1 1 4 3 1.0947e+01
2 19 5 4 8.9594e+00
3 21 6 5 1.8181e+00
4 21 7 6 1.4533e+00
5 21 8 7 1.2491e+00
6 21 9 8 1.3063e+00
7 1 10 9 0.0000e+00



Explore Your Objective Function

Visualizing your objective function will help you:
� Catch mistakes
� Choose an initial guess
� Determine if variable transformations, such as log or x

� = 1/x ,
are necessary:

� To change curvature
� Impose a bound on a variable
� To make problem more linear

Some tools:
� Plot objective function while holding all variables except one

fixed
� Explore points near and far from the expected solution
� Contour plots better than 3-D plots
� Check for convexity at many points – can use inequalities



Ipopt

Ipopt is an alternative optimizer which you can use:
� Interior point algorithm
� Part of the COIN-OR collection of free optimization packages
� Supports C, C++, FORTRAN, AMPL, Java, MATLAB, and R
� Can be difficult to build – see me for details
� www.coin-or.org

� COIN-OR provides free software to facilitate optimization
research



Floating Point Issues
A computer represents all numbers as a finite sequence of binary
digits. Consequently, you can only represent a subset of the rational
numbers which can lead to:

� Numerical roundoff errors
� Machine epsilon provides upper bound on relative error
� ≈ 2.220446049250313e − 16 in 64-bit MATLAB
� Representation error: e.g., (float) -3210.48 =

-3210.4799804688
� Examine eps() in MATLAB or

std::numeric_limits<>::epsilon() in C++
� Floating point exceptions: overflow & underflow
� Special numbers: Inf & NaN
� Some problems can be solved by using higher precision data

types, e.g. long double or quad double.
� For more information:

� IEEE 754 floating point specification
� ‘What Every Scientist Should Know About Floating-Point

Arithmetic,’ Goldberg, ACM, 1991.



Example: Overflow of short

iVal * 10 = 1000
iVal * 10 = 10000
iVal * 10 = -31072
iVal * 10 = 16960
iVal * 10 = -27008
iVal * 10 = -7936
iVal * 10 = -13824
iVal * 10 = -7168
iVal * 10 = -6144
iVal * 10 = 4096
iVal * 10 = -24576
iVal * 10 = 16384
iVal * 10 = -32768
iVal * 10 = 0
iVal * 10 = 0
iVal * 10 = 0



Example: Round-off Error for float
1.0 - (1.0 + 0.1) : -0.1
1.0 - (1.0 + 0.01) : -0.01
1.0 - (1.0 + 0.001) : -0.001
1.0 - (1.0 + 0.0001) : -0.0001
1.0 - (1.0 + 1e-05) : -1e-05
1.0 - (1.0 + 1e-06) : -1e-06
1.0 - (1.0 + 1e-07) : -1e-07
1.0 - (1.0 + 1e-08) : -1e-08
1.0 - (1.0 + 1e-09) : -1e-09
1.0 - (1.0 + 1e-10) : -1e-10
1.0 - (1.0 + 1e-11) : -1e-11
1.0 - (1.0 + 1e-12) : -1.00009e-12
1.0 - (1.0 + 1e-13) : -9.99201e-14
1.0 - (1.0 + 1e-14) : -9.99201e-15
1.0 - (1.0 + 1e-15) : -1.11022e-15
1.0 - (1.0 + 1e-16) : 0
1.0 - (1.0 + 1e-17) : 0
1.0 - (1.0 + 1e-18) : 0



The Evils of the Logit
Despite it’s closed analytic form, the logit leads to many numerical
problems:

� The root cause: exp (10) = large and exp (1e3) = Inf
� In addition, the exponential function is expensive to compute
� Renormalizing is can help....

sj (x) =
exp (uj − umax)�

k
exp (uk − umax)

but can lead to either overflow or underflow in the presence of
an outside good

� Often shares are very small (e.g. BLP) leading to even smaller
Jacobians (which are rank deficient) because
∂sj

∂pk
= −αprice (I [j = k]− sj) sk

� Going to higher numerical



Example: BLP Price Equilibrium

A great example of this problem is solving for the Bertrand-Nash
price equilibrium in BLP:

� Highly non-linear for small p

� FOCs and shares → ∞ exponentially as p → ∞ so there are
large flat regions near the optimum

� Symptom: solver converges poorly and to different points for
different starts

� Solution: transform FOC so it is more linear:

focj = 1 + (pj − cj)
∂sj

∂pj
· 1
sj

� Intuition comes from the logit where this is nearly linear for
larger p



Exploit Structure

Often the problem has structure you can exploit to improve
performance:

� Block Diagonal
� Solve blocks individually
� Avoids problems when blocks require

� Different scaling
� Different stopping conditions


