Optimizers, Hessians, and Other Dangers

Benjamin S. Skrainka
Harris School of Public Policy
University of Chicago

July 16, 2012

Overview

We focus on how to get the most out of your optimizer(s):
1. Scaling

Initial Guess

Solver Options

Gradients & Hessians

Dangers with Hessians

Verification

Diagnosing Problems

Ipopt

Floating Point Issues

The Evils of the Logit

© 0N o 0k W

,_.
©

Scaling

Scaling can help solve convergence problems and improve numerical
stability:

» Naive scaling: scale variables so their magnitudes are ~ 1

v

Better: scale variables so solution has magnitude ~ 1

v

For dynamic problems, choose a sensible time step

v

A good solver may automatically scale the problem

v

Goal: make problem equally sensitive to steps along any
direction

Orthogonal Polynomials

Many researchers use simple powers of covariates 1, x, x>, ...

» Simple powers are highly collinear =

» Huge condition number
» Numerical problems
» lll-conditioned Vandermonde matrix

» Use orthogonal polynomials
» This has been known for a long time:

» D.J. Hudson (1964) “Statistics lectures |l: maximum likelihood
and least squares theory”

» Bradley & Srivastava (1979) “Correlation in Polynomial
Regression”

» Newman (1981) “Matrix mutual orthogonality and parameter
independence”

Computing an Initial Guess

Computing a good initial guess is crucial:

v

To avoid bad regions in parameter space

v

To facilitate convergence

v

To satisfy constraints

Possible methods:

v

» Use a simpler but consistent estimator such as OLS

» Estimate a restricted version of the problem: e.g., use logit +
2SLS when estimating a mixed logit/BLP

» Use Nelder-Mead or other derivative-free method (beware of
fminsearch)

» Use pseudo-Monte Carlo, quasi-Monte Carlo, or a ‘voodoo’
method (Simulated Annealing, Genetic Algorithm)

» Beware: the optimizer may only find a local max!

Solver Options

A state of the art optimizer such as knitro is highly tunable:
» You should configure the options to suit your problem: scale,
linear or non-linear, concavity, constraints, etc.
» Experimentation is required:

Algorithm: Interior/CG, Interior/Direct, Active Set
Barrier parameters: bar_murule, bar_feasible
Tolerances: X, function, constraints

Diagnostics

vV vy vy

» See Nocedal & Wright for the gory details of how optimizers
work

Which Algorithm?

Different algorithms work better on different problems:
Interior/CG

» Direct step is poor quality
» There is negative curvature
» Large or dense Hessian

Interior /Direct

» lll-conditioned Hessian of Lagrangian
» Large or dense Hessian
» Dependent or degenerate constraints

Active Set

» Small and medium scale problems
» You can choose a (good) initial guess

The default is that knitro chooses the algorithm.
= There are no hard rules. You must experiment!!!

Knitro Configuration

Knitro is highly configurable:
» Set options via:

» C, C++, FORTRAN, or Java API
» MATLAB options file

» Documentation in ${KNITRO_DIR}/doc/html

» Example options file in
${KNITRO _DIR}/examples/Matlab/knitro.opt

Calling Knitro From MATLAB

To call Knitro from MATLAB:
1. Follow steps in InstallGuide.pdf | sent out
2. Call xtrlink:

% Call Knitro

[xOpt, fval, exitflag, output, lambda] = ktrlink(
Q(xFree) myLogLikelihood(xFree, myData), e
xFree, [1, [1, [0, [0, 1b, ub, [1, [1, ’knitro.opt’)

% Check exit flag

if exitflag <= -100 | exitflag >= -199
% Success

end

» Note: older versions of Knitro modify fmincon to call ktrlink

» Best to pass options via a file such as 'knitro.opt’

Listing 1: knitro.opt Options File

KNITRO 8.0.0 Options file
http://ziena.com/documentation.html

Which algorithm to use.

auto = 0 = let KNITRO choose the algorithm

direct = 1 = use Interior (barrier) Direct algorithm

cg = 2 = use Interior (barrier) CG algorithm

active = 3 = use Active Set algorithm

multi =5 = run multiple algorithms (perhaps in parallel)
algorithm auto

When using the Interior/Direct algorithm , this parameter
controls the maximum number of consecutive CG steps before
trying to force the algorithm to take a direct step again.
(only used for alg=1).

bar directinterval 10

Whether feasibility is given special emphasis.

no = 0 = no emphasis on feasibility

stay = 1 = iterates must honor inequalities

get = 2 = emphasize first getting feasible before optimiz
get stay = 3 = implement both options 1 and 2 above

bar feasible no

Specifies the tolerance for entering the stay feasible mode
(only valid when bar feasible = stay or bar feasible = get stay)
bar feasmodetol 0.0001

Initial value for the barrier parameter.
bar_initmu 0.1

Whether to use the initial point strategy with barrier algorithm

auto = 0 = let KNITRO choose the strategy
yes = 1 = shift the initial point to improve barrier performa
no = 2 = do not alter the initial point supplied by the user

bar initpt auto

Maximum allowable number of backtracks during the linesearch of
Interior Direct algorithm before reverting to a CG step.

(only used for alg=1).

bar maxbacktrack 3

Maximum number of crossover iterations to allow for barrier algc
bar maxcrossit 0

Maximum number of refactorizations of the KKT system per iterati
Interior Direct algorithm before reverting to a CG step.

(only used for alg=1).

bar maxrefactor 0

Which barrier parameter update strategy.

auto = 0 = let KNITRO choose the strategy

monotone = 1

adaptive = 2

probing =3

dampmpc = 4

fullmpec =5

quality =6

bar murule auto

Whether or not to penalize constraints in the barrier algorithms
auto = 0 = let KNITRO choose the strategy

none = 1 = Do not apply penalty approach to any constraint
all = 2 = Apply a penalty approach to all general constr:
bar penaltycons auto

Which penalty parameter update strategy for barrier algorithms.

auto = 0 = let KNITRO choose the strategy

single = 1 = use single penalty parameter approach

flex = 2 = use more tolerant flexible strategy

bar penaltyrule auto

Switching rule strategy for barrier algorithms that controls# sv
auto = 0 = let KNITRO choose the strategy

never = 1 = never switch

levell = 2 = allow moderate switching

level2 = 3 = more agressive switching

bar switchrule auto

Which BLAS/LAPACK library to use. Intel MKL library is only av:
on some platforms; see the User Manual for details.

knitro = 0 = use KNITRO version of netlib functions
intel =1 = use Intel MKL functions

dynamic = 2 = use dynamic library of functions
blasoption intel

Specifies debugging level of output. Debugging output is intend

developers. Debugging mode may impact performance and is NOT re
for production operation.

none = 0 = no extra debugging

problem = 1 = help debug solution of the problem

execution = 2 = help debug execution of the solver

debug none

Initial trust region radius scaling factor, used to determine
the initial trust region size.
delta 1.0

Specifies the final relative stopping tolerance for the feasibil
error. Smaller values of feastol result in a higher degree of ac
in the solution with respect to feasibility.

feastol le—06

Specifies the final absolute stopping tolerance for the feasibil
Smaller values of feastol abs result in a higher degree of accur
solution with respect to feasibility.

feastol abs 0.0

How to compute/approximate the gradient of the objective
and constraint functions.

exact = 1 = user supplies exact first derivatives
forward = 2 = gradients computed by forward finite differ
g P y
central = 3 = gradients computed by central finite differ

gradopt exact

How to compute/approximate the Hessian of the Lagrangian.

exact = 1 = user supplies exact second derivatives

bfgs = 2 = KNITRO computes a dense quasi—Newton BFGS |
srl = 3 = KNITRO computes a dense quasi—Newton SR1 H
finite diff = 4 = KNITRO computes Hessian—vector products by
product = 5 = user supplies exact Hessian—vector products
Ibfgs = 6 = KNITRO computes a limited —memory quasi—Newt
hessopt exact

Whether to allow computing Hessian of the Lagrangian without ob,
forbid = 0 = not allowed

allow = 1 = user can provide this version of the Hessia

hessian_no f forbid

Whether to enforce satisfaction of simple bounds at all iteratio

no = 0 = allow iterations to violate the bounds

always = 1 = enforce bounds satisfaction of all iterates
initpt = 2 = enforce bounds satisfaction of initial point
honorbnds initpt

Specifies relative stopping tolerance used to declare infeasibil
infeastol le—08

Which linear system solver to use.

auto = 0 = let KNITRO choose the solver

internal = 1 = use internal solver provided with KNITRO

(not currently active; reserved for future use)
hybrid = 2 = use a mixture of linear solvers depending on th
qr = 3 = use dense QR solver always (only for small prot
ma27 = 4 = use sparse HSL solver ma27 always

mab7 = 5 = use sparse HSL solver ma57 always

linsolver auto

Number of limited memory pairs to store when Hessian choice is |
Imsize 10

Which LP solver to use in the Active algorithm.

internal = 1 = use internal LP solver

cplex 2 = CPLEX (if user has a valid license)
Ipsolver internal

Maximum allowable CPU time in seconds for the complete multi alg
solution when "alg=multi’ Use maxtime cpu to additionally limi
spent per each algorithm.

ma_maxtime cpu 1le+08

Maximum allowable real time in seconds for the complete multi al
solution when "alg=multi’'. Use maxtime real to additionally lin
spent per each algorithm.

ma_maxtime real 1e+408

Specifies multi algorithm subproblem solve output control.

0 = no output from subproblem solves

1 = Subproblem output enabled, controlled by option ’'outlev’
Output is directed to a file 'knitro _ma_ x*.log’
ma_outsub 0

Specifies conditions for terminating when 'algorithm=multi

all = 0 = terminate after all algorithms complete
optimal = 1 = terminate at first local optimum
feasible = 2 = terminate at first feasible solution estimate

ma _terminate optimal

Maximum allowable CG iterations per trial step
(if 0 then KNITRO determines the best value).
maxcgit 0

Maximum number of iterations to allow

(if 0 then KNITRO determines the best value).

Default values are 10000 for NLP and 3000 for MIP.
maxit 0

Maximum allowable CPU time in seconds one algorithm solve.

If multistart, multi algorithm or MIP is active, this limits tim
on just one subproblem solve.

maxtime cpu 1e408

Maximum allowable real time in seconds for one algorithm solve.
If multistart, multi algorithm or MIP is active, this limits tim
on just one subproblem solve.

maxtime real 1e408

Specifies the MIP branching rule for choosing a variable.

auto = 0 = let KNITRO choose the rule

most frac = 1 = most fractional (most infeasible) variable
pseudocost = 2 = use pseudo—cost value

strong = 3 = use strong branching

mip branchrule auto

Specifies debugging level for MIP solution.

none = 0 = no MIP debugging info

all =1 = write debugging to the file kdbg mip.log
mip debug none

Whether to branch on generalized upper bounds (GUBs).
no = 0 = do not branch on GUBs

yes = 1 = branch on GUBs

mip gub branch no

Specifies which MIP heuristic search approach to apply
to try to find an initial integer feasible point.

auto = 0 = let KNITRO choose the heuristic
none =1 = no heuristic search applied

feaspump = 2 = apply feasibility pump heuristic
mpec = 3 = apply MPEC heuristic

mip heuristic auto

Maximum number of iterations to allow for MIP heuristic.
mip heuristic_maxit 100

Whether to add logical implications deduced from
branching decisions at a MIP node.

no = 0 = do not add logical implications

yes =1 = add logical implications

mip implications yes

Threshold for deciding if a variable value is integral.
mip integer tol 1le—08

Specifies absolute stop tolerance for sufficiently small
mip integral gap abs 1e—06

integre

Specifies relative stop tolerance for sufficiently small integr:
mip integral gap rel 1e—06

Specifies rules for adding MIP knapsack cuts.

none = 0 = do not add knapsack cuts

ineqs = 1 = add cuts derived from inequalities

ineqs eqs = 2 add cuts derived from inequalities and equalit
mip knapsack inegs

Specifies which algorithm to use for LP subproblem solves in MIF
(same options as algorithm option).
mip lIpalg auto

Maximum number of nodes explored (0 means no limit).
mip _maxnodes 100000

Maximum number of subproblem solves allowed (0 means no limit).
mip maxsolves 200000

Maximum allowable CPU time in seconds for the complete MIP solut
Use maxtime cpu to additionally limit time spent per subproblem
mip _maxtime cpu le+08

Maximum allowable real time in seconds for the complete MIP solu
Use maxtime real to additionally limit time spent per subproblem
mip maxtime real 1e+408

Which MIP method to use.

auto = 0 = let KNITRO choose the method
BB =1 standard branch and bound

HQG = 2 = hybrid Quesada—Grossman
mip_method auto

Specifies printing interval for mip_ outlevel.

= print every node

= print every 2nd node
= print every Nth node
mip outinterval 10

I3 F
2N~

How much MIP information to print.

none = 0 = nothing

iters = 1 = one line for every node
mip outlevel iters

Specifies MIP subproblem solve output control.

0 = no output from subproblem solves

1 = Subproblem output enabled, controlled by option

"outlev’

2 = Subproblem output enabled and print problem characteristic

mip outsub 0

How to initialize pseudo—costs.

auto = 0 = let KNITRO choose the method
ave = 1 = use average value

strong = 2 = use strong branching

mip pseudoinit auto

Specifies which algorithm to use for the root node solve in MIP
(same options as algorithm option).
mip rootalg auto

Specifies the MIP rounding rule to apply.

auto = 0 = let KNITRO choose the rule

none = 1 = do not round if a node is infeasible

heur only = 2 = round using heuristic only (fast)

nlp sometimes = = round and solve NLP if likely to succeed
#

m

3k
AWNRO
|

nlp always = always round and solve NLP
ip_rounding auto

Specifies the MIP select rule for choosing a node.

auto = 0 = let KNITRO choose the rule

depth first = 1 = search the tree depth first

best bound = 2 = node with the best relaxation bound

combo 1 = 3 = depth first unless pruned, then best bound

mip selectrule auto

Maximum number of candidates to explore for MIP strong branching

mip strong candlim 10

Maximum number of levels on which to perform MIP strong branchin

mip strong level 10

Maximum number of iterations to allow for MIP strong branching
mip strong maxit 1000

<

Specifies conditions for terminating the MIP algorithm.

optimal = 0 = terminate at optimum

feasible = 1 = terminate at first integer feasible point
mip terminate optimal

Whether to enable multistart to find a better local minimum.

no = 0 = KNITRO solves from a single initial point
yes = 1 = KNITRO solves using multiple start points
ms _enable no

Specifies the maximum range that an unbounded variable can vary
multistart computes new start points.
ms__maxbndrange 1000

How many KNITRO solutions to compute if multistart is enabled.
choose any positive integer, or

0 = KNITRO sets it to min{200,10%n}

ms _maxsolves 0

Maximum allowable CPU time in seconds for the complete multistar
solution. Use maxtime cpu to additionally limit time spent per
ms_maxtime cpu 1le+08

Maximum allowable real time in seconds for the complete multists
solution. Use maxtime real to additionally limit time spent per
ms_maxtime real 1e+408

How many feasible multistart points to save in file knitro mspo
choose any positive integer, or

0 = save none

ms_num_to save 0

Specifies parallel multistart subproblem solve output control.

0 = no output from subproblem solves

1 = Subproblem output enabled, controlled by option ’'outlev’
Output is directed to a file 'knitro ms x*.log’
ms_outsub 0

Specifies the tolerance for deciding two feasible points are the
ms savetol 1e—06

Specifies the seed for random initialization of the multistart ¢
Seed value should an integer >= 0. Negative values will be rese
ms_seed 0

Specifies the maximum range that any variable can vary over when
multistart computes new start points.

ms _startptrange le+20

Specifies conditions for terminating the multistart procedure.

maxsolves = 0 = terminate after maxsolves
optimal = 1 = terminate at first local optimum
feasible = 2 = terminate at first feasible solution estimate

ms terminate maxsolves

Specifies additional action to take after every iteration.

lterations result in a new point that is closer to a solution.
none = 0 = no additional action

saveone = 1 = save the latest new point to file knitro newpol
saveall = 2 = append the latest new point to file knitro new)
user = 3 = allow a user—specified routine to run after ite
newpoint none

Valid range of obective values.
objrange le+20

Specifies the final relative stopping tolerance for the KKT (op-
error. Smaller values of opttol result in a higher degree of acc
the solution with respect to optimality.

opttol le—06

Specifies the final absolute stopping tolerance for the KKT (op-
error. Smaller values of opttol abs result in a higher degree of
in the solution with respect to optimality.

opttol abs 0.0

Specifies whether to append to output files.
This option should be set before calling KTR_init_problem ().

no = 0 = erase existing files when opening
yes = 1 = append to existing files
outappend no

Directory for all output files.

This option should be set before calling KTR_init_problem ().

#outdir

Specifies the verbosity of output.

none = 0 = nothing

summary =1 = only final summary information

iter 10 = 2 = information every 10 iterations
iter = 3 = information at each iteration is
iter verbose = 4 = more verbose information at each
iter x = 5 = in addition, values of solution
all = 6 = in addition, constraints (c) and multiplier
outlev iter 10

Where to direct the output.

screen = 0 = directed to stdout

file =1 = directed to a file called knitro.log
both = 2 = both stdout and file called knitro.log
outmode screen

Whether to allow simultaneous evaluations in parallel.
no = 0 = only one thread can perform an evaluation

yes = 1 = allow multi—threaded simultaneous

par_concurrent evals yes

is

evaluations

vector

Number of threads to use in parallel features.

choose any positive integer, or
0 = value determined by OMP_NUM THREADS environment variable
<0 = run sequential version of Knitro code

par_numthreads 1

Specifies the initial pivot threshold used in the factorization
The value must be in the range [0 0.5] with higher values result
in more pivoting (more stable factorization). Values less than C
be set to 0 and values larger than 0.5 will be set to 0.5. If pi
is non—positive initially no pivoting will be performed. Smaller
may improve the speed of the code but higher values are recommer
more stability.

pivot le—08

Whether to apply a presolve operation to the model.
none = 0 = no presolve

basic =1 = KNITRO performs basic presolve
presolve basic

Specifies the tolerance used to determine whether or not deduced
from the presolve operation are infeasible.
presolve tol 1e—06

Whether to perform automatic scaling of the functions.
no = 0 = no scaling done

yes = 1 = KNITRO performs automatic scaling

scale yes

Whether to use the Second Order Correction (SOC) option.

no = 0 = never do second order corrections
maybe = 1 = SOC steps attempted on some iterations
yes = 2 = SOC steps always attempted when constraints are

r
soc maybe

Step size tolerance used for

terminating the optimization.
xtol le—15

Numerical Gradients and Hessians Overview

Gradients and Hessians are often quite important:

v

Choosing direction and step for Newtonian methods

v

Evaluating convergence/non-convergence

v

Estimating the information matrix (MLE)
» Note:

» Solvers need accurate gradients to converge correctly

» Solvers do not usually need precise Hessians

» Must compute the information matrix accurately to get correct
standard errors!

v

Consequently, quick and accurate evaluation is important:

» Hand-coded, analytic gradient/Hessian
» Automatic differentiation
» Numerical gradient/Hessian

Benefits of Analytic Gradient and Hessian

Where possible, you should use an analytic gradient and Hessian:

» Analytic Gradient

» More accurate calculation of step and direction
» Faster

» Analytic Hessian

» Mostly provides faster convergence
» Only code if used by your solver!

» An analytic gradient or Hessian is not a guarantee of numerical
accuracy:

» Numerical truncation from adding positive and negative

numbers
» Subtracting numbers is often dangerous

» Summation error
» Work in higher precision, e.g. in Matlab write a MEX file and

use quad double

Forward Finite Difference Gradient

function [fgrad] = NumGrad(hFunc, x0, dx)
x1 = x0 + dx ;

f1 = feval(hFunc, x1) ;
g0 = feval(hFunc, x0) ;
fgrad = (f1 - £f0) / (x1 - x0)

Need to tune step size: h~ 1le — 6 is a good start

Centered Finite Difference Gradient

function [fgrad] = NumGrad(hFunc, x0, dx)
x1 = x0 + dx ;
x2 =2 *%x x0 - x1 ;
f1 = feval(hFunc, x1) ;
f2 = feval(hFunc, x2) ;
fgrad = (f1 - 2) / (x1 - x2) ;

Overview of Hessian Pitfalls

‘The only way to do a Hessian is to do a Hessian' — Ken Judd
» The ‘Hessian' returned by fmincon is not a Hessian:

Computed by BFGS, srl, or some other approximation scheme
A rank 1 update of the identity matrix

Requires at least as many iterations as the size of the problem
Dependent on quality of initial guess, x0

Often built with convexity restriction

vV vy vy VvYyy

» Therefore, you must compute the Hessian either numerically or
analytically

» fmincon's ‘Hessian’ often differs considerably from the true
Hessian — just check eigenvalues or condition number

Condition Number

Use the condition number to evaluate the stability of your problem:
max [eig (A)]
> d(A) =1 —_—
cond (4) = logio <min [eig (A)]
Large values = trouble

v

v

Also check eigenvalues: negative or nearly zero eigenvalues =
problem is not concave

v

If the Hessian is not full rank, parameters will not be identified
= beware of problems which are not numerically identified

v

Number of significant digits of precision lost == cond (A)

Estimating the Information Matrix

To estimate the information matrix;
1. Calculate the Hessian — either analytically or numerically
2. Invert the Hessian

3. Calculate standard errors

StandardErrors = sqrt(diag(inv(YourHessian))) ;

Assuming, of course, that your objective function is the likelihood...

Verification

Verifying your results is a crucial part of the scientific method:

» Generate a Monte Carlo data set: does your estimation code
recover the target parameters?

» Test Driven Development:

1. Develop a unit test (code to exercise your function)

2. Write your function

3. Check that your function behaves correctly for all execution
paths even if you have to write extra code to do so!

4. The sooner you find a bug, the cheaper it is to fix!!!

» Start simple: e.g. logit with linear utility

» Then slowly add features one at a time, such as interactions or
non-linearities

» Verify results via Monte Carlo
» Always compare analytic derivatives to finite difference

» Or, feed it a simple problem with an analytical solution

Diagnosing Problems

The solver provides information about its progress which can be
used to diagnose problems:

» Enable diagnostic output during development

» The meaning of output depends on the type of solver: Interior
Point, Active Set, etc.

» In general, you must RTFM: each solver is different
Information includes:

» Exit codes specifying type of failure

» Diagnositic output about progress

» Look for quadratic convergence — otherwise you may not have
really solved the problem

Exit Codes

It is crucial that you check the optimizer's exit code and the
gradient and Hessian of the objective function:

» Optimizer may not have converged:

» Exceeded CPU time

» Exceeded maximum number of iterations

» Encountered numerical problems such as infeasible constraints,
singular basis, ran out of memory

» Optimizer may not have found a global max

» Constraints may bind when they shouldn't (i.e., Lagrange
multipliers A # 0)

» Failure to check exit flags could lead to public humiliation and
flogging

Interpreting Solver Output
Things to look for:

» Residual should decrease geometrically towards the end
(Gaussian)
» Then solver has converged
» Geometric decrease followed by wandering around:
> At limit of numerical precision

> Increase precision and check scaling

> Linear convergence:

» ||residual| — 0: rank deficient Jacobian = lack of
identification
» Far from solution = convergence to local min of | residual||

» Check values of Lagrange multipliers:

» lambda.{ upper, lower, ineqlin, eqlin, inegnonlin,
egnonlin }

» Local min of constraint = infeasible or locally inconsistent (IP)

» Non convergence: failure of constraint qualification (NLP)

» Unbounded:)\ or x = +o00

Solver Convergence

Listing 2: PATH: quadratic convergence

Major Iteration Log
major minor func grad residual
0 .9982e+01
.3080e+00
.4611e+00
.6640e-01
.0062e-03
.0141e-06
.4265e-14

o Ok WN -

i = o i N @)
00 N O U WwN
00 N O Ul b WwWwN
O = >N = O -

Solver Convergence

Listing 3: PATH: poor convergence

Major Iteration Log

major minor func grad residual
0 0 3 2 2.5101e+01
1 1 4 3 1.0947e+01
2 19 5 4 8.9594e+00
3 21 6 5 1.8181e+00
4 21 7 6 1.4533e+00
5 21 8 7 1.2491e+00
6 21 9 8 1.3063e+00
7 1 10 9 0.0000e+00

Explore Your Objective Function

Visualizing your objective function will help you:
» Catch mistakes
» Choose an initial guess

» Determine if variable transformations, such as log or x' = 1/x,
are necessary:

» To change curvature
» Impose a bound on a variable
» To make problem more linear

Some tools:

» Plot objective function while holding all variables except one
fixed

» Explore points near and far from the expected solution
» Contour plots better than 3-D plots

» Check for convexity at many points — can use inequalities

Ipopt

Ipopt is an alternative optimizer which you can use:
» Interior point algorithm
» Part of the COIN-OR collection of free optimization packages
» Supports C, C++, FORTRAN, AMPL, Java, MATLAB, and R
» Can be difficult to build — see me for details
> WWW.COIN-or.org

» COIN-OR provides free software to facilitate optimization
research

Floating Point Issues
A computer represents all numbers as a finite sequence of binary
digits. Consequently, you can only represent a subset of the rational
numbers which can lead to:
» Numerical roundoff errors

» Machine epsilon provides upper bound on relative error
> ~ 2.220446049250313e — 16 in 64-bit MATLAB
» Representation error: e.g., (float) -3210.48 =
-3210.4799804688
» Examine eps() in MATLAB or
std: :numeric_limits<>::epsilon() in C++

v

Floating point exceptions: overflow & underflow

Special numbers: Inf & NaN

Some problems can be solved by using higher precision data
types, e.g. long double or quad double.

v

v

For more information:

v

» |EEE 754 floating point specification
» ‘What Every Scientist Should Know About Floating-Point
Arithmetic,” Goldberg, ACM, 1991.

Example: Overflow of short

ival * 10 = 1000
iVal * 10 = 10000
ival * 10 = -31072
iVal * 10 = 16960
iVal * 10 = -27008
iVal * 10 = -7936
iVal * 10 = -13824
ival * 10 = -7168
iVal * 10 = -6144
ival *x 10 = 4096
iVal * 10 = -24576
ival * 10 = 16384
iVal * 10 = -32768
iVal * 10 = 0

iVal * 10 = 0

iVal * 10 = 0

Example: Round-off Error for float

[y

O O OO O O OO OO OO OO oo oo

N e T e e e T e T el T S S S N S

(1.
(1.
(1.
(1.
(1.
(1.
(1.
(1.
(1.
(1.
(1.
(1.
(1.
(1.
(1.
(1.
(1.
(1.

o

O O O O O O OO O OO OO oo oo

+ + + + A+ o+ o+ o+ A+ + 4

0.1)
0.01)
0.001)
0.0001)
1e-05)
1e-06)
1e-07)
1e-08)
1e-09)
1e-10)
le-11)
le-12)
1e-13)
le-14)
le-15)
le-16)
1e-17)
1e-18)

: -0.1
: -0.01
: -0.001
: -0.0001
: -1le-05
: -1e-06
: -1e-07
: -1e-08
: -1e-09
: -le-10
i -le-11
: -1.00009e-12
1 -9.99201e-14
: -9.99201e-15
: -1.11022e-15
: 0
: 0
: 0

The Evils of the Logit

Despite it's closed analytic form, the logit leads to many numerical

problems:
» The root cause: exp (10) = large and exp (1e3) = Inf
» In addition, the exponential function is expensive to compute
» Renormalizing is can help....

_ ~exp (U — Umax)
500 = e (e — i)
K

but can lead to either overflow or underflow in the presence of
an outside good

Often shares are very small (e.g. BLP) leading to even smaller
Jacobians (which are rank deficient) because

0s; .

fpjk = —Aprice (1[J = k] — ;) sk

Going to higher numerical

Example: BLP Price Equilibrium

A great example of this problem is solving for the Bertrand-Nash
price equilibrium in BLP:
» Highly non-linear for small p
» FOCs and shares — oo exponentially as p — oo so there are
large flat regions near the optimum
» Symptom: solver converges poorly and to different points for
different starts
» Solution: transform FOC so it is mo(;e Iinelar:
S
f°9—1+(PJ_9)%'5
» Intuition comes from the logit where this is nearly linear for
larger p

Exploit Structure

Often the problem has structure you can exploit to improve
performance:

» Block Diagonal
» Solve blocks individually
» Avoids problems when blocks require

» Different scaling
» Different stopping conditions

