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ABSTRACT.  General equilibrium analysis is difficult when asset markets
are incomplete. We make the simplifying assumption that uncertainty is small
and use bifurcation methods to compute Taylor series approximations for asset
demand and asset market equilibrium. A computer must be used to derive these
approximations since they involve large amounts of algebraic manipulation. To
illustrate this method, we apply it to analyzing the allocative, price, and welfare

effects of introducing a new derivative security.

1. INTRODUCTION

Precise analysis of equilibrium in asset markets is difficult since few cases can be
solved exactly for equilibrium prices and volume. Many analyses assume that markets
are complete, implying that equilibrium is efficient and equivalent to some social
planner’s problem. That approach is limited since it ignores transaction costs, taxes,
and incompleteness in asset markets. This paper develops bifurcation methods to
approximate asset market equilibrium without assuming complete asset markets. We
begin from a trivial deterministic case where all assets have the same safe return and
use local approximation methods to compute asset market equilibrium when assets
have small risk. We compute Taylor series expressing equilibrium asset prices and

holdings as a function of preference parameters such as absolute risk aversion, and
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asset return statistics such as mean, variance, and skewness. The formulas completely
characterize equilibrium for small risks.

Implementing this approach is straightforward, but involves an enormous amount
of algebraic manipulation far beyond the capacity of human hands. Fortunately, desk-
top computers using symbolic software can execute the necessary algebraic manipula-
tion and compute the series expansions in reasonable time. We use Mathematica, but
the computation could be executed by other symbolic languages such as Macsyma
and Maple. The asymptotic expansions tell us about the qualitative properties of
equilibrium and can be used to compute a numerical approximation to equilibrium of
particular problems with a specified nonzero risk. Therefore, the bifurcation approach
is computational in two ways: the formulas are qualitative asymptotic approximations
derived by computer algebra, and can be used to produce numerical approximations
to specific problems. This paper focuses on the qualitative asymptotic results and
leaves the numerical applications for future study.

The result is essentially a mean-variance-skewness-etc. theory of asset demand
and equilibrium pricing, similar to Samuelson’s [22] analysis of asset demand. This
approach is also more intuitive than the standard contingent state approach to equi-
librium. The incomplete markets paradigm focuses on the difference between the
number of contingent states and the number of assets. For example, welfare results
in Hart [11], Cass and Citanna [3], and Elul [7] depend on how many assets are miss-
ing and the number of agents. It is difficult to interpret such indices of incompleteness
since we can count neither the number of contingent states nor the number of different
kinds of agents in a real economy. Furthermore, one expects that the impact of asset
incompleteness on economic performance is related more to the statistical character
of riskiness and the diversity of investor objectives than to the number of states and
the number of agents. For example, the number of different agents is a poor measure
of agent diversity since an economy with 100 types of investors with different risk
aversions close to the mean risk aversion is less diverse than an economy with 10
types of investors with substantially different risk aversions. Similarly, the number
of contingent states is at best a poor indicator of the magnitude and character of
riskiness. This paper’s analysis produces asymptotic formulas depending solely on

the moments of asset returns and the differences in utility indices, showing that they,
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not the number of states, govern the asymptotic properties of equilibrium. Since mo-
ments are more easily observed in real markets than the number of contingent states
the result is a more practical and intuitive approach to equilibrium analysis of asset
markets.

Our approach is intuitive and similar in spirit to standard linearization and com-
parative static methods from mathematical economics. If fact, the analysis resembles
Jones [12] classic analysis of international trade. Linearization methods based on the
Implicit Function Theorem (IFT) are important computational tools that allow us to
approximate nonlinear relationships with tractable, asymptotically valid approxima-
tions. We begin with the no-risk case where we know the equilibrium. We then use
that information to compute equilibria for nearby cases of risky economies. However,
the IFT does not apply here because the critical Jacobian is singular. In particular,
when risk disappears all assets must become perfect substitutes and the portfolios
of individuals are indeterminate when risk is zero. We cannot use the IFT if we do
not know the equilibrium portfolio in the case of zero risk. Instead, we must apply
tools from bifurcation theory to solve our problem. These tools are natural since
they are essentially generalizations of L’Hospital’s rule. Furthermore, because of the
singularity at zero risk, we will need to compute higher-order approximations, not
just the familiar first-order terms from linear approximation methods.

The purpose of this paper is to present the key mathematical ideas and illustrate
them with basic economic applications. We first apply bifurcation methods to de-
rive approximations of asset demand, refining the similar Samuelson [22] method.
We then use these approximations of asset demand to compute approximations of
asset market equilibrium. We compute asymptotically valid expressions for equilib-
rium with different asset combinations, and use them to show how changes in asset
availability affects equilibrium.

The bifurcation approach is particularly interesting since it handles the complete
and incomplete asset market cases in the same way. This contrasts sharply with the
conventional approach where the incomplete asset market case is far more complex
than the complete market case (see Magill and Quinzii [21] for a more complete
discussion). We can do this because we focus on small risks. Since our analysis

makes no assumptions about the span of assets, it is also a method for computing
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equilibrium in some economies with incomplete asset markets. This is generally a
difficult problem because the excess demand function is not continuous. Brown et al.
2] and Schmedders [23] have formulated algorithms for computing equilibria when
asset markets are incomplete. Their methods aim to compute equilibrium for any
such model. Our method is only valid locally but is much faster since it relies on
relatively simple and direct formulas.

The applications presented in this paper are just a small sampling of the possi-
bilities. Guu and Judd [15] applies the results of this paper to compute the optimal
derivative asset. Leisen and Judd [19] uses similar methods to price options and de-
termine equilibrium trade in options when they are not priced by arbitrage. We stay
with the single good model in this paper so that we can focus on the key mathemat-
ical problems. The methods do generalize to the multicommodity models examined
in Hart and others, but space limitations force us to leave that for future studies.

Section 2 reviews local approximation theory and previous small noise analyses.
Section 3 presents the bifurcation to theorems that generalize the IFT. Section 4
applies the bifurcation theorems to asset demand. Section 5 presents a small noise
analysis of an asset market with one risky asset and Section 6 examines a market
with one fundamental risky asset plus a derivative asset. Comparisons of these cases
allows us to analyze the effects of introducing a derivative asset. Section 7 discusses
some computational considerations. Section 8 outlines the approach to more general

models. Section 9 concludes.

2. LOCAL APPROXIMATION METHODS AT NONSINGULAR POINTS

Local approximation methods are based on a few basic theorems. They begin with
Taylor’s theorem and the IFT for R™. We first state the basic theorems in this section,

and then present the bifurcation theorems in the next section.

2.1. Taylor Series Approximation. The most basic local approximation is pre-

sented in Taylor’s Theorem.

Theorem 1. (Taylor’s Theorem for R™) Let X C R"and p be an interior point of X.
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Suppose f : X — R is C**! in an open neighborhood N of p. Then, for all x € N

CIRECEDY gg ) (2~ )

n

1 2
322 3%8% = i) (@5 = pj)

i=1 j=1

1 n
+k_ Zl Z 83:21 8!17%( p) (@i = pir) -+ (@i = i)
JrC’)(Hx—pH)k+1

The Taylor series approximation of f(z) based at p uses derivative information
at p to construct a polynomial approximation. The theory only guarantees that this
approximation is good near p. While the accuracy of the approximation decays as x
moves away from p, this decay is often slow, implying that a finite Taylor series can

be a good approximation for x in a large neighborhood of p.

2.2. The Meaning of “Approximation”. We often use the phrase “f(x) ap-
proximates g(z) for z near p”, but the meaning of this phrase is seldom made clear.
One trivial sense of the term is that f(p) = g(p). While this is certainly a nec-
essary condition, it is generally too weak to be a useful concept. Approximation
usually means at least that f'(p) = ¢/(p) as well. In this case, we say that “f is a
first-order (or linear) approximation to g at x = p”. In general, “f is an n’th order

approximation of g at x = p” if and only if
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This definition says that the error || f(z) — g(x)]|| of the approximation f(x) is asymp-
totically bounded above by c||z — p||" for any constant ¢ > 0. Therefore, for any x
near p, the approximating function f(x) is very close to g(z). In particular, the de-
gree k Taylor series of a C**! function is a k’th order approximation since its error
is O (||z — p||)**". This may seem trivial but this is not always the definition of n’th

order approximation used in economics. We state it here for the purpose of precision.
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2.3. The Implicit Function Theorem for Analytic Functions. Our analysis
will rely on the IF'T for analytic functions. It is useful to review some basic facts about
analytic functions that will help us understand our results. The following definition

for analytic functions is the most helpful of the many equivalent definitions.

Definition 2. A function f(x) : R — R is analytic at x, if and only if there is some
nonempty open set ) C R such that zo € Q and for all z € Q, f(x) = Zf:o a;x* and
S0 ai|z) < oo for all z € Q.

Basically, analytic functions are C'*° and locally equal to the power series created
by Taylor series expansions. The key word here is “local”. For example, the power
series expansion of logx around xy = 1 cannot be globally valid since log x is not
defined at x = 0. To make this precise, we need the concept of radius of convergence.
The next theorem states the key result that the domain of convergence for a power

series is a disk.

Theorem 3. Let C = {x| Zf:o aixi} < 00. Then the closure of C, C, is a disk, and

the radius of C is called the radius of convergence of Zf:o a;x’.

The focus on analytic functions is essential since some C* functions are not
analytic. The best example of this is e~ */*”. The function e/’ is defined everywhere,
even at x = 0. Furthermore, it is C*° everywhere, even at x = 0 where each derivative
equals zero. This implies that the Taylor series expansion based at o = 0 is the zero

function. However, e='/*

—1/22

* equals zero just at x = 0, not in any neighborhood of z = 0.
Therefore, e does not equal its Taylor series expansion in any open neighborhood
of x = 0 and is not analytic at x = 0. In general, a C"*° function is analytic at xq if
and only if it equals its power series in some nondegenerate neighborhood of xg.

We have discussed just the univariate case. Analytic functions on R” are simi-
larly defined; see, for example, Zeidler [26]. The next important tool is the Implicit

Function Theorem (IFT) for analytic functions.

Theorem 4. (Implicit Function Theorem) Let H(z,y) : R xR ™ — R™ be analytic
at (zo,yo) and assume H(xo,y0) = 0. If H,(zo,y0) Is nonsingular, then there is a
unique function h : R" — R™ such that h(x) is analytic at xo and H(z,h(x)) = 0 for
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(x,y) in an open neighborhood of (x¢,yo). Furthermore, the derivatives of h at x

can be computed by implicit differentiation of the identity H(x, h(z)) = 0.

The IFT states that A can be uniquely defined for x near xq by H(x,h(z)) = 0
if Hy(xo,yo) is not singular and allows us to implicitly compute the derivatives of h.

For example, the gradient of h at xzq is

O (a0) = —Hy (0, 0) ™ Ha 0, 0)

and provides us with the first—order terms of the power series representation for h(x)
based at zp. When we combine Taylor’s theorem and the IFT, we have a way to
compute a locally valid polynomial’ approximation of a function h(x) for z near x
implicitly defined by H(z,h(x)) = 0. There is an IFT for C*° functions, but it does
not give us a positive radius of convergence for the implied power series. Therefore,
we must proceed with an analytic function perspective.

The focus on analytic functions is not restrictive since most functions economists
use are locally analytic at points of economic relevance. For example, logc is a
common utility function and is analytic at each positive value of c¢. Similarly for
Cobb-Douglas production functions £%¢'~®. However, these functions are only locally
analytic, implying that different power series representations are valid over different
finite intervals. For example, suppose we construct a power series for u(c) = logc
based at ¢y = 1. Since log ¢ is undefined at ¢ = 0, the radius of convergence for that
power series is at most 1, which in turn implies that that power series is not valid for
any ¢ > 2. However, the power series based at ¢y = 2 is valid for ¢ € (0,4). When we
use the IFT for analytic functions, we need to be aware of the radii of convergence
of the power series we implicitly use and be sure that they are consistent with our
application of the IFT.

The power series constructed in the IFT for analytic functions will have a positive
radius of convergence, but we know anything about its magnitude in general. This

is a drawback in some contexts. This issue is not important in this paper since we

I'The derivative information could also be used to compute a Padé approximant, or other nonlinear
approximation schemes. Judd and Guu (1993) and Judd (1998) examine both approaches. In this

paper, we will stay with the conventional Taylor expansions.
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examine only the asymptotic properties of models. We will return later to the issue

of the range of validity for our formulas.

2.4. Previous Small Noise Analyses. The small noise approach is not new to
the economics literature, but the approach we take differs in substance and formalism
from previous efforts. One line of previous work is taken by Fleming [8], which was
elaborated on by Judd and Guu [14]. Fleming showed how to go from the solution of
a deterministic control problem to one with small noise added to the law of motion.

Specifically, consider the problem

max E { /0 Te*ptw(x, u)dt} (1)

dr = f(u,z)dt + eo(u,x)dz

Fleming approximated the problem in (1) for small € by finding the control law
u = Ul(x,t) of the e = 0 problem and then apply the IFT to Bellman’s equation.
A key detail was that the control law needed to be unique in the € = 0 case. Judd
and Guu implement this approach for infinite horizon problems, and show that the
Fleming procedure produces good approximations.

The problem discussed in Fleming, and Judd and Guu was easy since it could be
handled by the standard IFT. A less trivial problem was examined in Samuelson [22].
He examined the problem of asset demand when riskiness was small. We will return
to that problem below.

A third example of the small noise analysis is Magill’s [20] analysis of what is now
called real business cycles. Magill showed how to compute linear approximations to
(1), use these approximations to compute spectra of the resulting linear model, and
proposed that the spectra of these models be compared to empirical data on spectra.
Kydland and Prescott [18] focussed on the special case of Magill’s method where the
law of motion f(u,x) is linear in (u, ), and partially implemented Magill’s spectral
comparison ideas by comparing variances and covariances of these linear approxima-
tions of deterministic models to the business cycle data. This special case of Magill’s
approach to stochastic dynamic general equilibrium has been important in the Real
Business Cycle literature. Gaspar and Judd [10] shows how to compute higher-order

expansions around deterministic steady states. Also, the methods in Magill, and Kyd-
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land and Prescott were “certainty equivalent approximations”, that is, they compute
a linear approximation to the deterministic problem, ¢ = 0, and apply it to problems
where € # 0, whereas Gaspar and Judd [10] computes approximations which includes
the effect of €. Similarly, we will compute high-order expansions where ¢ is allowed
to vary.

A fourth example that particularly illustrates the importance of using bifurcation
theory is Tesar [25]. Tesar used a linear-quadratic approach to evaluate the welfare
impact on countries from opening up trade in assets. Some of her numerical examples
showed that moving to complete markets would result in a Pareto inferior allocation,
a finding that contradicts the first welfare theorem of general equilibrium. Kim and
Kim [16] have shown that this approach will often produce incorrect results. These
examples illustrate the need for using methods from the mathematical literature
instead of relying on ad hoc approximation procedures based loosely on “economic
intuition.”

This paper illustrates the critical mathematical structure of asset market problems
with small risks, and develops the relevant mathematical tools. While the model

analyzed below is simple, the basic approach is generally applicable.

3. BIFURCATION METHODS
Our asset market analysis requires us to approximate an implicitly defined function
at a point where the conditions of the IFT do not hold. Fortunately, we will be able
to exploit additional structure and arrive at a solution using bifurcation methods.

We first present the general theorems and then apply them to some asset problems.

3.1. Bifurcation in R!. Suppose that H(z,¢) is C? and z(¢) is implicitly defined
by H(z(e),e) = 0. One way to view the equation H(x,e) = 0 is that for each e it
defines a collection of x that solves H(x,e) = 0. The number of such x may change

as we change €. We next define the concept of a bifurcation point.

Definition 5. (zo,¢) is a bifurcation point of H iff the number of solutions = to
H(z,e) = 0 changes as € passes through €, and there are two distinct parametric
paths, (X;(s), Ei(s)), i = 1,2, such that H(X(s), Fi(s)) = 0, and lim,_,o(X;(s), E;(s))
(x0,€), 1 =1,2.
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A trivial example of a bifurcation is H(x,€) = e(x —€) at (x,¢€) = (0,0). If € # 0,
the unique solution to H = 0 is z(e) = €, but at € = 0 any = solves H = 0. There
is a bifurcation point at (z,e) = (0,0), and the two branches of solutions to H = 0
are X1(s) = Ei(s) = s and Xi(s) = s, Ei(s) = 0. We cannot apply the IFT to
H(z(€),e) = 0 at (0,0) directly since the Jacobian of H, is singular at (0,0). Suppose
that we are interested in the branch z(e) = €, and not the trivial branch where € = 0
and x is arbritrary. This is natural since we want to know how x changes as € changes,
not just the situation at e = 0. Bifurcation theorems help us accomplish this. The

case for z € R is summarized in the Theorem 6.

Theorem 6. (Bifurcation Theorem for R) Suppose H : R x R — R, H is analytic
for (z,€) in a neighborhood of (x¢,0), and H(z,0) = 0 for all x € R. Furthermore,
suppose that

H;E((L’(),O) =0= H€<(L’0,0), HM<IL’0, 0) 7£ 0.

Then (x¢,0) is a bifurcation point and there is an open neighborhood N of (x,0)
and a function h(e), h(e) # 0 for € # 0, such that h is analytic and H(h(e),e) = 0 for
(h(€),€e) € N.

Proof. The strategy to prove this theorem follows the trick of “solving a
singularity through division by €’ (see Zeidler, 1998, Chapter 8). Define
H(z,e€) 0
F(x,e):{ oo 70 (2)

OH (z,0) o
-, €=0

Since H is analytic and H(z,0) = 0 for all z, H(z,¢) = eF(z,¢) and F' is analytic
in (z,e). Since 0 = H(x0,0), F(x00) = 0. Direct computation shows F,(z,€) +
€Fye(x,€) = Hye(x,€), which implies F,(x,0) = Hye(z0,0) # 0. Since F,(z0,0) # 0,
we can apply the IFT to F at (zg,0). Therefore, there is an open neighborhood N of
(x9,0) and an analytic function h(e), h(e) # 0 for € # 0, such that F(h(e),e) = 0 for
(h(€),€e) € N, which in turn implies H(h(e),€) = 0 for (h(e),e) e N. B

In general, Theorem 6 tells us we can compute derivatives through implicit differ-
entiation. In particular, #'(0) and A”(0) are defined by

W) — —[Fx(xo,o)]—lFe(xOp):—%[Hm(xo,o)]—lﬂee(mop)

"

3H,e(20,0)R (0) = —[3h'(0)Hype(o, 0)2 (0) + 3Hyee(20, 0)1(0) + Heee(o, 0)]
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which implies a unique value for A’(0) and ~"”(0) as long as Hy(zo,0) # 0. Notice
the sequentially linear character of the problem. One only needs linear operations
to compute /'(0), and once we have computed h/(0) the problem of computing h”(0)
is also a linear problem. The existence of A’(0), "(0), and all higher derivatives of
h relies solely on the solvability condition H,.(xo,0) # 0 and the existence of the
higher-order derivatives of H at the bifurcation point.

Theorem 6 resolves the problem when H(z,e) = e(x —¢€) = 0. In this case,
H(z,0) = 0 for all z, H,(0,0) = 0 = H.(0,0), but Hy(zo,0) = 1 # 0. Implicit
differentiation shows that h’'(0) = 1, and that every other derivative of h at x = 0 is
zero. The example of H = e¢(x — €) seems quite trivial, but our problems will have a
similar form and Theorem 6 gives us conditions under which the general problem is
really no more complex than this simple example.

Implicit differentiation of H(x(¢),e) = 0 will produce a power series expansion
for x(e) around € = 0, but we know nothing about the radius of convergence of that
power series. For example, H(z,€) = € (z — (¢ + 1)/?) = 0 has the obvious global

1/2 around € = 0 is valid only

solution x(€) = (e+1)'/2 but the power series for (e +1)
when —1 < € < 1 because there is a singularity at e = —1.2 Also, in practice, we will
only be able to use finite-order Taylor series approximations, which are just the initial
segments of the full power series. In general, any such Taylor series approximation
will do well for € close to zero, but the quality of the approximation will degrade as
€ moves away from zero.

We assumed H,(z9,0) # 0 in Theorem 6. The division-by-zero trick can be
applied to problems with higher-order degeneracies. If Hye(2.0) = 0 then F,(z0,0) =
0, and we cannot apply the IFT to F in the proof. But if F¢(z0,0) = 0 and F,(z 0) #

0 we can apply the bifurcation theorem to F.

3.2. Bifurcation in R” : The Zero Jacobian Case. The foregoing focussed
on one-dimensional functions h. We can also apply these ideas for functions over

R™. The same trick used in Theorem 6 works for Theorem 7; therefore, its proof is

2The difficulty in this case could be fixed by a nonlinear change of variables. Appropriate and
clever nonlinear change of variables can help with this problem, but we do not pursue that strategy

in this paper.
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omitted.

Theorem 7. (Bifurcation Theorem for R™) Suppose H : R® x R — R™ is analytic
near (x,0), and H(z,0) =0 for all x € R™. Furthermore, suppose that

Hm(l'O,O) - Onxn (3)
H(z9,0) = 0, (4)
det(Hye(20,0)) # 0 (5)

Then there is an open neighborhood N of (x¢,0) and an analytic function h(e) : R —
R” such that h(e) # 0 for € # 0, and H(h(e),e) = 0 for (h(e),e) € N.

Since Theorem 7 shows that A is analytic, it can be approximated by a multivariate

Taylor series. In particular, the first-order derivatives are defined by
1
R (0) = —§H;€1 (0,0) Hee(wo,0) (6)

Theorem 7 assumes H,(xg,0) is a zero matrix. There are generalizations that only
assume that H,(xo,0) is singular. We do not present any extensions here since they
are substantially more complex to present and are not needed below. See Zeidler or

Chow and Hale for more complete treatments of bifurcation problems.

4. PORTFOLIO DEMAND WITH SMALL RISKS
The key assumption we exploit is that risks are small. This is motivated not by any
claim that actual risks are small, but is reasonable for three reasons. First, this as-
sumption allows us to solve the problem without making any parametric assumptions
for either tastes or returns. We derive critical formulas for allocations and welfare
in a parameter-free fashion. The results tell us which moments of asset returns are
important and which properties of the utility function are important for the case of
small risks. Second, the results for small risks may be suggestive of general results.
For example, the asymptotic results could provide counterexamples to conjectures
since the asymptotic results are asymptotically explicit solutions. Furthermore, any
general property of the model will be true for the case of small risks and will be

revealed as general properties of our asymptotic solutions. In this paper, we pursue
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the implications of the small risk assumption, leaving it for later work to see how
robust those results.

Third, the period of time in our model is not meant to be an entire life, but
rather the period of time between trades. Given modern markets and the presence of
many high-volume, low-transaction cost traders, it is reasonable to assume that only
a moderate amount of risk is borne between trading periods. A dynamic model is
necessary to examine the validity of this point, but we believe that our static analysis

will give useful insights and leave dynamic generalizations for future work.

4.1. Demand with Two Assets. We begin by applying the bifurcation approx-
imation methods to asset market demand. Suppose that an investor has W in wealth
to invest in two assets. The safe asset, called a bond, yields one dollar per dollar
invested, and the risky asset, called stocks or equity, yields Z dollars per dollar in-
vested. There is no savings-consumption decision in this model. Therefore, this is
equivalent to making bonds in the second period the numeraire. If an investors has
6 shares of stock, final wealth is Y = (W — 0) + 0Z. We assume that he chooses 6 to
maximize E{u(Y)} for some concave utility function wu(-).

Economists have studied this problem by approximating u with a quadratic func-
tion and then solving the “approximate” quadratic optimization problem. The bifur-
cation approach allows us to examine this procedure rigorously and extend it. We

first create a continuum of portfolio problems by assuming
Z=1+ex+én (7)

where z is a fixed random variable. We assume E {z} = 0 since we want (7) to
decompose Z into its mean, 1 + €27, and its risky component, ez. We also assume
02 = 1; this makes € the standard deviation of Z and €? its variance in the e problem.
Both of these assumptions are just normalizations, implying no loss of generality. At
e = 0, Z is degenerate and equal to 1, the payoff of the bond. The scalar 7 represents
the risk premium. More precisely, o = 1 implies that 7 is the the price of risk, that
is, the risk premium per unit variance. In this demand problem we make the natural
assumption that 7 > 0 but that is not necessary for the analysis.

Equation (7) scales its terms in a manner consistent with economic theory. We

want (7) to represent a continuum of problems connecting a degenerate deterministic
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problem to problems with nontrivial risk. Note that (7) multiplies z by € and 7

by €2. Since the variance of ez is €2

o2, this models the intuition that risk premia
are proportional to the variance. The continuum of problems parameterized in (7)
all have the same price of risk 7. The particular parameterization in (7) may seem
to prejudge the results. That will not be a problem since the application of the
bifurcation theorems will validate the assumptions implicitly made in (7).

The investor chooses 6 to maximize E{u(W + 6(ez + €°m))}. The first-order

condition for the investor’s problem is
eE{u (W + 0(ez + €21)) (z + em)} = 0. (8)

The condition (8) states that the future marginal utility of consumption must be
orthogonal to the excess return of equity. Let p be the probability measure for z and
(a,b) the (possibly infinite) support. The choice of # as a function of € is implicitly
defined by

0= H(B(e), ) = / A (W +8(e)(e + 7)) (2 + em) . )

We want to analyze the solutions of (9) for small e. However, 0 = H(#,0) for all
6, because at € = 0 the assets are perfect substitutes. 0(0) is multivalued since any
choice of 6§ satisfies the first-order condition (9) when ¢ = 0. Furthermore, 0 = H (6, 0)
for all # implies 0 = Hy(0,0) for all 6, violating the nonsingularity condition in the

IFT. Therefore, we cannot use the IFT to compute a Taylor series for 0(€) at € = 0.

The situation is displayed in Figure 1. As e changes, the equilibrium demand for
equity, 6, follows a path like ABC or like DEGF'. Since the asset demand problem is
a concave optimization problem there is a unique path of solutions to the first-order
conditions whenever € # 0. At e = 0, however, the entire e = 0 horizontal axis is also a
solution to the equity demand problem. The path ABC' crosses the 0 axis vertically
and represents a pitchfork bifurcation, whereas the path DEGF crosses the 6 axis

3Pages 518-519 in Judd (1998) show that alternative parameterizations of the form Z = 1+ ez +
e’ for v # 2 lead to singularities which prevent the application of implicit function or bifurcation

theorems.



ASYMPTOTIC METHODS FOR ASSET MARKET EQUILIBRIUM ANALYSIS 15

€ €
/ / A
O E e= O B\ e=
F C

Figure 1: Bifurcation possibilities for asset demand problem

obliquely and represents a transcritical bifurcation. The objective is to first find the
bifurcation point, B or E, where the branch of equity demand solutions crosses the
trivial branch of solutions to the first-order conditions, and then compute a Taylor

series that approximates 6(¢) along the nontrivial branch.

Computing 6,. We proceed intuitively to derive a solution which we validate
with the Bifurcation Theorem. Since we want to solve for 8 as a function of € near 0,
we first need to compute 0y = lim, o 0(€). Implicit differentiation of (9) with respect

to € implies
0= Hy(0(¢c),€)8 () + He(0(¢),¢). (10)
Differentiating H (6, €) with respect to 6 and e implies

H0,¢) — / WY (62 + 20em) (= + ex) + o/ (V) dp

Hy(f,¢) = / u'(Y) (2 + em)?e du

At e =0, Hy(6,0) = 0 for all . The derivative 6'(0) can be well-defined in (10) only
if H.(0, 0) = 0. Therefore, we look for 6, defined by 0 = H.(6y, 0). At e = 0, this
reduces to (using the fact that f: 22 dp =02 =1)0=u" W)y + v (W)r, which

implies

90 = — s (11)
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This is the simple portfolio rule indicating that 6 is the product of risk tolerance and
the risk premium per unit variance. If 6, is well-defined, then this must be its value.

Theorem 8 states the critical result.

Theorem 8. Let (11) define 6y. If H(0,¢€) is analytic at (6y,0), then there is an
analytic function 0(€) that satisfies (9) such that 6(0) = 6y and 6(e) # 0 for € # 0.

Proof. Direct application of the Bifurcation Theorem. W

The assumption in Theorem 8 that H (6, €) is analytic at 0 is not trivially satisfied.
H(0,¢) is an integral and is analytic if u(c) is analytic over the set of ¢ at which u/(c)
is evaluated in the integrand of H(#,€), because the integral of a power series is a
power series. If the support of u is compact and u is analytic at W then H (0, €)
is analytic at (,0) since for small €, u/(c) is evaluated only at values of ¢ close to
W. However, if u has infinite support there may be problems because u'(c) in the
integrand of (9) is evaluated over an infinite range whenever €, # 0. If the radius
of convergence for the power series representation of u'(c) based at W is finite, then
it will not be valid at some points in the support of u, rendering the power series
approach invalid. This will be the case, for example, if u(c) = logc and p is the
measure for a log Normal random variable. The radius of convergence of power series
approximations of u(c) at ¢ = W is a critical element, as well as the analyticity of
the density function of . The next corollary presents a sufficient condition for using

the bifurcation approach on an open neighborhood N.

Corollary 9. Define 0 as in (11). If u(c) is analytic at ¢ = W and the support of
p is compact, then there is a function 0(e) analytic and satisfies (9) on (—eo, €) for
some €, > 0 with 6(0) = 6y and 0(e) # 0 for € # 0 in (—€p, €0).

In all formulas below, we will assume that the critical functions are locally analytic.

Computing 6'(0). Equation (11) is not an approximation to the portfolio choice
at any particular variance. Instead, 6, is the limiting portfolio share as the variance

vanishes. We generally need to compute several terms of the Taylor series expansion
for 0(e)

w

0(e) = 90+9/(0)6+0u(0)§ +0’”(0)% + (12)
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In particular, the linear approximation is
0(e) = 6(0) + € 6'(0). (13)

To calculate 6 (0), differentiate (10) with respect to € to find 0 = Hgg 00’ + 2Hy 0’ +
Hof"+ Hee. At (69,0), Hee = u” (W)05 E{2°}, Hop = 0, and Hy. = u’(W). Therefore,
1 1" (W)

0'(0) = -3 o Hee = —ng{z?’} 02 (14)

Again, we can use Corollary 9 to establish the existence of the derivatives of H for
some random variables.

Equation (14) tells us how the share of wealth invested in equity changes as the
riskiness increases. It highlights the importance of the third derivative of utility and
the skewness of returns. If the distribution of Z is symmetric, then F{z*} = 0, and
the constant 0, is the linear approximation of f(¢) at ¢ = 0. This is also true if
u” (W) = 0, such as in the quadratic utility case. The case of §'(0) = 0 corresponds
to a pitchfork bifurcation point like B in Figure 1. However, if the utility function is
not quadratic and the risky return is not symmetrically distributed, then 6'(0) # 0,
and the linear approximation is a nontrivial function of utility curvature and higher
moments of the distribution. This indicates that the bifurcation point is transcritical
like E in Figure 1.

Dividing both sides of (14) by 6, implies

0'0) _
0o

u(R) u"(R)
u'(R) v'(R)

7 B{z*} (15)

N =

Equation (15) expresses the relative change in equity demand as € increases in terms of
skewness, E{z*}, the risk premium, 7, and utility derivatives. Our formulas would be
unintuitive and cumbersome if we expressed them in terms of u(c) and its derivatives.

Fortunately, there are some useful utility parameters we can use. Define the functions

U’(C)

\]
—~
2}
~
Il

o)
—
o
~
Il
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The function 7(c) is the conventional risk tolerance. The bifurcation point 6, equals
7(W) =, the product of risk tolerance at the deterministic consumption, 7(W), and
the price of risk, .
The definition of p(c) implies that (15) can be expressed as
0'(0)

i p(W) m E{"} (16)

This motivates our definition of skew tolerance.*

Definition 10. Skew tolerance at c is

Skew tolerance has ambiguous sign since the sign of «” is ambiguous. If there is

" >0, an

more upside potential than downside risk, then skewness is positive. If u
increase in skewness will cause asset demand to increase as riskiness increases. We
suspect that investors prefer positively skewed returns, holding mean and variance
constant. For example, v/ > 0 for the CRRA and CARA families of utility functions.
We never assume this, but this case provides us with some intuition for the results.
There are many ways to manipulate the expression in (14). We chose our definition
of skew tolerance because of the expression in (16) and the intuitive role it plays in
critical expressions below.

The linear approximation (13) may not be sufficient. To compute 6”(0), differen-

tiate (10) with respect to € at € = 0 to find
3Hyel"(0) = —(3Hpeet (0) 4 3Hppe(0'(0)) + Heee) (17)

Equation (17) is linear in #”(0). Since Hy. # 0 at (6y,0), 8”(0) exists and is uniquely
defined by (17). To express §”(0), we define kurtosis tolerance.

Definition 11. Kurtosis tolerance at c is

() = _lu""(c) u'(c) u'(c)
(€) 3 u"(c) u”(c) u"(c)

4Skew tolerance is obviously related to prudence, as defined in Kimball (1990), but we do not

pursue those connections here.
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Solving (17) at € = 0 shows that

9//(0)
0o

= 7 ((6p(W) — 2) + 4p(W)*E{z*}* + k(W) E{2"}) (18)

Equation (18) says that the impact of kurtosis on equity demand is proportional to
the square of the price of risk and the kurtosis tolerance.

We could continue this indefinitely if u is locally analytic, an assumption satisfied
by standard utility functions. Of course, the terms become increasingly complex.
We end here since it illustrates the main ideas and these results are the only ones
needed for the applications below. The general procedure is clear. Computing the
higher-order terms is straightforward since any particular derivative is the solution

to linear equations similar to (17) once we have computed lower-order derivatives.

Samuelson’s Method. Samuelson [22] also examined the problem of asset de-
mand with small risks. We now illustrate the relationships between our bifurcation
approach and Samuelson’s method. Samuelson’s method replaced u(Y') with a poly-
nomial approximation based at the deterministic consumption, as in

u(W + 0(ez + é2n)) = w(W) + ez (W)

62

+ (2070 (W) + 6%2%u" (W)
3
+5 (62m20°u" (W) + 6° 2" (W) + ...

m

When we use the quadratic approximation in the first-order condition (8) we arrive
at the equation 0 = (mu/ (W) + 6u”(W)) €2 + O(e?), which, to O(e), implies 6(e) =
— (' (W) /u"(W))7, our bifurcation point.

However, the Samuelson method differs from ours for higher-order approxima-
tions. Samuelson’s second-order approximation is computed by using the third-order

approximation of u(Y') in the first-order condition (8), implying
1
0= (7 (W) + 0u" (W)) € + 63592E{23}u”’(W) (19)

which is a quadratic equation with solution

9(6) . _u//(W) + \/“"(g?;};i%f/{;g}E“III(W)“'(W) (20)
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One could arrive at our first-order derivative in equation (14) by differentiating (20)
with respect to € at ¢ = 0. The two methods are consistent and of similar complexity
for the first-order approximation in a two-asset problem. However, the asymptotic
approach we pursue here becomes relatively more efficient as we move to higher-order
approximations and to more assets. Samuelson’s approach generally requires solving
nonlinear equations, as was the case in equation (19). The equations become more
difficult to solve, and are impossible to solve exactly beyond the fourth order since
there is no closed-form solution for polynomials of degree five and higher. Our bifur-
cation method uses linear operations to compute asymptotically valid approximations
of the function 0(e). Therefore, we can easily derive each term and go to an arbitrary
order as long as the necessary moments and derivatives exist.

The main reason for pursuing the asymptotic approach is its ability to derive
economically interesting results. Equation (20) shows that linear-quadratic approx-
imations would not be as good as higher-order approximations since equation (20)
involves the skewness of Z and the third derivative of utility. However, Samuelson
conjectured that LQ approximations are probably adequate in actual economic prob-
lems. This paper gives examples where the linear-quadratic approximation would
be unreliable, and higher-order approximations are necessary to answer critical ques-

tions.

4.2. Demand with Three Assets. We applied the R! version of the Bifurcation
Theorem to the two-asset case. We next analyze the three-asset case to show the
generality of the method and illustrate the key multivariate details. Consider again
our investor model but with three assets. The bond yields one dollar per dollar
invested and risky asset ¢ yields Z; dollars per dollar invested, for i = 1,2. Let
; denote the proportion of wealth invested in risky asset i. Final wealth is ¥ =
(W — 61 — 02)+ 0171 + 057, The investor chooses 6; to maximize E{u(Y)}. To
apply the Bifurcation Theorem, we assume that Z; = 1 + ez; + €2m;. Without loss
of generality, we assume that £ {z;} = 0. Let 07 = E {z?} be the variance of risky
asset ¢’s return and o019 = F {2122} the covariance. We assume that the assets are
not perfectly correlated; hence, o705 # (O-ij)Q )

The first-order condition for risky asset ¢ is eE {u'(Y)(em + zl)} = 0. The as-
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set demand functions 0;(¢) are defined implicitly by H(6;,60s,¢) : R® — R? where
H(61,62,¢) = E{u (Y)(em; + z)}, i = 1,2. To invoke Theorem 7, we first note that
Hy(01,02,0) = 0252 for all (61,05). We compute a candidate bifurcation point by

solving H.(61,0>,0) = 0. Direct computation shows

T

T2 92

H(61,05,0) = u (W) [

+u (WS [ o ]

where ¥ is the variance-covariance matrix of the risky returns (z, z5). The solution

of the bifurcation equation H,(61,6,0) =0 is

01(0) _ u' (W) w1 | M

64(0) u" (W) o
We need to verify the nonsingularity of Hp. at (61(0),62(0),0). Direct computation
shows that Hy.(6,(0),02(0),0) = u" (W)X for all 6;,6,. The determinant of Hy, at

(01(0),65(0),0) is u" (W)(0203 — (012)?), which is nonzero as long as assets 1 and 2

are not perfectly correlated.

These calculations show that all the conditions in Theorem 7 hold for our model.
Hence, the bifurcation theorem for R? ensures the existence of analytic functions 6 (¢)
and 0 (e) which satisfy H(0:(¢€),02(¢),e) = 0 in some neighborhood of ¢ = 0. This
procedure can be applied for an arbitrary number of assets. We can also produce
higher-order expansions as long as the necessary moments and derivatives exist. We

next use these ideas to compute asset market equilibrium.

5. ASSET MARKET EQUILIBRIUM WITH ONE RISKY ASSET

We now take our portfolio choice analysis and turn it into an equilibrium analysis®.
We assume a two-period model, period 0 and period 1, with no consumption in period
0. Agents trade assets in period 0 and consume the asset payoffs in period 1. One
bond yields 1 unit of consumption in period 1; the bond serves as our numeraire in

period 0. Each share of equity has price p in period 0 and has a random period 1 value

5Chiappori et al. (1992) used similar methods to prove the existence of sunspot equilibria near
deterministic steady states in overlapping generations models. We go through the details of our

application since they are substantially different than the application in Chiappori et al.
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of 1+ €z units of consumption where z is a random variable with finite moments. We
assume E{z} = 0 and E{z*} = 1. For each value of ¢ we have an asset market with
two assets; we call that economy the e-economy.

We assume two types of traders. Type ¢ traders have initial endowments of Bf
units of the bond and 6 shares of equity. The utility of a type i trader is wu; (Y;),
a concave function, where Y; is the final wealth and consumption of type ¢ traders.
The supply of equity is fixed at the endowment 6] + 05. Without loss of generality,
we assume 07 + 65 = 1; this implies that z denotes aggregate risk in the aggregate
endowment. Let #; be the shares of equity and B; the value of bonds held by trader
i after trading in period 0. The final wealth for trader i is Y; = 6;(1 + €z) + B;.
Each trader of type i chooses 6; to maximize his expected utility E{u;(Y;)}, subject
to the budget constraint B; + 0;p = B + 6;p. His first-order condition for 6; is
E{u;(Y;)(1 + ez — p)} = 0. Market clearing implies 6, + 6y = 65 + 65 = 1. Define
6 = 01; then §; = 1 — 6. For each e-economy, we want to find the equilibrium values
of 6 and p; let 0(¢) and p(e) be the equilibrium values of 6 and p in the e-economy.

The equilibrium values of 6(¢) and p(e) must satisfy the equilibrium pair of equations
H'(0(€), p(e), €) = B{u;(Y;)(1 + ez = p(e))} = 0, i = 1,2 (21)

which are implied by the agents’ first-order conditions.

Equation (21) implicitly defines (6 (¢) ,p (¢)). However, the IFT cannot be applied
to analyze (21) around ¢ = 0. Since the assets are perfect substitutes at € = 0, they
must trade at the same price; hence, p(0) = 1. However, 0(0) is indeterminate because
H(6,p,0) = 0, for all #. The indeterminacy of ¢ implies that Hy(6,1,0) = 0, ruling
out application of the IFT.

We want to apply the Bifurcation Theorem, but we cannot apply it to H(6, p,0)
because Hy(#,1,0) # 0. Intuitively, the Bifurcation Theorem presented above requires
that both € and p are indeterminate at ¢ = 0. Moreover, we know p'(0) if it exists.

Implicit differentiation of H(0(¢€), p(€), €) with respect to e implies
Hy(0,p,€)6 (€) + Hy(0,p. €)p (€) + Hi(0,p, ) = 0.

For each i, Hj (6, p(0),0) = 0 for all # since p(0) = 1. Therefore, if p(¢) is differentiable
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at e =0, then
0 = Hy(6,p,0)0 (0) + H:(6,p,0) = (E{z} —p'(0)) ui(c)

for i = 1,2, where ¢; = B¢ 4 6¢ is consumption in the no-risk case. Since u;(c;) is
never zero, p (0) = E{z} = 0 must hold if #(¢) and p(e) are differentiable at ¢ = 0.
Therefore, we have indeterminacy of #(0) but there is only a single possible value
for both p(0) and p'(0). This prevents us from using Theorem 7 directly since the
Jacobian matrix H (i9,p) is not a zero matrix.

This problem is solved by reformulating the problem in terms of the price of risk,
not the price of the equity. More precisely, we assume the equity price parameteriza-
tion

pe) =1 — é*m(e) (22)
where 7(€) is the risk premium in the e-economy. Since o2 = 1, €? is the variance of
risk and 7 (¢) is the risk premium per unit variance. Since we expect the risk premium
to depress the price of equity, we use the form in (22).

We have assumed the parameterization in (22) but we have not proved anything
yet. We now need to show that this parameterization is consistent with Theorem 7.

To check the sufficient conditions in Theorem 7, we reformulate equilibrium as the

system of equations

7

0=H(O,me =E {ui(Y;-) (z— ew)} ~ 0. (23)

where H'(0,7,¢) = e 'H(0,1 — €*m,¢€), i = 1,2. Tt is clear that (6, ¢€) satisfy (23)
if and only if they also satisfy (21).

The parameterization in (22) and the equilibrium characterization in (23) now
allow us to apply the Bifurcation Theorem. The functions H*(, 7, €) have the de-
generacy assumed in Theorem 7 since Hj(0,m,0) = H.(0,m €) = 0 for all (6,7).
Intuitively, at ¢ = 0, any portfolio satisfies the first-order conditions since all assets
are perfect substititutes and any price of risk, m, is consistent with equilibrium since

the total amount of risk is zero. The Jacobian matrix

H(@,ﬂ'),e

_ | Mal6(0),7(0),0) H;w(om(o»())]: [u —u;]
H36(9<0);7T(0),0) Hie(g(())?ﬂ-(())?()) " /
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has determinant ] u, +uju, < 0. Therefore, all the sufficient conditions of Theorem 7
hold, and the Bifurcation Theorem provides a local proof of existence and uniqueness

of solutions (6(e), 7(€)) to (23). Theorem 12 summarizes the result.

Theorem 12. If u;(c) is locally analytic for ¢ near B + 07, i = 1,2, and H(0,7,¢€)
is locally analytic near a solution (0y,m) to H(0,7,0) = 0, then there is some

€0 > 0 such that for all € € (—¢g, €g) there is a unique analytic equilibrium selection
(O(e), m(€)) such that H(0(e), m(e),e) = 0.

The basic approach to using the Bifurcation Theorem is to guess some parameteri-
zation for the unknown functions and then use the Bifurcation Theorem to check that
it is correct and can produce a locally analytic approximation. Some of the choices
we made, particularly the construction of (22) and (23), may appear arbitrary, but
their use is validated by the Bifurcation Theorem. Our formulation is economically
intuitive. For example, (22) just says that risk premia are proportional to variance.
Therefore, application of these ideas to more complex problems is not difficult as
long as we remember the intuition behind our construction. There are more complex
versions of the Bifurcation theorem which would lead more directly to (22) and (23);
see Zeidler [26]. We prefer the approach used here since it is straightforward once

one uses economic intuition to arrive at (22) and (23).

Figure 2 displays the geometry of the bifurcation in (23). When e = 0, the entire

6 — 7 plane constitutes an equilibrium. However, for nonzero € we have a locally

unique equilibrium. In Figure 2 the curve ABC represents the equilibrium manifold.

We can now proceed to compute asymptotic expressions for (6(e),m(€)). Di-

rect computation shows that the bifurcation point (6y, m) for (23) is defined by
H(0y, o, €) = 0, i = 1,2, and satisfies the linear equations:

—u (c1)mo + 1y (c1)8g = 0 (24)

"

Uy(ea)mo + un(e2)fo = uy(ca)

where ¢; = Bf + 6. The linear equations in (24) imply the unique candidate bifurca-
tion point
T1 1

, TTop =
7'1+T2 T1—|—7'2

0o = (25)
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Figure 2: Bifurcation of Equilibrium Correspondance

where 7; is evaluated at ¢; = Bf + 6, consumption in the deterministic limit. These
formulas for #y and 7y are intuitive; the 7; terms are the individual risk tolerances
at € = 0, and the denominator is their sum, which is the social risk tolerance. The
results are both very intuitive. The equilibrium risk premium is the inverse of total
risk tolerance. Also, the fraction of equity held by investor 1 equals his contribution
to social risk tolerance. These solutions resemble the intuitive results from mean-
variance models.

The solution in (25) just tells us what the limit portfolio is as variance goes to
zero. We want to know what the equilibrium portfolio is for nonzero variance. This
requires computing the derivatives 6 (0) and 7' (0). Further implicit differentiations
of H' yield (6'(0), 7' (0)) and any other higher-order derivative.

Theorem 13. The first-order derivatives of the equilibrium correspondence (0(¢), m(e))

at e =0 are

9/0 — 71 T2 pl_pQE 3 26
<) T1+ToT1+T2T1+ T2 {Z} ( )

m(0) = —( T pz>(E{ZS}2 (27)

T1+ To T1+ T2 T1—|—7'2)

Therefore, type 1 investors increase their holdings of equity as € increases if (p, —

ps)E{z*} > 0, and the risk premium per unit variance decreases as € increases if
E{z*} > 0.
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Proof. Apply (6). ®

Theorem 13 gives us our first-order approximation to 6(e) = 6y + €0’'(0). We need
to be clear what this tells us. For example, if §'(0) > 0 then we know that for all € > 0
sufficiently close to 0, 0(€) exceeds 6y, and that 6(e) grows at rate 6'(0). We know
this because 6(¢) is locally analytic, implying that our Taylor series approximations
are valid for e sufficiently close to € = 0. This could be reversed for large ¢ with 6(e)
less than 6y. But, for sufficiently small €, equations (26) and (27) tell us precisely
how 6(¢) and 7 (¢) behave.

Theorem 13 is economically intuitive. Equation (26) shows that the equity hold-
ings of a type 1 investor are greater than 6, if € is small and positive, if skewness,
E {23}, is positive, and if his skew tolerance exceeds the skew tolerance of type 2
investors, where we evaluate skew tolerance at the e = 0 allocations. Equation (27)
shows that the risk premium will decrease as € increases (and the price of equity
relative to bonds will increase) if skewness is positive. The magnitude of the change
depends on a weighted sum of the skew tolerances, where the weights are the limit
portfolio holdings. Notice that we get these results for any utility function, not just
for CRRA utility functions or other families that have u”” > 0. The results in The-
orem 13 resemble the style of analysis in Jones [12]. Jones examines the impact of
changes in endowments on equilibrium, whereas we are examining the change in asset
market equilibrium as we move away from the deterministic case. The problems are
economically different but the mathematical idea is the same: use implicit function
theorems or their generalizations to analyze the impact of small changes in parameters
on equilibrium.

The derivatives 6 (0) or 7' (0) could be zero. This does not mean that 6(e) or (e)
is constant for small e. It just means that the local behavior is governed by higher-
order terms in the expansion. For example, if £ {23} = 0, then 6 (0) = 7'(0) = 0
and the local behavior of §(0) and 7(0) is governed by 6”(0) and 7”(0), which depend
on the kurtosis F {z*} and fourth-order properties of u(c). We do not pursue these

higher-order issues in this paper since Theorem 13 is adequate for the analysis below.
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6. ASSET MARKET EQUILIBRIUM WITH A DERIVATIVE ASSET

The previous section examined a market with only a bond and a stock. In this
section, we compare markets with different asset spans. In particular, we introduce a
new derivative asset into the market and compute asymptotically valid expressions for
equilibrium. The results allow us to single out important factors for these expressions.

We assume that the derivative pays ey and has price ¢(¢) in the e-economy. We
also assume that y = f(z), which makes y a derivative security, such as an option. We
force the payoff of the derivative to be zero when e = 0; hence, ¢(0) = 0. This implies
no loss of generality since any portion of the asset’s return which is deterministic
given € will be equivalent to the bond, adding nothing to the asset span. We assume
that the net supply of the derivative is zero since we want to model the introduction
of a derivative security. For instance, y = max|[0, (2 — S)] represents a call option, and
ey is the call option max|[0, ez — €S| with strike price €S. This may initially seem odd,
but it is a standard option if € = 1. Also, if F'(z) is the cdf of z then the probability
of exercise, F'(S), is unaffected by e.

We decompose y into components that are spanned by the stock and bond, and

a component orthogonal to the stock and bond. We assume
y=y+az+v (28)

where 7 is the mean of y, « is the covariance with z, the risky component of equity, and
a nonzero random variable v, the innovation in y. Therefore, 0 = E{v} = E{zv}.
This formulation implicitly assumes that markets are initially incomplete since we
assume that v is not spanned by 1 and z. For example, if z is a random variable with
only two possible values, then the stock and bond span the market and there is no
y = f(z) such that v in (28) is not identically equal to zero®.

We compute the equilibrium holdings and prices of both assets. Let 6; and B;
be the equity and bond holdings, and let ¢, be the units of y held by trader ¢ after
trading. The final wealth for trader i is Y; = 0,(1 + €z) + B; + ¢,ey, and his budget

constraint is 0,p + B; + ¢,q = B + 0;p. When we use the budget constraint to

%We could add securities which generate random shocks, such as pure gambling. Since investors
are risk averse, there is no demand for such assets. Therefore, we ignore assets with pure noise

payofts.
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eliminate B;, the first-order conditions for §; and ¢, are

E{u;(Y)) (1 + ez —ple))} = 0,i=1,2 (29)

E{u;(Y))(ey — g(e)} = 0,i=1,2

Equilibrium is defined by combining the first-order conditions of type 1 and type 2
agents with the market clearing conditions; we shall compute the equilibrium values
for 0;, ¢;, p, and q as functions of € in some neighborhood of ¢ = 0. Let € and ¢
denote #; and ¢,; hence 6 =1 — 0 and ¢, = —¢. Similar to the analysis of previous
section, 6(0) and ¢(0) are indeterminate but p(0) = 1 and ¢(0) = 0.

We need to determine an appropriate parameterization for this problem, just as
we did in the case of equilibrium with one asset. We implicitly differentiate the four
first-order conditions in (29) with respect to €, and find that differentiability of ¢ and
p at € = 0 requires [E {y} —¢'(0)]u;((Bf +65)) = 0 and [E {z} —p'(0)]u; ((Bf +65)) = 0.
Therefore, if ¢ and 7 are well behaved, ¢’(0) =7 and p'(0) = E {z} = 0. We want to
solve for 0, ¢, p,and q as functions of ¢, at least in some neighborhood of € = 0, and
we need p(0) =1, p’(0) = E{z} =0 and ¢(0) = 0, ¢'(0) = 7. We choose the following

parameterization:
p(e) =1 —€m(e), q(e) = g — (e (30)

We next check if the parameterization in (30) is consistent with Theorem 7. The

bifurcation point (¢, o, 7o, 1) is computed by solving the system of linear equations

™ 022/ uyoy. 0 — ?o 0

U oy, uyo?  —uy 0 6o | |0
UyTy, U 02 Uy O T || uyo?
Uy0 32/ Uy 0y 0 Uy Yo Uy yz

which has the unique solution

T 1 Oy
00: 7¢0:O7 Ty = » Yo = .
T1+ T2 T1+ To T1+ T2

The existence of solutions for ¢(¢€), 0(¢), m(¢), and 1)(e) near the bifurcation point is

(31)

established by applying Theorem 7 at the candidate bifurcation point (31). Further-
more, the first-order derivatives (6'(0), ¢'(0), 7'(0), ¢'(0)), the second-order deriva-

1 "

tives (6 (0), ¢”((0), 7" (0), ¢ (0)), and other derivatives can be obtained by solving
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linear systems of equations as long as the utility function u is analytic at the deter-
ministic consumption. Since the solutions are cumbersome, we omit them except for
the first-order derivatives.

The results follow standard intuition. The equilibrium price of the derivative

security is asymptotically equal to
ale) = eE{y} — =2 1 O(e), (32)
1

which tells us that the derivative y carries a positive risk premium (modelled here as a
discount in the price) only if o,, > 0, that is, y is positively correlated with aggregate
risk z. The limit price and holdings of equity are unaffected by the presence of the
derivative, and trading volume for the derivative is zero in the limit.

We see again that a key step is finding an appropriate parameterization of asset
prices. There is no precise, generally applicable formula describing how we arrived
at the parameterization in (30) which allowed us to apply the Bifurcation Theorem,
but the steps we have followed in the one- and two-asset problems are clear. We first
compute derivatives of the equilibrium equations and examine them to see if some
terms in the Taylor series of the unknown functions are fixed. For example, we found
that ¢'(0) = 7 and p'(0) = 0 must be true if there is to be a coherent Taylor expansion.
If conventional IF'T methods indicate the value of low-order terms in an expansion,
we then focus on the next higher-order term. Since ¢'(0) =7 and p/(0) = 0, we then
examined the parameterization in (30) where 7(e) and 1(e) became the unknown
terms which could not be determined by applying the logic of the conventional TFT.
We continued this for each unknown function until we reach a point where the terms
in its expansion could not be fixed by the IFT. At that point we can apply the

Bifurcation Theorem.

6.1. Trading Patterns for the Derivative Asset. We next determine the trad-
ing patterns of y. Since ¢(0) = 0, the value of ¢'(0) determines the trading patterns

for nonzero €. Direct computation produces Theorem 14.

Theorem 14. Type 1 investors buy the derivativey if and only if (p; — py) Cov(v, 2%) >
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0. In general,
7172 (p1 — py) Cov(v, 2%)
¢'(0) = 33
e L ) =
Recall that ¢'(0) > 0 means that trader 1 buys and trader 2 sells the derivative

asset y. If type 1 investors have more skew tolerance and y provides the market with

a new risk that is positively correlated with the tails of equity returns, then type 1
investors buy y and type 2 investors sell it. If Cov(v, 22) > 0, the new asset y adds a
type of riskiness that appeals to individuals with relatively high skew tolerance, and
type 1(2) agents will buy y if p; > py (p; < py)-

If Cov(v,2%) = 0 then we would need to examine ¢”(0) to determine who buys
the derivative. We do not pursue that here since no financial institution has an
interest in introducing a derivative with no first-order volume. We continue to focus

on derivatives where Cov(v, 2%) # 0.

6.2. Change in Equity Holdings. The derivative asset y may change investors’
holdings of equity. Let 6°(¢) and 6°(e) denote the equilibrium holding of equity by
type 1 investors without and with the derivative security.” At e = 0, 8°(¢) and 6%(¢)
will be the same since all assets will be equivalent. To compare the equilibria across
these market structures, we compute the series expansion of both Qb(e) and 0“(¢), and
then use the difference in their series expansions to express the difference between the
two market equilibria. We can do this for any index of market equilibrium. Direct

computation shows Theorem 15.
Theorem 15. Let 6°(¢) (6%(¢)) denote the equilibrium equity demand of type 1 in-
vestors without (with) the derivative y. Then

_TiT2 (p1 = p) o Cov(v, 2%)
rim) OB

If v and z are uncorrelated, (34) reduces to zero, implying that the introduction

0%(c) — 0"(c) = €+ O(e”) (34)

of y has only O(€?) effects on the demand for the equity. If « = Cov(v, z) > 0 then
the change in type 1 investors’ holding of equity is negatively related to their demand
for y since (33) and (34) imply that 8%(e) — 62(¢) = — a ¢'(0) + O(€?).

"Loosely speaking, 6° is equilibrium equity holding “before” introduction of y and #® is holding

“after” introduction.
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6.3. Price Effects of the Derivative Asset. Our computations show that the
equilibrium price for equity remains unchanged up to O(e?) in its Taylor expansion.
The fourth-order term reveals the dominant effect of the derivative y on the price of

equity.

Theorem 16. Let P%(¢) (P%(¢)) denote the equilibrium price of equity with (with-

out) the derivative y. The price difference is

2 272
TIT — E{vz
Pi(e) — Pe) = 2T i Z e B a0y
(71 +72) E{v*}
In particular, the equity rises in value and rises more as the derivative is more cor-
related to the tails of equity returns, and as investors differ more in their skewness

tolerance.

Theorem 16 shows the elements that affect the impact of the derivative on stock
price. The price change is always positive, but depends on third-order properties of
the utility function. The derivative asset y complements equity and allows investors
to allocate tail risk independent of other risks. This makes equity more attractive.

Also, the magnitude is proportional to the covariance of the derivative’s innovation
v with the extremes of equity returns. If v is uncorrelated with those extremes then
there is no price change to the order e*. There may be a price effect but it would be

an order of magnitude smaller asymptotically.

6.4. Welfare Effects of the Derivative Asset. We next derive the effect of
a derivative on the welfare of each trader. Theory tells us that in one-good models
such as ours, individual investors may gain or lose utility from adding an asset, but
someone must gain. Our solutions will add some precision to those statements.
With the derivatives computed by the bifurcation method, we can study the wel-
fare effect of the derivative y. Precisely, we shall expand the utility functions in
terms of € and examine the dominated term. Let U’(e) and U2(e) denote trader
1’s optimal utility levels without and with y. The utility effect can be expressed by
[Us(€) — UP(€)]) /uy(BE + 65), a measure of the welfare change in terms of a consump-
tion equivalent. The following theorem summarizes the result of our perturbation

analysis.
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Theorem 17. Let Uf(e) and Uf(¢) denote the equilibrium expected utility of type

1 investors with and without the derivative y. Then

Ui(e) — Ut) _ 7i73(p = p)’ (4 <0_‘i B 0_) . ;) B2y 4L o)

) 2(11 +73)° T To ) E{v?}

The second trader’s welfare change is symmetrically expressed.

Again, the result corresponds to basic theory. The key term is 4 (65/71 — 05/72) +
71", which may be positive or negative. The term 65/7, — 65/ is proportional to
the amount of equity type one investors sell to type two investors in the limit as e
goes to zero. If there is no equity trade asymptotically then the dominant impact on
utility is the improved opportunity for risk-sharing provided by the introduction of
y. The risk-sharing gain is proportional to 7!, which is absolute risk aversion, for
type @ investors. If 0/ — 05/79 # 0, the investor type that sells shares also gains
from the equity price increase caused by the introduction of the derivative asset. So,
one type gains from the price increase and the other loses, but both gain from new
risk-sharing opportunities. One of the investors may lose, but not both.

The results in Theorems 14, 15, 16, and 17 demonstrate the importance of higher-
order expansions. Linear-quadratic expansions would completely miss all of the effects
studied in these theorems since p = 0 for linear-quadratic utility functions. Approx-
imation methods that only use the first two derivatives of utility functions would
incorrectly predict that adding y would have no effect on equilibrium. The advan-
tage of the approach used here is that one need not make a choice about how many
derivatives to use since that decision is automatically made by the power series gen-
erated by the bifurcation (and the IFT) approach. The mechanical computation of
the power series expansions of equilibrium prices and quantities tells us which power
of € contains the asymptotically dominant effects, and which derivatives of utility and

which moments of returns should be used.

7. COMPUTATIONAL CONSIDERATIONS
The analysis above focused on applying the bifurcation method to a simple asset
market model. The results were obtained only after much computational effort. The-

orem 17 is a good example of why the computer is necessary. Since the effect of the
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2 and €3, we had to compute the

derivative asset y on utility was zero at orders ¢
fourth-order Taylor series expansion of utility. Also, equilibrium utility is a function
of all four variables determined in equilibrium, the two premia and the two portfolio
variables. These four equilibrium variables are locally analytic functions of €. There-
fore, Theorem 17 required a fourth-order expansion of a four-dimensional function
where each argument is a fourth-order Taylor series in €. This resulted in thousands
of intermediate terms. The final result in Theorem 17 is compact since almost all of
the intermediate terms disappear when they are evaluated at ¢ = 0. However, the
intermediate terms must be kept until that last step. The computations in this paper
took only a few minutes using Mathematica on a 400 MHz machine, but would be
impossible for us to do without a computer.

This paper used the computer to derive algebraic formulas and theoretical asymp-
totic results. The computational burden was particularly heavy since we were inter-
ested in general formulas expressing the results in terms of elasticities, shares, and
prices. The computational costs will rise rapidly as we move to larger problems with
more types of investors and/or more assets. However, as we gained experience with
the simple model we discovered patterns which we can incorporate into the code to
substantially improve performance and make possible examination of more complex
models. For example, the definitions of risk tolerance and skew tolerance, and the
decomposition in (28) substantially reduced the complexity and length of the formu-
las. With Mathematica and these simplifications, we can now handle larger problems,
such as problems with four investor types and four assets.

The Taylor series expansions for equilibrium price correspondences p(e) and port-
folio allocations 6(e) could also be used to arrive at numerical approximations for
specific utility functions and asset return distributions. The bifurcation method then
reduces to computing the numerical values of all derivatives of the equations defining
equilibrium up to the fourth order at ¢ = 0, and then executing numerical linear
operations instead of symbolic operations. Since numerical operations are faster and
more compact than symbolic operations, computing expansions for specific examples
would be far faster. The computer could handle much larger problems if we specify
all utility functions and returns.

We would like to know how well these formulas do for nontrivial €. In general, a



ASYMPTOTIC METHODS FOR ASSET MARKET EQUILIBRIUM ANALYSIS 34

power series constructed by the IFT for analytic functions will have a positive radius
of convergence, but we know nothing about its magnitude in general. However,
there is a simple diagnostic which can help. Suppose that h(z) is implicitly defined
by H(xz,h(z)) = 0 and that we construct the degree k Taylor series approximation
h*(z) based at x = zy. If h*(x) is a good approximation to h(z) then H(x,h*(x))
should be nearly zero. Once we have computed h*(x), we can evaluate its quality
by computing H(z,h*(x)) for various values of x. The behavior of H(z,h*(x)) as
x moves away from xzy will indicate where the approximation can be trusted. Judd
and Guu [14] applied this approach to similar approximations of stochastic growth
models. We have constructed examples of the asset models studied in this paper
for which our Taylor series approximations for p(e) and 6(e) imply very small Euler
equation errors. Roughly, we found that the method does well if the disturbance z
has compact support, but does poorly if z is log Normal, a finding consistent with
the fact that making z a log Normal random variable makes it unlikely that H (6, €)
is analytic.

More generally, we could compare the results of our approach for large ¢ with
the numerical approach in Schmedders [23]. If our formulas work, then they would
produce results faster than Schmedders [23], but our formulas will not work for the
large € cases where Schmedders’ algorith would work. There could be a partnership
between the two approaches with our Taylor-style expansions used to produce an
initial guess for Schmedders’ algorithm. Further discussion and serious examination
of these numerical issues must be left for another paper.

We used Mathematica to compute our results. Space limitations prevent us from
presenting and explaining the code here. The reader can obtain the code by sending e-
mail to judd@hoover.stanford.edu, or by going to the webpage http://bucky.stanford.edu/

or the Fconomic Theory webpage for this paper.

8. GENERALIZATIONS
This paper has examined a few simple problems, but we believe that the same tools
can be used to examine a large class of models. We briefly discuss those claims here.
This paper assumed a single good, two types of agents, and only one source of

risk. Space limitations prevent us from presenting an analysis for more general cases,
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but we can outline the general approach. Adding more types of agents and more
assets but staying with one good is a direct generalization of the methods above. The
equilibrium in our examples were expressed as first-order conditions for each agent
with respect to each asset. Adding agents and assets just implies a longer list of first-
order conditions but the key elements are unchanged: the deterministic consumption
levels are fixed at the endowment, the price of risk, w, and portfolio allocations, 6,
are indeterminate in the deterministic model, and we can parameterize ¢ so that the
Bifurcation theorem applies to a system of equations H(7,#,¢) = 0 which include
individual first-order conditions and market-clearing conditions.

The generalization to several goods is more complex. Let p be the price vector
for goods, 7 the vector of prices of risk for the assets, and 6 the allocation of assets
across agents. In GEI models with several goods, equilibrium can be expressed as the
solution to a system of equations H(p, 7, 6,€¢) = 0 where the components of H are
the agents’ first-order conditions over asset and consumption choices plus feasibility
conditions. The excess demand for assets may not exist at some prices because of
arbitrage; therefore, H may not be continuous. However, theory tells us that equi-
librium will generically exist. If we let € parameterize uncertainty then a system
H(p,m,0,¢) = 0 would represent equilibrium in the e-economy and implicitly define
equilibrium maps p(e), m(e), and 6(e). At e = 0, the economy reduces to a deter-
ministic Arrow-Debreu general equilibrium. There will be trade in the goods in the
deterministic limit economy, and goods’ prices p(0) will be determined by equilibrium
conditions. Asset prices in the deterministic limit, ¢(0), will also be determined by
p(0). The goods prices and asset prices would generically be locally determinate by
the standard general equilibrium theory. However, the portfolio decisions #(0) will
be indeterminate in the ¢ = 0 economy since all assets would be perfect substitutes.
If asset prices in general can be represented as ¢ = qo — €7 (€), just as in equation
(22) for the two-asset case, then the limit prices for risk, 7(0), measured in terms of
excess return per unit variance, will be indeterminate since the level of risk is zero.

The geometrical structure of the GEI problem is illustrated in Figure 3. Let the
axis labeled A denote the price simplex for goods, and the axis labeled (7, #) represent
the prices of risk and portfolio allocations of the risky assets. As in Figures 1 and

2, the e axis in Figure 3 represents the level of risk. Suppose that the arc ABC
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___________

Figure 3: Bifurcation diagrams for general equilibrium problems

describes equilibrium values for p, 7, and 6 as € changes. When ¢ = 0, the problem
reduces to an Arrow-Debreu model and equilibrium fixes goods’ prices p at some point,
say 0, in A, but the price of risk 7 and portfolio holdings would be indeterminate.
Therefore, any point along the line 5B would be an equilibrium. In order to analyze
the arc ABC we need to find B. We analyze the Jacobian H(, ) to find some
suitable parameterization for p(e), m(€), and 0(e) such that the Bifurcation Theorem
applies and produces B. The parameterization q(¢) = gy — €>m(€) corresponds to
the robust result that risk premia are related to the variance of risk, indicating that
the Bifurcation Theorem should continue to apply. There may be cases where the
bifurcation method used above does not apply, but we conjecture that this approach
will often succeed since, generically, equilibrium does exist for endowment economies
with incomplete asset markets.

The multicommodity case would produce more complex results. For example,
there could be a second equilibrium arc, such as A’B’C” which corresponds to a sec-
ond set of equilibrium prices at § for goods in the deterministic economy. That does
not present any essential difficulty as long as the local properties of the system of equi-
librium equations H(p, 7,0, ¢€) = 0 satisfies the bifurcation theorem. Other complex
possibilities may arise, such as multiple equilibrium arcs passing through a bifurca-

tion point B. The bifurcation methods presented in this paper cannot handle such a
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case, but, fortunately, there are more powerful tools from bifurcation and singularity
theory which could handle some of these problems. Presumably, the variety of wel-
fare results in Hart, Elul, and Cass and Citanna, would also arise asymptotically in
multigood economies. The key point is that the situation in Figure 3 is conceptually
similar to the structure in Figures 1 and 2, and basic tools from bifurcation theory

should be able to handle many multicommodity models.

9. CONCLUSION

We have used bifurcation approximation methods to examine simple asset market
problems with small noise. The analysis produces a mean-variance-skewness-etc.
theory of asset demand and asset market equilibrium, and found several interesting
results. We found that the addition of derivative asset will increase the price of the
underlying equity stock. Also, the demand for a derivative asset depends on skewness
properties of asset returns and the relative skew tolerance of investors. These results
indicate that skewness and skew tolerance will be important determinants of asset
innovation in more general contexts and indicate that results from linear-quadratic
or mean-variance models are of limited relevance. The approach also shows that, in
small noise economies, equilibrium depends on the utility properties of traders and
the moments of returns, not on the number of contingent states. The asymptotic
approach provides more intuitive results than the usual state-contingent approach.

The mathematical tools are quite general and can be applied to far more complex
problems. Zeidler shows that the critical bifurcation theorems hold in Banach spaces.
For example, partial differential equations that characterize asset prices in continuous
time can also be approximated by examining bifurcations of deterministic cases. The
steps in such an application of the bifurcation theorem require the solution of linear
partial differential equations.

This paper focussed on qualitative analyses, but the expansions derived here could
have value as a numerical method for solving specific cases; we leave that possibility
for another study. This paper focussed on applications of bifurcation methods but
many of the same points could be made for applications of the IFT. Economists are
familiar with comparative statics analysis, such as that in Jones [12], but that is

generally limited to first-order expansions. Higher-order approximations could often
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be used to improve qualitative and quantitative analysis of economic models.

The necessary mathematics for deriving expansions have been known for a long
time, but the cumbersome algebra made them impractical until now. Fortunately,
the speed of modern computers and the availability of symbolic language software
now makes bifurcation methods, and similar perturbation methods, a practical way

to address important economic problems.
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Mathematica Notebook for "Asymptotic
Methods for Asset Market Equilibrium
Analysis" by Judd and Guu

The following Mathematica program computes asset market equilibrium for two investors, one safe asset, and one or two
risky assets.

The first command turns off annoying spelling queries.

Off [General: :spelll]
m The initial setup

= Economic Model

Define the two risky assets' returns, Z and Y, in terms of zero-mean random variables z and y. € is the scaling
parameter, equal to the standard deviation in the e-economy. Z is an asset with mean return R and variance €, and is in
positive net supply. It represents equity. To keep the formulas simple, we assume that the return on bonds, R, is 1. This is
equivalent to assuming that the bond in the second period is the numeraire.

These facts imply that Z can be decomposed in the following manner:

Z=1+€ez;

Y is the derivative asset and has zero net supply. It has mean return € 1Y, is partially correlated with Z through a € a z term,
and has an orthogonal component € y. These facts imply that ¥ can be represented as

Y=euY + €eaz +€ y;

The price of Z (Y) is p (g). We parametrize them in terms of the scaling parameter €, the mean of Y, 1Y, and the
premia of Z and Y, denoted [1 and ¥:

p=1—ezn;q=euY—ezm;

Note: The notation in the notebook corresponds to the notation in the paper except for a minor change. In Mathematica, the
letter 7 is reserved for 3.14159... and so we could not use it as the risk premium for Z. Therefore, we use Il instead. To
maintain the symmetry we also let ¥ denote the premium for Y.

W; is final wealth of type i investor. @ is type 1 demand for equity. 8e; is type i endowment of equity and Be; is type ¢
endowment of bonds. ¢ is type 1's demand for Y; - ¢ is type 2 demand. In equilibrium, type 2 investors will hold
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Be1+0e, -6 shares of stock. ( in Mathematica prevent us from using 6 (B7) to denote type i endowment of the risky asset
(bond).)

Oe; = Be;; Bes = Besy;

Wi =(Be; + pbe; —~-pO6-qgod) +6*xZ+¢Y

W, = (Bex + pOez -p (Oey +6e2 -0) - q (-9)) + (Bey +Bez -0) *Z + (-9) Y;
W, = Expand[W1] ;

W, = Expand[W.] ;

(l+z€)0-0(1l-€’T) +(ye+zae+euY) ¢-¢ (e uY -€” T) +Bey + (1 -€”1I) e

We compute the four first-order conditions for the two investors and the two risky assets. The bond demand is
determined by substracting risky asset demand from initial wealth. We divide each first-order condition by € to eliminate one
degree of degeneracy. FOCij is the first-order condition of type i investor with respect to risky asset j, where j = 1 is equity
and j = 2 refers to the derivative.

FOC1ll = (1/€) D[u;[W1], ©] // Simplify
FOCl12 = (1/€) D[ui [W1], ¢] // Simplify
FOC21 = (1/€) D[ux[W2], 6] // Simplify
FOC22 = (1/€) D[up [W2], ¢] // Simplify

(z+eT) u[e (zO+eB8T+yp+zad+edT) +Ber + (1 -€T) Be1]

’

(y+za+eD) uj[e (z0+€OTN+yd+zad+ec¢dT) +Bey + (1-€2TI) Oeq]
-(z+ell) u’z[—ze@—e2@H—yecb—zotecb—ezf/f)@HBeere (z+€1l) Be; + Oey + z € Bey ]
—(y+za+eT) us[-z€6-€?OTN-yedp-zachp-c>pT+Bey+€ (z+€Tl) Oe; +O0ey +z € Oy ]

Even though we have divided by ¢, these first-order conditions describe the situation at e=0.
These four first-order conditions define equilibrium. Define G to be the vector of first-order conditions.

= Moment substitutions and other substitutions

We next define lists of substitutions that will allow us to compute the moments of z and y. The doubly subscripted
term (i, , dentoes the expectation of z™ y". We will often need to compute expectations of our Taylor series expansions.
We could invoke Mathematica's Integrate command, but we can do better by searching for specific terms in our polynomials
and replacing them with their integrals. For example, whenever we see an isolated z in an expression we know that when the
integral just it is replaces the z term by the mean of z, which is denoted as 11, 5. This works better than Mathematica since
we know that our function is a polynomial whereas Mathematica needs to spend time to ascertain that fact. The following
replacement rules implement this approach to integration.

m m
ownmoments = {z - 1,0, 2= HUn,0, Y>H0o,1, Y — = Ho,m}
crossmoments = {z™~y"™~ > Up,n, Z2Y™— Ui,n, Z°-Y > HUp,1}

{z>u1,0, 2™ > Un,0, Y= Ho, 10 Y= = Ho,m}

{ynf Zm*%Um,nr ynf Z %Ul,nr yZm*%Um,l}
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Our definition of ¥ decomposed it into its mean, covariance with Z, and residual. Without loss of generality, we set
the mean of z and y to zero.

zeromean = {Uo,1 » 0, ui,0-0};

We can also make z and y orthogonal and set the variance of z equal to 1.
orthogonal = {u1,1 -0, ps,0->1};

We now gather all the substitions into one list.

moments = Join[ownmoments, crossmoments, zeromean, orthogonal]

{Z%HI,OI Zm*9#%1,0/ Y > Ho,1r ymfﬁl-io,mr ynf Zm*ﬁl-im,nr
V-2 Ui,n, ¥2Z™ 5 U1, Ho,1 > 0, f1,00, 1,0 >0, g, 01}

The following substitutions apply in the case where there is no derivative security. They say that all cross-moments
between z and y are zero. Note that y must be nonzero since we set its variance to 1. However, if all of its moments are
uncorrelated with all moments of the endowment then it is a pure gamble and will not be traded in equilibrium.

NoDeriv = Table[uy,n » 0, {m, 1, 6}, {n, 1, 6}] // Flatten

{1,120, p1,2->0, t1,3->0, t1,4 >0, 1,50, 1,6 >0, o1 >0, 2,20, 23>0,
Us,a >0, tz2,5 >0, tz,6 >0, us,1 >0, pz,»2 >0, us,3 >0, us,2 >0, us,5 >0, uz,6 >0,
ta,1 >0, tg,o >0, s3>0, pa, 4 >0, g5 >0, tg,6 >0, ts,1 >0, us,» >0, us,3->0,
ts,4 >0, us 5 >0, us,6 >0, teg,1 >0, teg,2 >0, g3 >0, s, 4 >0, g5 >0, g6 >0}

We define a convenient list of simplifying substitutions which Mathematica did not automatically execute.

1 1
subl = {? (2Be; +26e;) » (Bej +6e;), ? (2Bejs +26ey) » (Bep +6e2)}

1

{1 (2Bey +26e1) > Bey +06eq, 2l

> (2Beg+2962>%B62+962}

m Solvability Condition in Theorem 4

We check for the nonsingularity of the solvability matrix, G, » where A=(6,¢,IL¥). First define the solvability matrix:

Ge,A=
{{D[FOC1l1, {e¢, 1}, €], D[FOC11, {e, 1}, ¢], D[FOC11, {e, 1}, €], D[FOC11, {e, 1}, 1]},
{D[FOC12, {e, 1}, ©], D[FOC12, {e, 1}, ¢], D[FOC12, {e, 1}, €], D[FOC12, {e, 1}, 1]},
{b[FOC21, {€, 1}, €], D[FOC21, {e¢, 1}, ¢], D[FOC21, {e, 1}, ®], D[FOC21, {e, 1}, T]},
{b[FOC22, {¢, 1}, 6], D[FOC22, {¢, 1}, ¢], D[FOC22, {e, 1}, €], D[FOC22, {e, 1}, TI]1}};

Evaluate G,  at e=0 and display it in matrix form:



BifETMay01.nb

Ge,a=Ge,a /. {€->0};
Ge,a // MatrixForm

z? uf [Bep + 6e1] z (y+za) uf[Bep +0eq] 0 u’] [Bei + 6eq ]

Z (y+zo<) 7 [Bei +6e1] (y+zot)2u’l’[Be1+6e1] u] [Beq + 6e1] 0
[Be2 +BOes ] -z (-y—-za) uy[Bes +6er] 0 -u5 [Bey + Oes |

b4 (y+ZO() 5 [Bex +0ep] -(-y-zoa) (y+za)uy[Bey +6ey] -uj[Bes +6es] 0

Integrate the elements of G o by replacing powers of z and y with their moments.

ExpG = Expand[G.,n] //. moments;
ExpG // MatrixForm

auy [Bey + ey ] o uy [Bes + Oep

uf [Bei + Heq] auf [Bej + 60eq] 0 uj [Bey + Beq ]

auf [Be; + Oeq] o uf [Bey +Oe1] + Lp,» uf [Ber + Oeq] u] [Bey + 0eq] 0

uy [Bey + Bey ] ouy [Bes + 6e; ] 0 -u5 [Bey + Oey ]
]

+ g, 2 u’z’[Be2 +6e2} *U’Z [Bez +6e2] 0
Compute the determinant of E {Ge, A }.

(Det[ExpG] // Simplify) //. moments

—Lo,2 (U5 [Bes +6es] uf [Ber + 6e1] +u] [Ber + e ] uy [Bes + 6es] )2

As long as Lip, ;> is not zero, this determinant is strictly positive and G, , is nonsingular

m Bifurcation equations: series construction

We construct substitutions that will define the equilibrium mappings from the scaling parameter € to the equilibrium
values of (6,¢,[1,).

PortfolioSubs = {6-06[e], ¢ » d[e]}
{©>0[e], o> dle]}
PremiaSubs = {[I>1I[e], T-»> T[]}

{I>Ie], T->2[e]}

To construct the equilibrium equations we take the first-order conditions and replace the the portfolio variables, 6
and ¢, and the risk premium variables, [1 and ¥, with their equilibrium maps.
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EQM11 = FOCll /. PortfolioSubs /. PremiaSubs
EQM21 = FOC21 /. PortfolioSubs /. PremiaSubs
EQM12 = FOCl2 /. PortfolioSubs /. PremiaSubs
EQM22 = FOC22 /. PortfolioSubs /. PremiaSubs

(z+€ll[e]) u| [Bei +6e; (l—eZH[e}) +e (zO[e]+eBle]ll[e] +yple]l +zadle] +edle] Tle])]

-(z+€ll[e]) u),[Bey +6ey +z€b6ey, —z€bB[e] -
e?6le]T[e] +e6e; (z+eT[e]) -yedle] —zaep[e] -’ ¢[e] T[e]]

(y+zoa+e@[e])
u’ [Bei + Beq (1—621'[[6]) +e€ (z6[e] +e0le]ll[e] +ydple]l +zadle] +e¢[e] T[e])]

-(y+zoa+€@[e])u,[Bey +6e, +z€6ey -z 6[e] -
e’ 6le]T[e] +e6e; (z+eT[e]) -yedle] —zaep[e] -’ ¢[e] T[e]]

The equilibrium equations are really the expectations 0=E{EQMIij}. We will execute the integrations later, after the Taylor
series expansions, since it is permissible to interchange the integration and differentiation operations.

We define abbrevations for the derivatives; this helps make the formulas more understandable than the ones automati-
cally generated by Mathematica.

UtilDerivs = {Derivative[n ][u; ] [Bei_ +®©e; ] ->A;[n]}

{ui(i*) [Bei +0ei ] > A [n]}

We want to replace derivatives of the utility function, the A4,[m] terms, with risk tolerance, 7;, skew tolerance, p;, and
kurtosis tolerance, x; . The next substitution rule does that.

i[1 2p; A;[1 1 Ay [1
utilparams = {Ai [2] ->—A [ ¢+ Ai [3] - L[], A; [4] » M, a; [1] » 1}
- Ti - tj_z - tj_s -
(ar2) > -2l a5y 22 By ey SRR s

1

It is often useful to refer to the social risk tolerance, 7, and express type i risk tolerance as a share, v;, of total risk tolerance.
The following replacement rule allows us to do that.

taureps = {t1+12>T, t3 »Vv; T, v +us > 1};

We now compute the power series expansions of the four equilibrium conditions. We fully expand each series so that the
various powers of z and y are gathered together. This is necessary for our integration approach to work.

EgmPowll (Normal [Series[EQM11 , {e, O, 6}]] /. subl) //. UtilDerivs;

EgqmPowll = Expand[EgmPowll];

EgmPowl2 = (Normal[Series[EQM12 , {e, O, 6}]] /. subl) //. UtilDerivs;
EgmPowl2 = Expand[EgmPowl2];
EgmPow21l = (Normal[Series[EQM21 , {€, O, 6}]] /. subl) //. UtilDerivs;

EgqmPow2l = Expand[EgmPow2l] ;
(Normal [Series[EQM22 , {e, O, 6}]] /. subl) //. UtilDerivs;
Expand [EgmPow22] ;

EgmPow22

EgmPow22
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We now take the expectation of each equilibrium equation's power series. Since z and y are the only random variables, we
replace each power of z and y and each crossproduct by the appropriate moment.

EgqmPowll = EgmPowll //. moments;
EgmPowl2 = EqgmPowl2 //. moments;
EgmPow21 = EqgmPow2l //. moments;
EgmPow22 = EqmPow22 //. moments;

The final step in constructing the equilibrium expressions is to collect terms of like powers of € and list the coefficients of
each power of €. This puts the equations in the proper arrangement for solving the problem.

eqgnsll = CoefficientList[EgmPowll, €];
egnsl2 = CoefficientList[EgqmPowl2, €];
egns2l = CoefficientList[EgqmPow2l, €];
egns22 = CoefficientList[EgqmPow22, €];

m Solve the individual equations in sequence

m Equation 1:

The coefficients of the €’ components of the equilibrium power series should be zero. We now check what they are.

{eansll1[[1]], egns21[[1]], eqgnsl2[[1]], eqns22[[1]]}

{0, 0, 0, 0}

This shows that we can continue. If this were not a vector of zeroes then we would know that our parameterization did not
fulfill the necessary conditions of the Bifurcation Theorem.

= Equation 2:

We compute the bifurcation point by choosing (6[0],¢[0],¥[0],I1[0]) so that the e components of the equilibrium
equation expansion are zero. We first list the equations

eql = eqnsll[[2]] // Simplify // Expand
eq2 = eqns21[[2]] // Simplify // Expand
eqg3 = eqnsl2[[2]] // Simplify // Expand
eq4d = eqns22[[2]] // Simplify // Expand

O[O0] AL [1] +O[0] AL [2] +a@[0] A [2]
-T[0] Az [1] -Be1 A2 [2] -Oex A2 [2] +O[0] Ap[2] +a¢[0] Az [2]
T[0] A1 [1] +a8[0] A[2] +a” @[0] A1 [2] +po,» #[0] A1 [2]

~T[0] Ap[1] ~aBer Ay [2] ~aBey Ap[2] +aB[0] Ay [2] +0” @[0] Ay [2] + o2 $[0] Az [2]
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We next solve for bifurcation point.

BifPt = Solve[{eql =0, eq2 =0, eq3 =0, eqd =10}, {6[0], ¢[0], ®[0], [O]}][[1]]

ami[2] (661 By [2] + 02, By [2])
A [2]) Ao (1] +A1[1] Ax[2] !
AL [1] (e By [2] + 6y By [2]) Bi[2] (8e1 By [2] +6ey By [2])
S A il el Aipa] ¢ P02 0 IOl S T v A (1] A l2] )

We simplify the expression, bringing together common factors.

BifPt = BifPt // Simplify

a (Bey +6ey) A1 [2] Ay [2]

{z[0] > - ,
A (2] A [1] + 2 [1] Ao [2]
(Be1 +Oep) A [1] Ay [2] (Ge1 +0ey) AL [2] Ap[2]
e[ol - A [2]) Bo[1] +A1[1] B (2] ' o101 =0, o] T T RI2) Ao 1] A (1] Ao [2] }

We next simplify by using the equilibrium conditions. Essentially, we want to replace all occurrences of ©e; + e, terms,
the aggregate endowment of the risky asset, with its value, 1.

Let ® be the total endowment of the risky asset, which we set equal to 1. EqmSubs defines various substitutions that express
the identity ©e, + ©e; = ©, and will allow us to simplify various expressions.

®=1; EgmSubs = {Be, +6e; >0, 6e; +0e; -0 >0, © - 6e, —-Oe; » 0}

{6e1 +6ey > 1, -1 +6e1+6e, >0, 1 -6e1 -6ey - 0}
Simplify BifPt by uskng the substitutions in EqmSubs

BifPt =BifPt //. EqmSubs

- am[2] Ar[2]

A (2] Ao (1) + A [1] Ap[2] ]
A [1] A [2]

Ar[2) Ao [1] + A0 [1

) B [2] A [2]
Tasta)  P100 2 0 MIOT > o T A (1] A (2] )

We do not like the utility derivatives, 2; []]. We apply substitutions contained in utilparams, defined above, that replace
utility derivatives with indices such as risk tolerance.

BifPt = BifPt //. utilparams

We need to simplify this expression for BifPt. The Simplify command can handle this for us. (In general, one must be
careful using the Simplify command since it can often take a long time to find the desired simplification or it will find a
simplification other than the one you want.)

BifPt = BifPt // Simplify

1
X, e[0] > —, $[0] 50, I[0] > }
T1 + T2 T1 + T2 T1 + T2
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We now have an intuitive expression for the bifurcation point. The procedure was direct: solve for the bifurcation point in
terms of utility derivatives and endowments, and then apply various simplifications to transform the solution into an expres-
sion involving elasticities and shares. Below we will apply similar sequences of simplifications without explanation.

The bifurcation point conforms to basic intutions. The risk premium, I1[ 0], equals the inverse of the total risk tolerance,
1

T1+7T2

equals ﬁwhich is the product of the risk premium of equity and the covariance of ¥ with z. (This is equation (32) in the

. Type 1 holdings of equity equals it share of social risk tolerance. The risk premium of the derivative asset Y, W[0],
paper). The most surprising result is that the asymptotic holding of the derivative asset is zero. This does not mean that there

is no demand for the derivative; it means that demand is smaller than order 0. We will see below that demand is of order €.

= Equation 3:

We next compute (6[0],¢'[0],%'[0],[T[0]) by setting the €> components of the equilibrium equations Taylor series expansions
equal to zero. We immediately make the substitutions stated in utilparams.

eql = eqnsll[[3]] //. utilparams // Expand;
eq2 = eqns21[[3]] //. utilparams // Expand;
eqg3 = eqnsl2[[3]] //. utilparams // Expand;
eqgd4 = eqns22[[3]] //. utilparams // Expand;

Here is the first equation; the rest are similar.

eql

p1 13,061[0]7 . 201 12,16[0] ¢[0] . 2001 U3,00[0] ¢[0]

> 2 2 +

1 1 1
o141,2 90017 | 2aprpz1¢[0]7 | of o1 43,09[0]7  &U0] gy @ L0]
7 t$ 7 1 T1

We now solve for the unknowns, 8'0], ¢'[0], ¥'[0], and I1'[0]. We suppress printing the first set of results since they take up
too much space. The substitutions we make below will produce comprehensible expressions.

Sol2 = Solve[{eql =0, eq2 =0, eq3==0, eq4 =0}, {©6'[0], ¢'[0], E'[O], M'"[O]}][[1]]/

The solution involves , 6[0], #[0], P[0], and [1[0]. We now replace these terms with the values found in our bifurcation point
solution, BifPt.

Sol2 = Sol2 /. BifPt;

Note: we could have made these substitutions when we defined eql, eq2, etc, but that would not be wise. If we had done that
then the expressions in eql, eq2, etc., would have been larger, making more work for Mathematica. This would not have
been a major problem for this set of equations, but becomes important when we move to higher-order terms where the
solutions become more complex.

We next simplify the result which produces a fairly compact form.



BifETMay01.nb

Sol2 = So0l2 // Simplify;
Sol2 // TableForm

T [Ol - (01 T1 T2+4p2 ((-1+6e1+0e;,) T1+(Oe1+0ey) 'Ez)z) (Uo, 14003 o)
Ty (T1+T2) 3

o [0] > Ty (-p1 Ti+pz ((—1+6ei+0ep) Ti+(Ger+6ep) T2)3) (apz,1-Ho,2 U3,0)
Ty (T1+T2)° Ho,2

¢ [0] > - Ty (—p1 Thtpz ((~1+6e1+6ez) Ti+ (Be1+6ez) T2)2) Uz, 1
T (T1+T2)° po,2

0] - - (01 T1 T2+02 ((-1+6e1+6e;) Ti+(0e1+0e2) T2)%) Us,0
Ty (T1+T2)3

We can further simplify it by applying the equilibrium substitutions.

S0l2 = So0l2 /. EgqmSubs // Simplify;
Sol2 // TableForm

T1+02 T2 2,110 )
T'[0] > - (01 T1+02 T2) (Li%i H3,0)
(T1+T2)

6 [0] - (p1-p2) T1 T2 (-~ fp 1+Ho,2 #3,0)
(t1+72)° Wo,2

(P1-P2) T1 Tz Uz,
0] — P1zP2) TiTalMp,n
¢ [0] (t1+12)3 wo,2
’ _ o1 Titpz T2) H30
o] - (Ti+1t2)°

The solution for ¢’ [ 0] in Sol2 proves the assertions in Theorem 9.

If there is no derivative security, then the solution is

Sol2NoY = Sol2 //. NoDeriv

[¥'[0] > - o (p1 T1+ 02 t23> U3, 0
(T1+ T2)

(o1 —p2) T1 732 U3, 0 , ¢'[0] 50, T[0] > - (p1 T1 + 02 t2)3/13,0 }

(T1 + T2) (T1 + T2)

14

e [0] =

This proves Theorem 8. The solution for ©’ [0] in Sol2NoY proves the assertion in equation (26) and the solution for
II’ [ 0]in Sol2NoY proves the assertion in equation (27).

= Compute the change in equity demand from introduction of Y

Notice that the presence of Y has no impact on the equity premium derivative, 11’ [ 0], but it does affect equity demand,
6’ [0]. So, we now determine that effect.

If there are two assets, then 6’ [0] is

twoasset = 6'[0] /. BifPt /. Sol2

(P1 =02) T1 T2 (= lo, 1 + Ho,2 U3,0)
(t1+T2) 7 o, »

If @=0 then the derivative asset has no impact on equilibrium and it is as if it did not exist. The substitutions in NoDeriv
(defined above) state that the derivative is uncorrelated with equity at all moments, representing the case where there is no
derivative. Therefore, equity demand in its absence is
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singleasset = twoasset /. NoDeriv

(P1 = p2) T1 T2 U3,0
(t1 +T2)°

The change in equity demand is the difference:

twoasset - singleasset // Simplify

o (=p1+p2) Ty To lo,1
(T1+T2)° Ho,2

This is the result reported in Theorem 10.

= Equation 4:

We next compute (8"[0],¢"[0],%"[0],I1"[0]) by setting the €’ components of the equilibrium equations equal to zero.

eql = eqnsll[[4]] //. utilparams /. Sol2 /. BifPt /. {6e» » © - Be;} // Expand;
eq2 = eqns21[[4]] //. utilparams /. Sol2 /. BifPt /. {6ey; » © -Be;} // Expand;
eq3 = eqnsl2[[4]] //. utilparams /. Sol2 /. BifPt /. {6e; » © - Be;} // Expand;
eq4 = eqns22[[4]] //. utilparams /. Sol2 /. BifPt /. {6e» » © - Be;} // Expand;

Here is the first equation; the rest are similar.

eql

_ 1 . 3 o1 . Oe; _ 2 6e1 01 . 207 T H%,l
(7:1+712)3 (7:1+t2)3 T (tl+t2)2 T (7:1+I2)2 ('C1+712)4/10,2
2p1p2Tap3y 20T TapS50  2P1P2T2MEy  Kiao  ©7[0]  IY[0] _ a¢”[O]
(t1+2) " 1o,z (t1 + T2)* (t1 +T2)* 2 (T1+712)° 2T 2 21

Solve for the second derivatives

Sol3 =
Solve[{eql =0, eq2 =0, eq3 =0, eq4=0}, {©6''[0], ¢''[O], €' '[O], ' "[O]}][[1]];
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Sol3 =Sol3 // Simplify;
Sol3

-
(T1+T2)° o, 2
407 Ty T2 (H1,2 H2,1 +Of/vl§,1 + Mo, 2 M2,1 M3,0 + O o, 2 H%,o) +4 03 T1 T2

(M1,2 H2,1+OCH§,1 + Ho,2 M2,1 M3,0 + O Lo, 2 H%,o) -2p1 (@ (=3+286e1) T3 fo,2 + 2 a6eq TS to, o +

T1 T2 (402 Uo,1 (Ui,2 +QU2,1) +Ho,2 (m3a+4aBer +40pUs,0 (Uo,1 +AU3,0)))) +
1

5
(T1 +T2)° U3,

{QD”[O} - - (20000 (T1+T2) (2(-1+6e1) T1+ (L+26e1) T) Uo,2 +

(T1+ T2) (K1 T1+ K2 T2) Ho,2 (M3,1+0pg,0)), € [0] =

(-2 (-1+6e1) (-1+2p) T} H%,2+2991 (1-2p1) 73 H%,2+75% To (Aapz (-p1+02) 1,2 2,1+
Ho,2 (40102 U, 1 (H2,1 — O p3,0) — 405 o1 (Ho,1 - 03, 0) +Q (K1 +K2) [, 1) +
Ho,0 (-4 +2p2 =266 (-3+201+402) 405 u3,0+01 (6+405U5,0) +K1 Us,0-Ko Us,0)) =
T1 T3 (dapy (PL-02) Hi,2 M2, 1 +Ho,2 (=407 2,1 (H2,1 - O3, 0) +
401 02 2,1 (H2,1 — O3, 0) +Q (KL = Kz) {3,1) +
HG,2 (2+20,+26e; (~3+401+202) —407 U5, 0+01 (—6+402150) — K1 Ha,0+K2 Ha,0)))
-
(tl+f2)5/45,2
(U1,2 + Ho,2 M3,0) +4 0% To to,1 (Ha,2 + Ho,2 U3,0) + (K1 —K2) (T1+T2) Ho,2 H3,1) ),
- 1r
(T1+T2)° o, 2
407 T1 Ty (U3,1 +Ho,2 43,0) +4 05 T1 To (U571 + Ho,2 H3,0) -
201 ((-3+26eq) t% Uo,2 + 2 Oeq t% Ho,2 +T1 T2 (400 u?l + Up,2 (-3 +46e1+4p5 N%,O))) +

(T1 T2 (-4 03 Ty to,1 (M1,2 + Ho,2 M3,0) +4 01 P2 (T1 - T2) Uz, 1

" [0] -

o7 [0] » - (22 (T1+T2) (2 (-1+6e1) T1+ (L+26e1) To) Uo,2 +

(T1 +T2) (K1 T1+K2 T2) Ho,2 M4,o)}

= Change in equity risk premium
The presence of Y does affect [1"[0]. pi2 expresses this term.

pi2 = II''[0] /. Sol3 // Together // Expand

601 T +496101f%+ 4p, ] 46e1ppTi 601 TI T L 86810101 T
(T1+T2)° (T1+T2)° (1 + T2)° (t1+T2)° (T1+T2)° (T1+T2)°
20T1 T, 861 02T1 Ty 49elplt§_ 2 oy TS _49e102t§_40%1112u§,1+
(T3 +T2)° (T1 +12)° (T1+12)° (1 + T2)° (T3 +T2)° (T1 +T2)° U, 2
80102 T1 T2 U5, ~ 405 Ty T2 U5 ~ 407 t1 T2 15,0 . 8 01 02 T1 T2 U3, ~

(t1+T2)° Ho,2 (t1+ T2)° Ho,2 (t1+T2)° (t1 +12)°
405 T1 T2 13, K1 TS Ua,0 K1 T1 T2 Ha,0 K2 T1 T2 Ha,0 Ko T5 a0

(t1+T2)° (mi+12)° (mi+12)° (Ti+T2)° (Ti+Ta)°

Define the price function

PriceZ[e_] =1 -e? II[e]

1-€e’1[e]

Compute the Taylor series for the price function
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TaylorPriceZ = Normal[Series[PriceZ[e] , {e, 0, 4}]]
2 3 1 4 e
1-e’mo] -e’m (0] - 5 e 1 [0]
TaylorPriceTwoAssetZ is the second-order expansion for the price of Z when there are two assets.
TaylorPriceTwoAssetZ =
TaylorPriceZ //. utilparams /. Sol3 /. Sol2 /. BifPt /. {6e; > ©®-6e;:} // Simplify

2

1 € €3 (o1 T1 + 02 T2) U3,0
- + 3 +
1+ T2 (1 + T2)
1
(€' (200 (T1+T2) (2 (-1+6eq) T1 + (L+26e1) To) po,» +

2 (T1+T2)° Ho,2
2 2 2 2 2 2
4p7 T To (U571 + Ho,2 M3,0) +4 05 T1 To (H5,1 + Mo, 2 M5,0) —
201 ((-3+26e1) T Lo,» +26e1 T) Ho,» + T1 To (400 U5, 1 +Ho,» (=3+46e1+4 0515 o)) +
(T1+ T2) (K1 T1+K2 T2) Ho,2 He,0))

TaylorPriceOneAssetZ is the second-order expansion for the price of Z when there is just Z. It equals TaylorPriceTwoAs-
setZ with the moments for ¥ and cross-moments between Z and Y zeroed out by the substitutions in NoDeriv.

TaylorPriceOneAssetZ = TaylorPriceTwoAssetZ //. NoDeriv // Simplify

1 e? €3 (p1 T1 + P2 T2) U3, 0
- + 3 +
T1 + T2 (t1 +T2)
1

2 (T1+12)°

(€' (2P (T1+T2) (2 (-1+6e1) T1+ (L+26e1) To) +4 0 T1 Topd o+ 402 T1 To Ul -

201 ((-3+26e1) Ti+20e1 T3 +T1 Tz (-3 +46e1+402045,0)) + (T +T2) (K1 T1+Kz T2) Hayo))
We now compute the difference to determine the impact of the derivative asset on the price of Z.

TaylorPriceTwoAssetZ - TaylorPriceOneAssetZ // Together // Simplify

2€* (p1-p2)° T1 T2 13,4

5
(T1+T2) 7 Ho,2

This is the result in Theorem 11.

= Equation 5:

We next compute (6"[0],¢"[0],%""[0],IT"[0]) by setting the €* components equal to zero. We do this since these third deriva-
tives may play a role in the utility analysis below.

eql = eqnsll[[5]] //. utilparams /. Sol3 /. Sol2 /. BifPt /. {6e; » © -6e1};
eq2 = eqns21[[5]] //. utilparams /. Sol3 /. Sol2 /. BifPt /. {Gey; » ©® -6e;1};
eqg3 = eqnsl2[[5]] //. utilparams /. Sol3 /. Sol2 /. BifPt /. {Oey; 5> © -06e1};
eqg4 = eqns22[[5]] //. utilparams /. Sol3 /. Sol2 /. BifPt /. {6e; » © -6e;1};

We display the first equation as an example
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eql // Simplify

1
24 T1 (T1 + t2)6/10,2

(120 03 T1 T3 (11,2 U3, 1 + Mo, 2 H3,0 (2 15,1 + Ho,2 U3, 0) ) +

2407 ((T1+7T2) ((-3+26e1) T -4 (-3+6e1) T) Tz - 6661 T5) U5, 3,0 +
20, Ty (2T1-37Tp) To (U1,2 M5,1 + Ho,2 H3,0 (2 45,1 + o, 2 145,0))) —
1201 (200 (T1+T2) (4 (-1 +6eq) T1 + 11Ty Tp -4 ©ey T3) U5 5 H3,0 +

20511 (4T1-T2) To (H1,2 M5, 1+ Ho,2 3,0 (2 H5 1+ Ho,2 H5,0)) = Tz (T1 + T2) Ho,2
(4 6e1 Ty o, 2 3,0 +T1 ((DK1L -2K2) Hp,1 13,1 + Mo, 2 3,0 (-6 +460e1 +5 Ky Ug,0-2 Kz la,0)))) —
(T1 +T2) to,2 (12x1 ((-4+30e1) TF Ho,2 H3,0 + 3 01 TS Ug,2 U3,0 +
T1 T2 (3 P2 U, 1 U3, 1+ Ho,2 3,0 (—4+66e1 +302Us,0))) +
Lo,2 (2402 Ty ((-3+26e1) Ty +26ey To) Uz, o - (T1 +T2) (T] (Us,0B1[5] +4 1P [0]) -

4t (@ [0] +apP [0]) -4t (8 [0] -4 nP[0] +a P [0]) +
4ty 3 (o1 [0] -4 (8 [0] a9 [0])) +8TF 5 (2, mP) [0] -3
(03 [0] +ae®[0])) +8tit (3,1 [0] -2 (63 [0] +a¢® [0]))))))

We now solve for the third derivatives. We do not display any of the results since they are very long and difficult to interpret.

Sol4 = Solve[{eql =0, eg2==0, eg3 =0, eqg4d =0},
{e''1[0], ¢ "[0], &' "[O], 0" "[O1}][[1]];

Utility Expansion

We want to evaluate the impact of the derivative security ¥ on utility. This is necessary to derive the results in Section 6.4,

m Utility

W, is the final wealth and consumption of a type 1 agent. Express it in terms of the random variables z and y, and portfolio
holdings.

W; = Expand[W;]

ze@+62@H+yeq§+zaeq§+e2¢@+Bel+@e1—62H@e1

Define equilibrium expected utility for type 1 agents by substituting the equilibrium functions for 6, ¢, I1, and ¥ into our
expression for final consumption. The result is equilibrium utility as a function of €.

Ul =u; [W1] /. PortfolioSubs /. PremiaSubs

Ui [Be; +6e; +ze6[e] —~€’0eTl[e] +e’Ole|N[e] +yed[e] +zacp[e] +&° ¢[e] T[e]]
Compute the degree 5 Taylor series of the utility of type 1 agents in terms of € and call it Ulpow.

Ulpow = Normal [Series[Ul , {e, 0, 5}]] //. UtilDerivs;
Expand it so that products of z and y are collected

Ulpow = Expand[Ulpow] ;
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Compute expected utility by replacing instances of powers of z and y with their moment expressions
Ulpow = Ulpow //. moments;
Replace 6, ¢, I1, and ¥ and their derivatives with the solutions derived above.
Ulpow = Ulpow /. Sol4 /. Sol3 /. Sol2 /. BifPt //. UtilDerivs;
Express in terms of 7, p, and «.
Ulpow = Ulpow //. utilparams;
Combine like powers of € and put the coefficients in the list Ulepows.
Ulepows = CoefficientList[Ulpow, €]
Display the coefficients of 1, €, €2, and €’

Table[Ulepows[[i]], {i, 1, 4}] // Simplify

T1 —206e; (T1+T2)

{ul[Bel+@el}r Or > r

2 (t1+12)
(3p2T2 ((-1+6e1) Ty +6e1T2) +01 71 ((-2+36e1) T1 + (1 +36e1) o)) Us,0 }
3(t1+ )’

This list shows that the moments of ¥ and its cross-moments with Z have no impact on utility up to the order €*. Therefore,
we move to the fourth-order terms to determine the utility impact of the derivative security.

m Utility difference - order 4

Compute the utility contribution of the new asset. The utility difference is the utility with a nontrivial ¥ minus the utility
with trivial Y, that is, a ¥ with zero co-moments with z.

util4 is the degree four term in the utility expansion with two assets and equals
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utild = Ulepows[[5]] // Together

1
81y (T1+7T2)° Lo,»
(-4 7t pg,2+86e; Tf g,z —46ef Ti o2 ~ 1601 TF 1,2 + 3261 01 T wp,2 - 16 6ef p1 Tt Lg, 2 +
16 02 T1 to,2 - 32 6e1 p2 Tf po,2 + 16 0e% po Tf to,2 - 8 TF T plo,2 + 24 Oeq T T2 plo, 2 -
166e% T3 T lo,2 — 8 01 T3 To to,2 + 56 8e1 p1 T3 To Uo,» — 48 6ef p1 T3 To Lo, + 8 02 TF T2 Lo, 2 —
56 6e; P2 t% To Ho,2 + 48 Ge% 02 7:% To Ho,2 — 4 t% t% Uo,2 + 24 Oeq t% t% o, 2 — 24 Ge% 7:% 7:% o, 2 +
8 p1 7:% t% Hto,2 +166e1 o1 t% t% Uo,> — 48 eef 01 7:% 7:% Uo,2 — 8 o2 t% t% Uo,» — 16 O0eq o2 7:% 7:% Uo,2 +
48 6ef py T T3 Ho,2 + 8 661 T1 T3 o,2 — 166ef T1 T3 Ho,2 - 86e1 p1 T1 T3 Ho,2 — 16 6ef p1 T1 T3 o, 2 +

8 6e1 ps T1 7:§> Uo,» + 16 eef 02 T1 7:% Up,2 — 4 eef 7:% Uo,» — 16 p% tf Ts M%,l + 16 6eq pf 7:% o u%l +

32 p1 P tf To N%,l - 32 6e1 01 P2 7:% o U%,l -16 p% 7:% [ u%l + 16 6eq p% tf To /@,1 +

407 T T3 5,1 + 1661 T TF T5 5,1 8 01 P2 T T 3,1 — 3261 01 02 T T5 5,1 +4 05 T] T5 5,1 +
160e1 05 T T5 U3,1 - 16 0T T3 To Uo,2 U5,0 + 1601 pT T7 To to,2 U5,0 + 32 P1 02 TF T2 Ho,2 H3,0 -
320e1 p1 02 T} Tz Ho,2 13,0~ 16 05 TF Tz [o,2 45,9 + 16 61 05 TF To Uo,2 43,0 + 4 PT TF T5 Uo,2 13,0 +
16 ©eq o7 TF T3 Uy, 2 M%,o ~8p1 P2 TZ TS Mo, 2 H%,o - 32 6e; 01 02 TS TS Uo,2 M%,o +4 0% t7 Th o, H%,o +
16 ©e1 o3 TF T3 Uy, 2 M%,o ~3 K1 Tf Ho,2 He, o+ 4 Oe1 K1 T Lo,o 4,0 - 2 K1 T3 T Ho,2 Ha,o +

8 ©e1 K1 T3 T Uo,2 Ma,0 — 4 K2 T To Uo,2 Ha,0 + 4 ©€1 Ko TF To [o,2 Ha,0 + K1 T T3 Lo, 2 Ha,0 +

4 8er K1 T T5 Ho,2 Ha,0 - 4 Ko T T3 Lo,2 Ha,0 + 8 Oe1 Ko TS T3 Ho,2 Ha,0 + 4 6€1 Ko T1 T3 o, 2 Ha,0)

This term is very complex and difficult to interpret. However, since we are only interested in the impact of the new security
on utility, we do not need to understand all of util4. We only need to understand how the new security affects util4. Examina-
tion of util4 shows that i, ; is the only moment involving the new asset in the expression util4. The degree four term in the
utility expansion for the case with only one asset is computed by evaluating util4 with 1i, , set equal to zero.

(utild /. {pz,1 -> 0})

1
811 (T1+7T2)° o,z
(=4 T to,2 +86e1 Tl po, 2 - 4 6e7 Tf Lo,2 - 16 p1 TF Ho,2 + 32 0e1 p1 T] Ho,2 - 16 6ef p1 T po,2 +
16 p» t‘ll Hto,2 — 32 6eq P2 7:‘11 Uo,» + 16 eef 0o 7:% Uo,> — 8 tf To Ho,2 + 24 6eq tf T Ho,2 —
16 6e? 3 2 Lo, - 8 p1 T3 To Ho,2 + 56 6e1 p1 T3 T2 Lo,2 - 48 8e] p1 T3 To Ho,2 +

8 o2 7:% To Up,2 — 56 6eq1 oo tf To o, + 48 eef ol 7:% To Up,2 — 4 tf t% Uo,» + 24 Beq t% 7:% Ho, 2 —

24 ee% 7:% 7:% Up,2 + 8 01 'C% 'C% o, 2> +166e1 o1 7:% 7:% Up,> — 48 eef 01 7:% t% Ho,2 — 8 02 7:% 7:% Uo,2 —

16 6eq po t% t% Ho,» + 48 Ge% 05 7:% 7:% Hto,» +86e1 Ty 7:% to,» —16 Gef T 7:% HUo,2 —

8 6e1 p1 T1 Ts Ho,2 — 16 6% p1 T1 T3 o, 2 + 8601 02 Ty T3 Up,2 + 16 6€7 py T1 T3 Lo, 2 —

40ef T4 ug,» - 16 07 T7 To o2 5,0 + 16 €1 pf TF To Lo,2 U3,0 + 32 01 P2 T To Ho,2 U3,0 -

32 0e1 01 02 T} Tz Ho,2 U3,0 — 16 05 TF To [o,2 45,0 + 1661 05 TF To Uo,2 43,0 + 4 OT TF T3 lo,2 13,0 +
16 ©e1 o7 TF T5 o2 M3,0 — 8 01 P2 TF T3 [o,2 U3,0 - 32 6e1 01 P2 TF T3 [o,2 U3,0 + 4 05 TF T3 Lo,2 U3,0 +
16 6e1 p3 TF T3 o, 2 M%,o ~ 3 K1 T} Ho,2 He,0 + 4601 K1 T Ho,2 Ha,0 — 2 K1 T7 T2 Ho,2 Ha,o +

8 61 K1 T3 T to,» Ha,0 = 4 K2 TF To Ho,» Ha,0 + 4 ©1 Ko TF To Ho,» Ha,0 + K1 T7 T Ho,» Ha,0 +

4 6e1 K1 T? T3 Uo,2 Ha,o — 4 Xo TF T3 Lo, 2 Ma,0 + 8 Oe1 Ko TS T3 Uo,2 Ha,0 + 4 6€1 Ko T1 T3 Uo,2 Ha,0)

We take the difference in the past two expressions to compute the impact of the new security.
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UtilDiff = (utild - (utild /. { uz,1 -> 0})) // Expand

2 2 2 2 22 2 2 2 2 2
2p11TT2 H3,1 N 26e1 07111 T2 H2,1 N 4010277 T2 H3,1 46e; 01 02 T7 T2 H2,1

5 G 3 3
(T1+T2)° Ho,»2 (T1+T2)° Ho,» (T1+T2)° Ho,» (T1+T2)° Ho,»
2 2 2 22 2 2 2.2 2 2.2
203 T1 T2 U3, . 26e1 p5 T1 T2 Uj,4 Lo P, 26e1 01 T1 Ty Uy,

(t1 +T2) ° o, 2 (T1 +72) % 1o, » 2 (T1+T2) % Lo, (T1 +T2) ® o, »

2 ,,2 2,2 2 2 ,,2 2 2 ,,2
P1 02 T1 T U321 40e; 0102 T1 T3 H32,1 N P37 T1 T3 UZ 1 N 26e1 p5 T1 T5 H2,1

(t1+ T2)° po, 2 (t1+ T2) ° 1o, 2 2 (t1+12)° o2 (T1+T2)° 1o, 2
This is a much simpler expression. We simplify the difference to arrive at the result in the paper.

UtilDiff = Simplify[UtilDiff]

(P1-02) T T (4 (-1+6e1) T1 + (L+46e1) To) t3 4

2 (T1+12) % lo,»

Use the identity — 1 + e — fe;:

UtilDiff = UtilDiff /. {-1 + Be; » -6ey}

(P1-P2)" T1 T2 (~4 6y Ty + (L+46e1) T2) U3,

2 (T1+T2) % o,2

The expression in Theorem 12 is

2 2 2 2
- T1° T e Ge 1 u
Thml2 < (p1-p2)" T1° T2 (4 ( 1 2 ) . ) 51

2 (1:1+1:2)6 T1 T2

010" B (<0 (- %)) o2,

2 (t1+12)% Lo,z

UtilDiff - Thml2 // Simplify

0

Therefore, our UtilDiff expression is equivalent to the one for utility change in Theorem 12.



Automating the Implicit Function Theorem

x = 0; Remove["Global ™ %"]
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Introduction
Economics revolves around solving equilibrium models

Common features of equilibrium models

(1) They are often solutions to systems of equations of analytic functions

(2) Different models often have common structure in terms of functional forms, and differ only in terms of parameter values
(3) There are usually a few special (often degenerate) cases where we can solve for the solution explicitly

(4) The implicit function theorem tells us that there is an analytic map between exogenous parameters and the equilibrium
outcome near these cases.

Our objective today:

(1) Display the structure of basic economic models, using simple examples

(2) Show how one can use AD and IFT to compute equilibria for pieces of the parameter space

(3) Argue that for many purposes this approach may dominate numerical methods for solving specific instances
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A Specific Example - Easy one
Let's examine a very simple example. Suppose that p is the price of a good and the demand function for that good is

bmd[p_] = p%;

Suppose that producers pay a tax of 7 p for each unit it sells where 7 is the tax rate (like a VAT) and that supply is a function of
the after-tax price received by the producer

Supply[p_, t_] = (p (1-1))"?;
The excess demand for price p and tax rate 7 is
ExDmd[p_, t_] = Dmd[p] - Supply[p, t]
— - Vpl-1D)
p
The true solution is
Ptrue[z_] = (1- 1:)'1/7;
Examination of the excess demand function shows that price is 1 when the tax is 7=0. Therefore

P[0] = 1;
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Write the excess demand as a function of the tax 7 and the equilibrium price P[7]

ExDmdTax[t_] = ExDmd[P[t], t]

PLe)? -\ (1-1)P[t]
T

ExDmdTax[7]=0 for all tax rates 7.

The task: Use the parameterized equilibrium equation, the P[0]=1 condition, and the IFT to trace out the equilibrium manifold,
P[7], for 7 close to zero.

Differentiate ExXDmdTax[r] at 7=0 to compute P'[0]
ExDmdTax ' [0] // Expand
1 7P[0]

2 2

solpl = Solve[% == 0, P'[0]][[1]]
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We do the same to get P"[0] and P"'[0].
Solve [ExDmdTax ''[0] ==0, P''[0]]1[[1]]

1
{P”[O] > — (1+2P[0] +49 P’[O}Z)}
14

solp2 =% //. solpl

8

{P”[O] N E}

Solve[ExDmdTax '''[0] ==0, P'''[0]][[1]];
solp3 =% //. solpl //. solp2

120
{P“') 0] > E}
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The degree 3 Taylor series of P[7] at 7=0 is

Series[P[t], {t, 0, 3}]

% /. solp3
% /. solp2
% /. solpl
% // Normal
1 1
1+P[0] T+ —P'[0] c2+ — P
2 6
1 20 ¢3
1+P[0] T+ —P'[0] T%+
2 343
42 2078
1+P'[0] T+ + +0[t]
49 343

T 472 20 3




= SolveAlways Command

The degree 3 Taylor series of ExXDmdTax[7] at =0 is

ser = Series[ExDmdTax[t], {t, 0, 3}]

T+ — (1+2P[0] +49P’[0]2—14P”[0}> 2+

2 2 8

1 7P’[0]) 1

1

Econ and IFT Static CGE ICE009.nb

— (3+3P7[0] ~3P'[0]%-483P [0]°+6P"[0] +294P [0] P”[0] -28P(3) [0]) *+o[zcl*

48
We will use the SolveAlways command to solve out for the derivatives of P at 7=0.
sol = SolveAlways[ser == 0, t][[1]]

, 120 8 1
{P< )[0] > ——, P"[0] > —, P'[0] - 7}
343 49 7

We now substitute this into the the Taylor series expansion for P[7] at 7=0.
Series[P[t], {t, O, 3}] /. sol

T 4t® 20713
1+ —+ +

7 49 343

4

+0[tT

The degree 3 Taylor series of P[7] at 7=0 is
solPp[t_] = Series[P[t], {t, O, 3}] /. sol // Normal

t 4t? 2073
1+ —+ +

7 49 343

|7
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= Quality check
Question: How good is our Taylor series approximation.

Answer 1: Since we know the solution, display the relative error of the approximation. The error is less than 0.1 per cent for tax
rates below 0.30; not bad. Higher order series will do better.

Plot[Log[10, 1 - solPp[t] / Ptrue[t]], {t, 0, 1}]

0.2 04 0.6 0.8 0

But we generally do not know the answer!



Answer 2: Check the residual. We can always do that.

Residual[t_] = ExDmdTax[t] /. P » solPp

1 t 41?2 2073
- (1-7) |1+ —+ +
T 42 20 3 3 7 49 343
1+?+ PEREYY

Plot[Log[10, Residual[t] / Dmd[solPp[t]]], {t, O, 1}]

02 04 0.6 0.8 0

The residual, normalized relative to demand, is less than 0.1 percent for tax rates below 0.30.

Econ and IFT Static CGE ICE009.nb

In practice, we check residual to determine the order of the Taylor series necessary for a good solution.

K]
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An Abstract Example in General Style

In general, we will want to compute the approximation for many different parameter sets.
Therefore, we take the following approach.

Consider a constant elasticity specification, a generalization of our simple example

Dmd[p_] = Ap™Y; Supply[p_, t_] = B(p(1-1))";
ExDmd[p_, t_] = Dmd[p] - Supply[p, t];
ExDmdTax[t_] = ExDmd[P[t], t]

AP[t]Y-B((l-1)P[T])"

We know the solution at 7=0:

1

P[0] = (A/B)™;
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= Compute Derivatives

We first compute derivatives of ExXDmdTax|[t] at t=0 in symbolic form

ExDmdTax ' [0]
% // PowerExpand
% // Simplify

1y -1-v 1 -1l+n 1

ExDmdTax ''[0] // PowerExpand // Simplify

24y n 24n4v

A v B [—A B (-1+n)n-

Leney 1 1 1

2 n+
AB T (-n+n*-v (1+v)) P[0]2+A T B v (27 P [0] ~P7[0]) A" 7" B v P (0]

v
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ExDmdTax '''[0] // PowerExpand // Simplify

341

3

“B v (l+v) (2+v) P [0]°

A B

1 1 3 1 1 1 1
(=2+n) (-1+mn AW—BWP’[O]) ~3A" B (-1+n)n |A» -Br P'[0]

1 2

) (2P'[0] -P"[0]) +
3A7 B™ v (L+v) P'[0] P[0] +An B n (3P7[0] - [0]) -A™ B vP[0]

Collect and store these expressions.

derivs = {ExDmdTax '[0], ExDmdTax''[0], ExDmdTax'''[0]} // PowerExpand // Simplify;
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= Using Series to get derivatives

Sometimes, the following is a faster way to get these derivatives
ser = Series[ExDmdTax[t], {t, O, 3}] // Normal;

ser = ser // PowerExpand // Simplify

14n+v 1

= n-RAB™ (n+v)P[0]|-

1+v v

A BT [A

2+n+v 2

1 2y 2+, N
— A v B v 2 (A " B (-1+n)n+AB (-n+n®-v (1+v))P[0]°-
2
Lo g, b 1t e

A7 B 7 (2nP'[0] -PY[0]) +A 7 B vP”[O}j +
1 oo I R :
— A% B ¢° [—BW v (Bw (2+3v+yv?) P'[0]°-3A" B (1+v) P [0]P"[0] +A P [0]]+
6

3 1 2

n (AnT (2-3n+n?) -8B (2-3n+n?) P'[01°+3A7 B (-1+n) P'[0] (nP'[0] -P"[0]) -

A B (3n°P'[0] -3 (P'[0] +P"[0]) +P¥ [01))]
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coeffs = CoefficientList[ser, t]

1+v v 1+n+v 1
{o,a B [AT N-AB™ (n+v) P’[O]J,

1 v 2+n+y +i
- — A B (A " B (-1+n)n+AB (-n+n®-v (1+v)) P[0]°-
2
1+n+v 1+L 1+L 1+n+v
A B v (2nP[0] -P7[0]) +A v B vP”[O]],

2 1 1 2

B (2+3v+v2)P[0]°-3A" B (1+v)P'[0]P"[0] +A PP [0]]+

1 -3+ v 1
— A7 B [—BW v
6

3 3 1 2
n (A“T (2-3n+n?) -B™ (2-3n+n?) P'[0]°+3A7 B (~1+n) P'[0] (nP'[0] -P"[0]) -

A" B (372 (0] -37 (P'[0] +P7[0]) +P<3>[01))]}
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derivs = Rest[coeffs]

Lan+v 1

1ev v
{A"W B [ATW—AB'TV (n+v) P’[O}],

A B A B(-1+n) n+aB (-n+n®-v (1+v))P[0]

1 2+v n 2+4n+v 2
( " ’ -
2

1 Lensy

Lensv 1

A7 B (20 P (0] -P7[0]) +A" T B

vp"[O]],

2 1 1 2

B (2+3v+v2)P[0]°-3A" B (1+v)P'[0]P"[0] +A PP [0]]+

— A7 By |-Biv v
6
1 2

n (AnT (2-3n+n?) -8B (2-3n+n?) P'[01°+3A7 B (-1+n) P'[0] (nP'[0] -P"[0]) -

1 -3+n v [ 1

A" B (372 (0] -37 (P'[0] +P7[0]) +P<3>[01))]}
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= Power Series Solution
We want to solve for the first three derivatives of P[7] at 7=0. This is accomplished by using the derivatives for ExDmdTax at
7=0 and solving out for P'[0], P"[0], and P"'[0].
Pderivs = Solve[derivs == 0, {P'[0], P''[0], P"'"'[0]}];
% // Simplify
A B (607 +Tnv+2v?) A B 7 (2N +V) AT B

HP(3>[0] - (n+v)3 P (n+v)? i %7}}

Create the degree three power series for P[7] at 7=0 using the solutions in Pderivs.
Series[P[t], {t, 0, 3}] /. Pderivs[[1]];
% // Simplify

1 1 1 1 1 1

: ol R 2 B 2 2) ;3
[A)M Ay B oyt A B (2n+V) T Anv B 71 n<6n +777v+2v)t
+

+ + +O[t]4

2 3

n+v 2 (n+v) 6 (n+v)

This is an asymptotically valid third-order solution to computing the equilibrium as we change the tax 7.
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= Numerical Applications

It is normally impractical to compute the abstract form of the derivatives of P. Of course, these closed-form solutions are not the
objective. We generally will want to compute the Taylor series for P[r] for some specific parameter values. The issue is when do
we make those substitutions. We now follow the following strategy: compute the abstract derivatives of the implicit expression

that defines P, then replace the parameters with numerical values, and solve for the derivatives of P.

Repeat the construction of the derivatives:

ExDmdTax ' [0]

derivs = {ExDmdTax '[0], ExDmdTax''[0], ExDmdTax'''[0]} // PowerExpand // Simplify

1+ v 1en+y 1 24v n 2en+y
{A’Tv B [AT n-AB™ (n+v) P’[Oj], A B (—A?B (-1+n)n-

2 Len+v 1
AB 7 (-nen?-v (1+v)) P'[0]%+A 7 BT (21 P/ [0] -P7[0]) AT B vEUI0] ],

3

B v (1+V) (2+v) P'[0]

“341 v

A Brev 3

1 1 3
+(=2+m) (-1+m)n (AK—B‘T"P'[O]] ~

3Am B (-1+7)n (ATV—B”TP’[O]] (2P'[0] -P”[0]) +

1 2 2 1 2 1

3A7 B v (L+v) P'[0] P"[0] +A By (3P7[0] -PP[0]) -A™ B v [0]}}
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Then, when one wants to compute specific cases, evaluate these expressions with parameter values. This is not as easy as it
sounds due to round-off error.

vals = Thread[{v, n, A, B} » {2., 3., 1., 5.}];
In general, we need to solve the equations in a sequential linear manner.
The first derivative expression gives us a linear equation for P'[0], which we then use to solve for P'[0].
eql = derivs[[1]] /. vals // Expand
5.71096 - 13.1326 P’ [0]
soll = Solve[eql == 0, P'[0]][[1]]
{P'[0] - 0.434868}
The second derivative implies
eq2 = derivs[[2]] /. vals // Expand
~11.4219+47.2775P[0] +0. P'[0]%-13.1326 P [0]
Solving for P"[0] gives us
sol2 = Solve[eq2 == 0, P''[0]]1[[1]]
{P"[0] 5 -0.0761462 (11.4219 -47.2775P'[0] + 0. P’[O}Z)}
which contains P'[0]. We now substitute the solution for P'[0] to complete the solution for P"[0]
sol2 = sol2 /. soll

{P"[0] - 0.695788}
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The third derivative is solved by the following sequence:
eq3 = derivs[[3]] /. vals // Expand

11.4219-141.833 P [0] +195.691 P [0]%-150.P [0]° +
70.9163 P [0] - 1.35263 x10° 2 P’ [0] P"[0] - 13.1326 P [0]

sol3 = Solve[eq3 ==0, P'''[0]]1[[1]]

{P)[0] > -0.0761462 (-11.4219 +141.833P'[0] -
195.691 P [0]° +150. P'[0]° - 70.9163 P [0] + 1.35263 x 10 ** P'[0] P"[0] ) }

sol3 = sol3 /. sol2 /. soll

{P¥[0] > 1.80905}
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Multiple Consumers and Firms

We represent demand and supply implicitly through optimality conditions implied by the utility and production functions:
Ui[di, p]=0 iff di is agent i's demand at price p.
Fi[qi, p(1-t)]=0 iff qi is firm i's output when after-tax price is p(1-t)

eqns = {Ul[dl, p], U2[d2, p], U3[d3, p],

Fl[ql, p(1-1t)], F2[92, p (1-17)], (91 +q2) - (d1+d2+d3)} /. p~> P[t];
eqns = % /. dl » D1[t] /. d2 » D2[t] /. d3 »D3[t] /. ql »Q1[t] /. q2 - Q2[z];

eqns // TableForm

Ul[Dl[t], P[t]]

U2[D2[t], P[t]]

U3[D3[t], P[t]]

F1[Ql[z], (1-1t) P[t]]

F2[Q2([z], (1-1t) P[T]]

-D1[t] -D2[t] -D3[t] +Q1[t] +Q2[T]



Initialize the solutions at t=0.

P[0] = pO;
01[0] = q10; 02[0] = q20; D1[0] = d10; D2[0] = d20; D3[0] = d30;
U1[d10, pO] = 0; U2[d20, pO] = 0; U3[d30, pO] = O;

F1[ql0, p0] = 0; F2[q20, pO] = O;

eqns0 = (D[eqns, t]) /. T > 0;
% // MatrixForm

p'[0] U1V [d10, p0] +D1'[0] UL® [d10, pO]
P'[0] U221 [d20, p0] +D2'[0] U2 [d20, pO]
P'[0] U3(°Y) [d30, p0] + D3’ [0] U3*% [d30, p0]
(-p0 + P [0]) F1(° Y [q10, p0] +Q1"[0] F11*¥ [gq10, pO]
(-p0 + P [0]) F2(% Y [q20, p0] + Q2 [0] F21*¥ [g20, pO]
-D1'[0] -D2/[0] -D3'[0] +Q1'[0] +Q2'[0]

vars = {P'[0], D1'[0], D2'[0O], D3'[0], ©Q1'[0], ©2'[0]};
Let's use a substitution that reduces size of expressions.

sbs = Derivative[jj_ _]1[gg__ ]1[xx_ ] -» Derivative[jj][gg];
This substitution makes our variable list simpler

vars /. sbs

{p’, D1’, D2, D3’, Q1’, Q2'}

Econ and IFT Static CGE ICE009.nb
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LinSystem is the linear system implied by IFT.
LinSystem = CoefficientArrays|[ (eqnsO /. sbs), (vars /. sbs)];
LinSystem[[2]] is the Jacobian, and LinSystem[[1]] is the vector term.

jac = LinSystem[[2]];
jac // MatrixForm

vl y1.0 0 0 0 0

U2 0 U210 0 0 0

U301 0 0 u3 0 0 0

F1(0/ 0 0 0 F1(1:0 0

F2(0:) 0 0 0 F2(1:0
0 -1 -1 -1 1 1

The vector term is:

vec = LinSystem[[1]];
vec // MatrixForm

0
0
0

~-pO F1(%V
~-p0F2(%Y
0

We can use LinearSolve to solve this system, but the result is not pretty. Delete the apostrophe in the next command to see the
result.

LinearSolve[jac, vec];
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= General problem

In general
(1) There will be many goods, making the di's and p's vectors.

(2) The diagonal terms involving Ui will be blocks corresponding to Jacobians of equations, one block for each demander.
(3) Similarly for the blocks with Fi
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= Functional forms

We will want to solve such systems with thousands of demanders and hundreds of goods. This is quite feasible.

Typically, the functional forms of the Ui's are the same across people; the differences are really only in the parameter values. For
example, Ui could be

Uilg, pl = A; (a; + bi ¢")"
Similarly for the production equation, Fi.

For multiple goods, it is often impossible to solve out for the demand vector explicitly; must use implicit form. Same for the
output vectors for firms.

So, even if you have thousands of demanders and hundreds of goods, applying AD to construct the derivatives needed to con-
struct LinSystem (which is done only when one has substituted in the parameters for Ui's and Fi's) is feasible.
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= Higher-order terms

We can go to higher-order derivatives
eqnstt = D[eqns, T, t]; eqnsO = eqnstt /. t -» 0; eqnsO = eqnsO0 /. sbs;
vars = {P''[0], D1''[0], D2''[0], D3''[0], ©1''[0], ©2''[0]} /. sbs;
LinSystem = CoefficientArrays[eqnsO, vars];

The solvability matrix is unchanged.

LinSystem[[2]] // MatrixForm

u1®b g1 0 0 0 0

uy2 @b 0 U210 0 0 0

y3 b 0 0 U3 0 0 0

F1(0D 0 0 0 F1(/® 0

F2(0:1) 0 0 0 0 F2 (10
0 -1 -1 -1 1 1

The vector term is more complex, but still fits our framework.



Perturbation Methods for a 2D Growth Models
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Deterministic Model

x = 0; Remove["Global™ *"]

= Setup

We define the Euler equation for a simple growth model.
fi[ki] is the production function; ci[k1,k2] is the (unknown) consumption policy function.
kiplus and ciplus are the next period's capital stock and consumption

klplus = f1[kl] - cl[kl, k2];
clplus = cl[klplus, k2plus];
k2plus = £2[k2] - c2[kl, k2];
c2plus = c2[klplus, k2plus];
EulerEq =

{ul[cl[kl, k2], c2[kl, k2]] - Bul[clplus, c2plus] f1'[klplus],
u2[cl[kl, k2], c2[kl, k2]] - Bu2[clplus, c2plus] £2 ' [k2plus]}

{ul[cl[kl, k2], c2[kl, k2]
c2[-cl[kl, k2] + £1[k1
u2icl[kl, k2], c2[kl, k2]
c2[-cl[kl, k2] + £1[k1

-pBul[cl[-cl[kl, k2] + f1[k1], -c2[kl, k2] + £2[k2]],
, —c2[kl, k2] + £2[k2]]] £1'[-c1[kl, k2] + f1[k1]],
- pBu2[cl[-cl[kl, k2] + £1[k1], -c2[kl, k2] + £2[k2]],
, —c2[kl, k2] + £2[k2]]] £2'[-c2[kl, k2] + £2[k2]]}

Choose utility and production functions. Put a free parameter, A, in f[k] so that we can later fix the steady state capital stock.

ulx_, y_] = Log[x] +Sqrt[y];
ul[x_, y_] =D[u[x, yl, x];
u2[x_, y_] =D[u[x, yl, v];
fl[x_] =x+ Ax%;

£f2[x_] =x+ Ax%;

a=1./4;

B =95/100;

We want the steady state capital stock to be k=1 since it makes it easier to understand the results.
Choose A so that Sf'[1]=1.

A=A//.Solve[fl'[1] =1/B, A][[1]]

0.210526
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Let's look at our Euler equation

EulerEq

0.0526316 ]

19 |1+ T
(0.210526 k1°-2*+k1-c1[k1,k2] )"

1

4

{cl[kl, k2]  20¢1[0.210526 k1°°%® + k1 - c1[kl, k2], 0.210526 k2°*® + k2 - c2[k1, k2] |

19 [1+ 0.0526316 ]

(0.210526 k2°-2°+k2-c2 [k1,k2]) %7

2+/c2[kl, k2] 40 \/c2[0.210526 k1°% + k1 -cl[kl, k2], 0.210526 k2°-?® + k2 - c2[k1, k2] |

ss is a list of substitutions that impose the steady state, k=1, and some substitutions that convert floating point versions of 1 and 0
to integer versions.

ss={kl-»>1,k2-»1,1.-51, 0. -0}
{kl1»>1, k251, 1. 51, 0. >0}
The steady state consumption is defined next
cl[l, 1] =c2[1, 1] =css = f1[1] -1
0.210526
Now check the Euler equation at the steady state.
EulerEq //. ss
{8.88178 x 107!, 2.22045x 10 '°}
sol will be the list of solutions for derivatives of c[k]. We begin the construction by setting sol to be the empty set.

sol = {};
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= prep for pert

EulerEqe = EulerEq /. kl » 1+exl /. k2> 1+€exk2

1 0.0526316

{ 191+ /
cl[l+exl, 1+ex2] (1+ex1+0.210526 (1+ex1)%% —cl[l+exl, L+ex2])""”

(20c1[1+€x1+0.210526 (1+ex1)%® -cl[l+exl, 1+ex2],
1+ex2+0.210526 (1+ex2)%® -c2[1+exl, 1+ex2]]),

1 0.0526316

“l19 |1+ /
2 [c2[1+ex1, 1+ex2] (1+€x2+0.210526 (1+ex2)%% —c2[l+exl, Lrex2])""”

(40 y/c2[1+ex1+0.210526 (1+ex1)%? -cl[l+exl, 1+ex2],

1+ex2+0.210526 (1+ex2)%?® _c2[1+exl, 1+e}<2]])}

subs = {cc_(i—'j—) [1, 1] » cc; 5}

{cc_(if,jj [1, 1] - CCi,j}

= k pert

The Euler equation must hold at all k. Therefore, its derivative w.r.t. k must also be zero at all k. Compute the derivative of the
Eulereq

D[EulerEqe, €];
%/.e>0/. 1.-51
{0.178125 (1.05263 k1 -x2c1®?[1, 1] -x1c1™® (1, 1]) -
22.5625 (k2c1V (1, 1] +x1c1™® (1, 17) +
22.5625 (c1*%[1, 1] (1.05263x1-x2cl®Y [1, 1] -x1c1™P[1, 1]) +
c1®Y 1, 1] (1.05263x2 -x2¢c2'%V [1, 1] -x1c2™ (1, 1])),
0.0408647 (1.05263 k2 -x2c2® (1, 1] -x1ec2™% (1, 1]) -
2.5881 (k2¢c2®V (1, 1] +x1c2™P (1, 1]) +
2.5881 ((1.05263 x1-x2cl1 %Y1, 1] -x1c1™® 1, 1]) c2MV (1, 1] +
c2®b 1, 1] (1.05263x2 -x2c2% P [1, 1] -x1ec2™[1, 17))}

% /. subs // Simplify

{-22.5625x1 (-0.116233 + cly,o) (0.0714964 +cly,o) +
clp,; (1.00937 x2 - 22.5625 k2 cly, - 22.5625 k2 c24,1 - 22.5625 x1 ¢21,0),

0.0430155 x2 - 2.5881 x2 ¢2 ; + (0.0953509 x1 - 2.5881 x2 clg,; - 2.5881 x1 cly,g) €210 +
c2¢,1 (0.0953509 x2 - 2.5881 x1¢c2;,0) }

SolveAlways[% == 0, {x1l, x2}]

{{clg,1 > 0., cly,g > -0.0714964, c2y,; > -0.111809, c2;,0 > 0.},
{clg,; > 0., cly,o—>-0.0714964, c2y,; - 0.148651, c2;,0 > 0.},
{clg,; > 0., cly,0 > 0.116233, c2,,; - -0.111809, 21,9 > 0.},
{clo,; > 0., cly,o - 0.116233, c2¢,; > 0.148651, c2;,0 > 0.}}

There are two solutions, one corresponding to the stable manifold and the other one corresponding to the unstable manifold. We
choose the second one because we know that ¢'[1]>0, and put it in the solution set.
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sol = Union[sol, % // Last]
{clg,1 > 0., cly,0 > 0.116233, c2j,; » 0.148651, c2;,,0 > 0.}
sol=sol /. 0. > 0

{clo,1 » 0, cly,p - 0.116233, c2¢,; > 0.148651, c2;,0 - 0}
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= k pert - degree 2

‘We now move on to the second derivative

D[EulerEqe, {€, 2}];
%/.e>0/. 1. >1 /. subs;

% /. sol

{2.72335 k1% -22.5625 (x2 (x2clg,z +xlcly,y) +x1 (x2¢ly,; +xlclyg)) -

0.2375 (1.15086 <1? - 0.75 (-0.0394737 x1? - x2 (x2cly,p +xlcly,1) -kl (x2¢cly,; +xlclyo))) -
1. (2.53917 x1% - 22.5625 (0.903981 x2 (0.903981 x2clg,, + 0.936398 x1cly y) +

0.936398 x1 (0.903981 k2 cly,; +0.936398 x1cl,y, ) +0.116233

(-0.0394737 x1? - x2 (k2 cly,5 + xlcly,1) - k1 (k2¢ly,; +xlclyg)))), -0.0235791 k27 -

0.0544862 (1.07255x2%-0.75 (-0.0394737 K22 - K2 (K2 €29,5 + K1 €2;,1) - K1 (x2€2y,; +x1 c22,0))) +
2
0.5 (0.665961 x2% - 5.17619 (0.903981 x2 (0.903981 k2 20,2 + 0.936398 k1 c2y,1) +

0.936398 x1 (0.903981 x2c2;,; + 0.936398 x1 c2;,0) +

0.148651 (-0.0394737 k2 - k2 (K2 C2¢,2 + K1 €21,1) - k1 (k22,1 +x1 c22,0>)))}

(0.81495x2% - 5.17619 (x2 (x2C2,2 +x1C21,1) + k1 (K2¢21,1 +Kk1cC2s,0))) -

CoefficientList[%, {x1l, x2}]

{{{0, 0, -6.92549 cl,,,}, {0, -12.5286cl;,,, 0}, {-0.199701 -5.57939cl,,,, 0, 0}},
{{0, 0, -0.0243237 - 0.898741c2,,,}, {0, -1.64579c2;,,, 0}, {-0.744333¢c2,,0, 0, 0}}}

% // Flatten // Union // Rest

{-6.92549clp,, -12.5286 cly,;, -0.199701 -5.57939 1y o,
-0.0243237 -0.898741c2¢,,, -1.64579¢c2;,,, -0.744333 c2;,,9}

eqgs = %

{-6.92549 cly,,, -12.5286 cly,;, -0.199701 - 5.57939 cl,,,,
~0.0243237 - 0.898741¢2y,,, -1.64579c2;,,, -0.744333 ¢2;,,0}

vars = Variables[egs]

{clg,2, cl1,1, €©1l2,0, ©20,2+ C21,1+ C22,0}

This is a linear expression in terms of the unknown c¢"[1]. Solve it
Solve[eqgs == 0, vars]

{{clg,2 > 0., cly,3 5 0., cly,o > -0.0357926, c2,, > -0.0270642, c2;,; > 0., c2,,0 > 0.}}

and add this solution to our solution set
sol = Union[sol, %[[1]]] // Simplify

{clg,; >0, clg,, > 0., cly,o > 0.116233, cly,; > 0., clp,o > -0.0357926,
c2,1 > 0.148651, c29,, > -0.0270642, c21,0 > 0, c23,1 > 0., €25,0 > 0.}

sol =sol /. 0.0

{cly,1 >0, clg,2 >0, cly,o > 0.116233, cl; ;1 >0, cly o > -0.0357926,
€2p,1 > 0.148651, c2,,, > -0.0270642, 21,90 > 0, 21,1 5 0, c25,0 > 0}
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= k pert - degree 3

We will now express the steps in a more compact manner

D[EulerEqe, {€, 3}];

%/.e>0/. 1. >1 /. subs;

% /. sol;

CoefficientList[%, {x1l, x2}];

% // Flatten // Union // Rest;

eqs =%

vars = Variables[egs]

Solve[eqgs == 0, vars]

sol = Union[sol, %[[1]]] // Simplify

{-8.69586 clp,3, -24.2945cl,,», -22.437¢cly,;, 0.370006 -6.83767 cls,q,
0.0436706 -1.10182 c2y,3, -3.09976 c2;,,, -2.8867c2;,;, -0.888667 c23,0}

{clo,3, cl1,2, 13,1, €1l3,0, C2¢,3, C21,2, C22,1, C23,0}

{{cly,35>0.,¢cly,,>0.,clz,; 0.,
clz,o > 0.0541129, c24,3 » 0.0396351, c2;,, > 0., c2;,; > 0., c235,90>0.}}

{clo,1 » 0, clg,2 >0, clp,3>0., cly,0~>0.116233, cl;,;, >0, cl;,2 > 0.,
cly o - -0.0357926, cly,; > 0., cls, g - 0.0541129, 29, - 0.148651, c2,,, > -0.0270642,
C20,3 - 0.0396351, C21,0 - 0, C21,1 e 0, C21,2 - 0., C22'0 - 0, C22,1 e 0., C23,0 - 0.}

sol=s0l/. 0.-50
{010,1 - 0, 010,2 - 0, 010,3 - 0, Cll,O - 0.116233, C11,1 - 0, 011,2 - 0,

cly 90— -0.0357926, cly,; > 0, cls,o > 0.0541129, c2p,; - 0.148651, c2,, » -0.0270642,
c24,3 - 0.0396351, c2;,0 > 0, €21,7 > 0, €21, >0, €23,0 > 0, €25,1 - 0, c23,9 > 0}
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= k pert - degree 4

We will now express the steps in a more compact manner

D[EulerEqe, {€, 4}];

%/.e>0/. 1. >1 /. subs;

% /. sol;

CoefficientList[%, {x1l, x2}];

% // Flatten // Union // Rest;

eqs =%

vars = Variables[eqgs];

Solve[eqs = 0, vars];

sol = Union[sol, %[[1]]] /. 0. >0 // Simplify

{-10.2962clgp,4, -39.0237cly,3, -55.1774 cl,,,, -34.4659cl;3,;, -1.08824 -8.01592cly, o,
-0.12473 -1.28539¢c2¢,4, -4.89366 Cc2;,3, -6.95528¢c2;,5, -4.37084 ¢c23,;, -1.02382 24,0}

{clg,1 >0, cly,, >0, cly,3>0,clg,s >0, cly,o~0.116233, c1,,;, >0, cl;,,>0,cl;,3->0,
cly, 0> -0.0357926, cl;,;, » 0, cl;,, >0, cl3,9 > 0.0541129, cl13,; - 0, cly,o » -0.135759,
C€2p,1 > 0.148651, c2¢,, > -0.0270642, c2y,3 » 0.0396351, c2p,4 > -0.0970362, c2,,0 >0,
c2;,1>0,¢2,,,-50,¢c2;,3->0, c2;,0->0,c2;,; >0, c2;,,>0,c2;3,9->0,c23,; >0, c24,0->0}
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m k pert - degree 5

We will now express the steps in a more compact manner

D[EulerEqe, {€, 5}];

%/.e>0/. 1. >1/. subs;

% /. sol;

CoefficientList[%, {x1l, x2}];

% // Flatten // Union // Rest;

eqs =%

vars = Variables[eqgs];

Solve[eqs = 0, vars];

sol = Union[sol, %[[1]]] /. 0. >0 // Simplify

{-11.743 cly,5, -56.2726 cl; 4, ~107.486 cl,, 3, -102.245cl;,,,
-48.4079 cly,y, 4.34358 -9.11923 cls,o, 0.485097 - 1.45134 c2q,5,
-6.97658 c2;,4, -13.3728 ¢2,,5, -12.7716 ¢23,,, -6.07443 ¢24,,, -1.15038 25,4}

{010,1 d O, C10,2 g 0, 010,3 d O, C10’4 d 0, C10,5 g 0, Cl]_,o d 0.116233, 011,1 d O,
cl;,2>0,¢cl;,3->0,¢cl;,4>0, cly~>-0.0357926, cl;,;, >0, cly »~>0,cly;3->0,

cls,o - 0.0541129, cl3,1 >0, ¢l >0, cly o> -0.135759, cly,; > 0, cls,o > 0.47631,
c20,1 - 0.148651, c2;,, > -0.0270642, c2¢,5 > 0.0396351, c29,4 - -0.0970362,

020,5 - 0.33424, 021,0 4 0, C21,1 - 0, 021,2 - O, C21,3 - 0, 021,4 - 0, C22,0 - 0, C22,1 - 0,
€23, >0, ¢c2,,3->0, ¢c23,0~>0, c23,;, >0, c23,2, >0, 24,0 >0, €24, >0, c25,0 >0}
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= k pert - degree more

We will now express the steps in a more compact manner
sol5 = sol;
sol = sol5

{clg,1 >0, cly,2 >0, clg,3 >0, cly,s >0, cly,s >0, cl;,o—»0.116233, cl;,; » 0,
cly,»>0,cl;,3->0,cl;,4>0, clyo—>-0.0357926, cl;,;, -0, cl;,, >0, cl;, 30,

clz, o> 0.0541129, cl13,; » 0, cl3,2 > 0, cly,0 » -0.135759, cly,; - 0, cls,o - 0.47631,
C€2p,1 - 0.148651, c2¢,, > -0.0270642, c2¢,3 > 0.0396351, c2p,4 » -0.0970362,

c2p,5 > 0.33424, c2,,0 >0, ¢c2;,; >0, c2;,, >0, c2;,3>0, c27,4 >0, c25,0>0, c2,,;, >0,
€23, >0, ¢c2;,3->0,¢c23,90—->0, c23,, >0, c23,, >0, c24,0 >0, c24,;, >0, c25,9~>0}

Do [
d0 = D[EulerEqe, {e, j3j}1;
dl=d0/.e€e->0/. 1. 51 /. subs;
d2 =dl /. sol;
d3 = CoefficientList[d2, {x1l, x2}];
eqs = d3 // Flatten // Union // Rest;
vars = Variables[eqs];
solnew = Solve[egs == 0, vars];
sol = Union[sol, solnew[[1]]] /. 0. >0 // Simplify,
{3ji, 6, 8}]
Length[sol]

88

sol

{clg,1 >0, cly,, >0, clp,3 >0, cly,s >0, cly,s >0, clye—>0, cly,7>0,clys—0,

cl;,0~0.116233, ¢cl;,;, -0, cl;,,>0,¢cl;,3->0,¢cl;,4>0,¢cl;5->0,cl;,6>0,cly,7;->0,

C].z,o 4 *0.0357926, C12,1 - 0, 012'2 - 0, 012,3 4 0, C12,4 - 0, 012,5 - O, C12,6 - 0,

clz,o > 0.0541129, cl3,;, > 0, cl3,2 >0, ¢cl3,3 >0, cl3,4 >0, cl3,5 >0, cly,o > -0.135759,

cly,1 >0, cly,2>0,cly,3>0,cly,4>0,cls,o—~>0.47631, cls,; -0, cls,, -0, cls,3>0,

clg,0o > -2.14781, clg,;, » 0, clg,, > 0, cl7,0 » 11.8364, cl7,; > 0, clg,o » -77.0954,

c2g,1 > 0.148651, c2p,, » -0.0270642, c2p,3 » 0.0396351, c2¢,4 » -0.0970362, c2¢,5 - 0.33424,

c2¢,6 > -1.48609, c2¢,7 > 8.10074, c2p,3 > -52.3138, ¢2;,0 >0, 25,1, > 0, c2;,,, > 0,

c21,3>0,¢2y,4-50,¢2;,5>0,¢c2;,6>0,¢c2;,7-50,¢2;,0>0,c2;,;,->0,c2;,,->0,c2;,3->0,

022,4 - 0, 022,5 - 0, C22,6 - 0, C23,0 - 0, C23,1 - 0, C23,2 - O, C23,3 - 0, 023'4 - 0,

C23,5 >0, c24,0>0,¢c24,1 >0, c24,2 >0, c24,3 >0, 24,4 >0, c25,0>0, c25,; >0,
-

c25,, >0, c25,3 >0, 26,0 >0, c26,, > 0, c24,2 >0, c27,0 >0, c27,, >0, c25,0 > 0}



Perturbation Methods for General Dynamic Stochastic Models

He-nUT JIN* KeENNETH L. JUDD
DEPARTMENT OF ECONOMICS HOOVER INSITUTION
STANFORD UNIVERSITY STANFORD, CA 94305
STANFORD, CA 94305 JUDD@HOOVER.STANFORD.EDU

December, 2002

ABSTRACT. We describe a general Taylor series method for computing
asymptotically valid approximations to deterministic and stochastic rational
expectations models near the deterministic steady state. Contrary to conven-
tional wisdom, the higher-order terms are conceptually no more difficult to
compute than the conventional deterministic linear approximations. We dis-
play the solvability conditions for second- and third-order approximations and
show how to compute the solvability conditions in general. We use an implicit
function theorem to prove a local existence theorem for the general stochastic
model given existence of the degenerate deterministic model. We describe an
algorithm which takes as input the equilibrium equations and an integer k,
and computes the order k Taylor series expansion along with diagnostic indices
indicating the quality of the approximation. We apply this algorithm to some
multidimensional problems and show that the resulting nonlinear approxima-

tions are far superior to linear approximations.

*We thank Mordecal Kurz and Chris Sims for valuable comments.



PERTURBATION METHODS FOR GENERAL DYNAMIC STOCHASTIC MODELS 2

Economists are using increasingly complex dynamic stochastic models and need
more powerful and reliable computational methods for their analysis. We describe a
general perturbation method for computing asymptotically valid approximations to
general stochastic rational expectations models based on their deterministic steady
states. These approximations go beyond the normal “linearize around the steady
state” approximations by adding both higher-order terms and deviations from cer-
tainty equivalence. The higher-order terms and corrections for risk will likely improve
the accuracy of the approximations and their useful range. Also, some questions, such
as welfare effects of security markets, can be answered only with higher-order approxi-
mations; see Judd and Guu (2001) for ,models where higher-order terms are essential.
Contrary to conventional wisdom, these higher-order terms are no more difficult to
compute than the conventional deterministic linear approximations; in fact, they are
conceptually easier. However, we show that one cannot just assume that the higher-
order terms create a better approximation. We examine the relevant implicit function
theorems that justify perturbation methods in some cases and point out cases where
perturbation methods may fail. Since perturbation methods are not perfectly reliable,
we also present diagnostic procedures which will indicate the reliability of any spe-
cific approximation. Since the diagnostic procedures consume little computational
effort compared with the construction of the approximation, they produce critical
information at little cost.

Linearizations methods for dynamic models have been a workhorse of macroeco-
nomic analysis. Magill (1977) showed how to compute a linear approximation around
deterministic steady states and apply them to approximate spectral properties of sto-
chastic models. Kydland and Prescott (1982) applied a special case of the Magill
method to a real business cycle model. However, the approximations in Magill, and
Kydland and Prescott were just linear approximations of the deterministic model

applied to stochastic models; they ignored higher-order terms and were certainty
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equivalent approximations, that is, variance had no impact on decision rules. The
motivating intuition was also specific to the case of linear, certainty equivalent, ap-
proximations. Kydland and Prescott (1982) motivated their procedure by replacing
the nonlinear law of motion with a linear law of motion and replacing the nonlinear
payoff function with a quadratic approximation, and then applying linear-quadratic
dynamic programming methods to the approximate model. This motivation gives the
impression that it is not easy to compute higher-order approximations, particularly
since computing the first-order terms requires solving a quadratic matrix equation.
In fact, Marcet(1994) dismissed the possibility that higher-order approximations be
computed, stating that “perturbation methods of order higher than one are consid-
erably more complicated than the traditional linear-quadratic case ...”

Furthermore, little effort has been made to determine the conditions under which
certainty equivalent linearizations are valid. Linearization methods are typically used
in an application without examining whether they are valid in that case. This raises
questions about many of the applications, particularly since the conventional lin-
earization approach sometimes produces clearly erroneous results. For example, Tesar
(1995) uses the standard Kydland-Prescott method and found an example where
completing asset markets will make all agents worse off. This result violates general
equilibrium theory and can only be attributed to the numerical method used. Kim
and Kim (forthcoming) show that this will often occur in simple stochastic models.
Below we will present a portfolio-like example which shows that casual applications
of higher-order procedures (such as those advocated by Sims, 2002, and Campbell
and Viciera, 2002) can easily produce nonsensical answers. These examples empha-
size two important points. First, more flexible, robust, and accurate methods based
on sound mathematical principles are needed. Second, we cannot blindly accept the
results of a Taylor series approximation but need ways to test an approximation’s

reliability. This paper addresses both issues.
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We will show that it is practical to compute higher-order terms to the multivari-
ate Taylor series approximation based at the deterministic steady state. The basic
fact shown below is that all the higher—order terms of the Taylor series expansion,
even in the stochastic multidimensional case, are solutions to linear problems once
one computes the first—order terms. This implies that the higher—order terms are
easier to compute in the sense that linear problems are conceptually less complex.
In previous papers, Judd and Guu (1993, 1997) examined perturbation methods for
deterministic, continuous- and discrete-time growth models in one capital stock, and
stochastic growth models in continuous time with one state. They find that the high-
order approximations can be used to compute highly accurate approximations which
avoid the certainty equivalence property of the standard linearization method. Judd
and Gaspar (1997) described perturbation methods for multidimensional stochastic
models in continuous time, and produced Fortran computer code for fourth-order ex-
pansions. Judd (1998) presented the general method for deterministic discrete-time
models and presented a discrete-time stochastic example indicating the critical ad-
justments necessary to move from continuous time to discrete time. In particular, the
natural perturbation parameter is the instantaneous variance in the continuous-time
case, but the standard deviation is the natural perturbation parameter for discrete-
time stochastic models. The reader is referred to these papers and their mathematical
sources for key definitions and introductions to these methods. In this paper, we will
outline how these methods can be adapted to handle more general rational expecta-
tions problems.

There has recently been an increase in the interest in higher-order approxima-
tion methods. Collard and Juillard (2001a) computed a higher-order perturbation
approximation of an asset-pricing model and Collard and Juillard (2001b). Chen
and Zadrozny (forthcoming) computed higher-order approximations for a family of

optimal control problems. Kim and Kim (forthcoming) applied second-order ap-
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proximation methods to welfare questions in international trade. Sims (2000) and
Grohe-Schmidt and Uribe (2002) have generalized Judd (1998), Judd and Gaspar
(1997), and Judd and Guu (1993) by examining second-order approximations of mul-
tidimensional discrete-time models.

The first key step is to express the problem formally as two different kinds of
perturbation problems and apply the appropriate implicit function theorems. Even
though we are applying ideas from implicit function theory, there are unique difficul-
ties which arise in stochastic dynamic models. Perturbation methods revolve around
solvability conditions, that is, conditions which guarantee a unique solution to terms
in an asymptotic expansion. We display the solvability conditions for Taylor series
expansions of arbitrary orders for both deterministic and stochastic problems, show-
ing that they reduce to the invertibility of a series of matrices. The implicit function
theorem for the deterministic problem is straightforward, but the stochastic compo-
nents produce novel problems. We give an example where a casual approach will
produce a nonsensical result. We use an implicit function theorem to prove a local
existence theorem for the general stochastic model given existence of the degener-
ate deterministic model. This is a nontrivial step and an important one since it is
easy for economists to specify models which lack a local existence theorem justifying
perturbation methods.

We then describe an algorithm which takes as input the equilibrium equations and
an integer k, and computes the order k Taylor series expansion along with diagnostic
indices indicating the quality of the approximation. We apply this algorithm to some
multidimensional problems and show that the resulting nonlinear approximations are
far superior to linear approximations over a large range of states. We also emphasize

the importance of error estimation along with computation of the approximation.
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1. A PERTURBATION APPROACH TO THE GENERAL RATIONAL EXPECTATIONS

PROBLEM

We examine general stochastic problems of the form

0 = E{gu(‘xﬁytaxﬂrhyt+17€’z)|xt}7 m= ]-7 <y m (1)

Tiv1 = F(xtvyt752t>a Z—].,...,TL

where x; € R" are the predetermined variables at the beginning of time ¢, such
as capital stock, lagged variables and productivity, 1, € R™ are the endogenous
variables at time ¢, such as consumption, labor supply and prices, and F(xy, y,€2)

R" x R™ x R*— R, i = 1,...,n is the law of motion for z¢, and
9 (Te, Yt, Teg1, Yer1,62) R X R X R X R XR - R, p=1,...,q

are the equations defining equilibrium, including Euler equations and market clearing
conditions. The scalar ¢ is a scaling parameter for the disturbance terms z. We
assume that the components of z are i.i.d. with mean zero and unit variance, making
¢ the common standard deviation. Since correlation and heteroscedasticity can be
built into the function g, we can do this without loss of generality. Different values
for € represent economies with different levels of uncertainty. The objective is to
find some equilibrium rule, Y (z,¢), such that in the e-economy the endogenous and
predetermined variables satisfy

Ut = Y (.7315, 6)
This implies that Y (z, ) must satisfy the functional equation

E{g"(x,Y (z,e), F (2,Y (z,¢),e2),Y (F (2,Y (z,¢) ,e2) ,e),e2)|z} =0 (2)

Our perturbation method will approximate Y (z,¢) with a polynomial in (z,¢) in

a neighborhood of the deterministic steady state. The deterministic steady state is
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the solution to

O = g(x*7y*7x*7y*70) (3)
Ty = F(l‘*,y*,O)

The steady state y, is the first step in approximating Y (z,¢) since Y (z4,0) = ys.
The task is to find the derivatives of Y (x,¢) with respect to x and ¢ at the deter-
ministic steady state, and use that information to construct a degree k Taylor series

approximation of Y (z,¢), such as in

Y(z, +v,e) = yu+ Ye(2s,0)v+eY(24,0) (4)
0 Yy, (24, 0) v + €Y (2, 0) v + %Yo, (24, 0)
+...
+o (gk + ||U||’“) (5)

If Y is analytic in the neighborhood of (z.,0) then this series has an infinite number
of terms and it is locally convergent. The objective is also to be able to use the Taylor
series approximation in simulations of the nonlinear model and be able to produce
uniformly valid approximations of the long-run and short-run behavior of the true
nonlinear model. This is a long list of requirements but we will develop diagnostics
to check out the performance of our Taylor series approximations.

Equation (1) includes a broad range of dynamic stochastic models, but does leave
out some models. For example, models with intertemporally nonseparable prefer-
ences, like those in Epstein-Zin (1989), are functional equations and do not obviously
reduce to a dynamic system in R"”. However, with modest modifications, our methods
can be applied to any problem of the form in (2), a larger set of problems than those
expressible as (1). We also assume that any solution to (3) is locally unique. This

rules out many interesting models, particularly models with portfolio choices and
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models where income distribution may matter. Portfolio problems can probably be
handled with dynamic extensions of Judd and Guu (2001), and income distribution
problems can probably be handled by application of the center manifold theorem,
but we leave these developments for later work.

Computing and evaluating the approximation in (4) is accomplished in five steps.
The first is to solve (3) for steady state values (z.,y.). This is presumably accom-
plished by applying some nonlinear equation solver to (3) and will not be further
discussed here. The second is to compute the linear approximation terms, Y, (z.,0).
This is done by analyzing the the deterministic system formed by setting ¢ = 0 in (1)

to create the perfect foresight system

0 = ¢"(@, Y, Tes1, Yi41,0) (6)

$i+1 = Fi(xtaytvo)

Computing the linear terms is a standard computation, solvable by a variety of tech-
niques. See the literature on linear rational expectations models for solution methods
(Anderson, et al. , 1996, is a survey of this literature); we will not discuss this step
further.

This paper is concerned with the next three steps. Third, we compute the higher-
order deterministic terms; that is, we compute perturbations of Y (x,0) in the x
directions. Formally, we want to compute %Y (4,0), k = 1,2,.... This produces

the Taylor series approximation for the deterministic problem
Y(2,0) =y + Y, (2,,0) (x — ) + (¢ — 2,) " Vi (2,,0) (. — 2,) + ... (7)

for the solution to (6).
Fourth, with the Taylor series for Y (z,0) in hand, we examine the general sto-

chastic problem Y (z,e). We use the expansion (7) of the deterministic problem to

compute the ¢ derivatives, (%)g (

0

$)kY (74,0) . More generally, we show that how
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to take a solution of Y (z,0) and use it to construct a solution to Y (z,¢) for small .
This last step raises the possibility that we have an approximation which is not just
locally valid around the deterministic steady state point (x,,0) but instead around a
large portion of the stable manifold defined by Y (z,0).

This four-stage approach is the proper procedure since each step requires solutions
from the previous steps. Also, by separating the stochastic step from the deterministic
steps we see the main point that we can perturb around the deterministic stable
manifold, not just the deterministic steady state.

Before we accept the resulting candidate Taylor series, we must test its reliability.
Let Y (x,€) be the computed finite order Taylor series we have computed. We evaluate
it by computing

E {g“(:c, Y (z,€),F(z,Y (z,¢),22), Y (F(z,Y (z,¢) ,5z),5),5z)]x} =0
for a range of values of (z,¢) that we want to use, where g(xy, yi, Ty11, Ysi1,£2) is
a unit-free version of g"(xy, ys, Tyi1, Yei1,€2). That is, each component of E {g"} is
transformed so that any deviation from zero represent a relative error. For example,
if one component of ¢ is supply equals demand then the corresponding component
of g" will express excess demand as a fraction of total demand and any deviation
of E{g"(x¢, ys, Ti1, Yes1,€2)|x¢} from zero represents the relative error in the supply
equals demand condition. If these relative errors are sufficiently small then we will
accept Y (x,¢). This last step is critical since Taylor series expansions have only a
finite range of validity and we have no a priori way of knowing the range of validity.

Before continuing, we warn the reader of the nontrivial notational challenge which
awaits him in the sections below where we develop the theoretical properties of our
perturbation method and present the formal justification of our algorithm. After
being introduced to tensor notation and its application to multivariate stochastic

control, the reader may decide that this approach is far too burdensome to be of
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value. If one had to go through these manipulations for each and every application,
we might agree. Fortunately, all of the algebra discussed below has been automated,
executing all the necessary computations, including analytic derivatives and error
indices, and produce the Taylor series approximation discussed below. This will

relieve the user of executing all the algebra we discuss below.

2. MULTIDIMENSIONAL COMPARATIVE STATICS AND TENSOR NOTATION
We first review the tensor notation necessary to efficiently express the critical multi-
variate formulas. We will follow the tensor notation conventions used in mathematics
(see, for example, Bishop and Goldberg, 1981, and Misner et al., 1973) and statistics
(see McCullagh, 1987), and use standard adaptations to deal with idiosyncratic fea-
tures of rational expectations models. We then review the implicit function theorem,

and higher-order applications of the implicit function theorem.

2.1. Tensor Notation. Multidimensional perturbation problems use the multi-
dimensional chain rule. Unfortunately, the chain rule in R"™ produces a complex
sequence of summations, and conventional notation becomes unwieldy. The FEin-
stein summation notation for tensors and its adaptations will give us a natural way
to address the notational problems.! Tensor notation is a powerful way of dealing
with multidimensional collections of numbers and operations involving them. We will
present the elements of tensor notation necessary for our task; see Judd (1998) for
more discussion.

Suppose that a; is a collection of numbers indexed by i = 1,...,n, and that 2° is

a singly indexed collection of real numbers. Then

a; ' = E a; T*.
i

!The dubious reader should try to read the formulas in Bensoussan(1988) where conventional

notation is used.
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is the tensor notation for the inner product of the vectors represented by a; and 2.
This notation is desirable since it eliminates the unnecessary ¥ symbol. Similarly
suppose that a;; is a collection of numbers indexed by 7,7 = 1,...,n. Then

ai; v’y = ZZ aij 'y

i

is the tensor notation for a quadratic form. Similarly, a;wiyj is the quadratic form
of the matrix a§ with the vectors  and y, and the expression z; = aéxi can also be
thought of as a matrix multiplying a vector. We will often make use of the Kronecker
tensor, which is defined as
1,ifi =y
0,ifi #j

and is a representation of the identity matrix. d3, &%, etc., are similarly defined.

(525

More formally, we let 2° denote any vector in R™ and let a; denote any element
in the dual space of R", that is, a linear map on vectors z‘in R". Of course, the
dual space of R" is R". However, it is useful in tensor algebra to keep the distinction

between a vector and an element in the dual space.

11,02,.0y0¢

In general, ajn s

is a £ —m tensor, a set of numbers indexed by ¢ super-
scripts and m subscripts. It can be thought of as a scalar-valued multilinear map on
(R™)¢ x (R")™. This generalizes the idea that matrices are bilinear maps on (R")2.
The summation convention becomes particularly useful for higher-order tensors. For

example, in R",
n n n n
13,04 __ 11,012,813 1J1,J2,J4 — 11,12,13 1.91,72,J4
J3sia aj1,j2,jsbi17i2,i4 - Z Z Z Z aj17j2,j3bgl7i27i4

C: =
i1=11ig=1j1=1 jo=1
In our applications if f : R — R™, then f; will be the derivative of f with respect
to 27. The following equation expresses the multivariate Taylor expansion in tensor

notation:

[ (@ +v) = f(2°) + f;(2)" + %fij(xo)vivj - %fijk(xo)vivjvk + .y
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where f; = 2L(29), f;; = ajfaij (z°), etc. More generally, if f : R" — R™, then f;
will be the derivative of the i'th component of f with respect to 27. We will make
extensive use of the multivariate chain rule. If f : R” — R™, g : R™ — R’ and
h(x) = g(f (7)), then h : R® — R and the Jacobian of h is

P _ Oh'
I 0wl

= g,fr.

Furthermore the 1-2 tensor of second-order derivatives is

* = Prionk Gom ST TS+ Gof e

This can be continued to express arbitrary derivatives.

Equation (1) is based on
9(x,y,z,w,€) - R™ x R" x R™ x R™ x R — R

which is a function of five groups of variables. Our perturbation analysis needs to
distinguish among derivatives with respect to different subsets of the variables. We
will use the standard device of letting different indices denote the differentiation with
respect to different sets of variables. For example, in general relativity theory, one
typically uses Latin letters, a,b,c, ..., to represent summation over the three space
coordinates (x,y, z) and Greek letters, u, v, p, ..., to represent summation over space-
time coordinates (z,y, z,t). We apply this practice here to distinguish among x,y, z,
and w. Specifically, the derivatives of g with respect to x' will be denoted by lower

case Latin letters as in

g; (2,9, 2,w,8) = —— (" (2,4, 2, w,€))

oxt

This implies that

0
g5 (x,y, 2,w,¢) = 5 9 (@92, 0,€))
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denotes the partial derivative of g*(z,y,z,w) w.r.t. the j’th component of z. In
general, g with a subscript from {i,j, k,...} denotes the vector of derivatives of
g"(x,y,z,w,e) with respect to the components of x. We use different indices to
denote derivatives with respect to components of y. In particular, we will use lower

case Greek letters to index components of y and define

o (5,0, 50,8) = 5 (909,20 0.2)
g5 (0.9, 2 w,8) = a%@(:c,y,z,w,e))

Derivatives of ¢g"(x,y, z, w) w.r.t. components of z will use capitalized Latin letters,

as in

0
g?(x,y,Z,w,e) = ﬁ(gu(xvyvszvg»
0

95 (@y,zw,e) = o5 (9"(@,y,2,0,¢))

and derivatives of ¢(x,y, z,w) w.r.t. components of w will use capitalized Greek

letters, as in

0

g/;} (may7z7w7€) = w<g#(m7yaz7w78))
0

g{"L (%%27%5) = w (9“(%%27%5))
0

gg ($,y,Z,U),€) = &U—A (g'u(m7yaz7w)7€)

The distinction holds only for subscripts. For example, the notation 3° will denote
the same vector as would /.

Since ¢ is a scaler, the derivatives w.r.t. € will be denoted in the standard manner,

0

gf (xayazawug) = % (g'u (33797271075))
82

gﬁa(x,y,z,w,s) = @(QM(I,y,Z,w,é‘))
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Combinations of indices represent cross derivatives. For example,

0 0

"(r,y,z,w,e) = —— (¢" (x,y, 2, w, e
Ioi (T,Y ) i B (9" (z,y )

We will often want the composite gradient of g*(z,y, z,w, ) consisting of the deriv-
atives with respect to (y, z, w). We let X = {«a, I, A} denote the set of all indices for

(y, z,w) and use the notation g§(x,y, z,w, €) to represent the derivatives as in

gé;(m?y?z?w?g) = ( géf (mvya Z,’LU,E), g‘/’ﬁ (xvyv va75>v gfjl (xvya va75> )

2.2. Implicit Function Theorem and Solvability Conditions. The general
implicit function theorem for R™ is the critical tool motivating our computations, even
though it is not directly applicable to our problems. A review of the Implicit Function
Theorem highlights the critical issues we will face. Let H (z,y) : R” x R™ — R™,

and suppose H (zg,yo) = 0. Let
H"(z,h(z)) =0 (8)

implicitly define A : R® — R™ for = near zy. In particular, we know h(zg) = yo.

Taking the derivative of (8) with respect to z* shows
H (2, h(x)) + Hy(x, h (2))hi (x) = 0

which, at x = x¢, implies

oY@
oxt

(z0) = h{(wo) = —HYH'
where ﬁl‘j‘ is the tensor (matrix) satisfying
Hy (Hg(fﬁoa?Jo)) = 03

The tensor h{ is the comparative static matrix which expresses how components of

h (x) change as we move x away from z,. The solution h$ exists as long as H q» the
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inverse matrix of HZ(xq,yo), exists. Therefore, the solvability condition for A% is the
nonsingularity of HY(xq,yo). If H%(xg, o) is invertible, then the linear approximation

of h(x) based at x = zg is
h® (330 + U) = ha<$0) + h?Ui.

which is just the beginning of the multivariate Taylor series approximation of h ()
based at xg.

We often need to go beyond the first-order expression of and construct higher-order
terms of the Taylor series expansion. To do this in a clean and compact fashion, we

need tensor notation. Taking another derivative of (8) w.r.t. 7 implies
Hy(x, h (x)) + Hby(x, b (2))h§ (2) B () + HE (2, b ()b (2) = 0
which, at x = x¢, implies

ey (wo) = —Hy (Hij + HY;h0RS) (9)

)

Again, we see that the second-order coefficients are given by (9) as long as H* (o, yo)
is invertible. Further differentiation shows that at each stage the critical solvability
condition is the same, the invertibility of H*(xzq,yo). Therefore, we can continue to
solve for terms in a Taylor series expansion as long as H has the necessary derivatives.
We will compute the solvability conditions for the dynamic perturbation problem, and
find that they differ from this in that the k’th order solvability condition depends on
k.

3. A SIMPLE EXAMPLE
We first illustrate regular perturbation in the context of the basic rational expecta-
tions equations in a simple optimal growth model. This will help us see through the
complexity of the multidimensional case and also show why we use € as a pertur-

bation variable as opposed to the variance €2 which is the perturbation variable in
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continuous-time asymptotic methods, such as in Fleming, Judd and Guu (1993), and
Gaspar and Judd (1997).
Consider the simple stochastic optimal growth problems indexed by &
max,, Y oo B u(c)
5.t kipr = F(ke — c)(1+ e2)

where the z; are i.i.d. with unit variance, and ¢ is a parameter expressing the standard

(10)

deviation. The solution of the deterministic case, ¢ = 0, can be expressed as a policy

function, C'(k), satisfying the Euler equation
W' (C(k)) = Bu' (C(F(k = C(k)))) F' (k= C(k)).

Standard linearization methods produce C’(k). Successive differentiations of (10) pro-
duce higher-order derivatives of C'(k) at k = k*. For example, the second derivative
of (10) together with the steady-state condition k£ = k* implies that C"(k*) satisfies
the linear equation
W'C" +u"C'C" = Bu” (C'F'(1—C")? F' + pu"C" (F'(1—C")* F'
+2Bu"C'F'(1 — C")2 F" + Bu'F"(1 — C")?
+Bu' F"(—C")
where the parentheses denote multiplication, not application of a function. All func-
tions are evaluated at the steady state value of their arguments. This is a linear
equation in the unknown C”(k*). Linear operations combined with successive differ-
entiations of (10) produce all higher-order derivatives.
The solution in the general case is a policy function, C (k,¢), which expresses
consumption as a function of the capital stock k as well as the standard deviation e.

C(k, €) satisfies the Euler equation
u’ (C(l{?,&‘)) = ﬁE{U/ (g(&‘, k, Z)) R(é‘, k, Z)} (11)
g(e k,z) = C((1+ex)F(k—C(k)))
R(e, k,2) = (1+ez)F' (k—C(k))
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Differentiation of (11) with respect to e produces a linear equation for C. (k*,0),
which has the solution C. = 0. This is a natural result since ¢ parameterizes the
standard deviation of uncertainty, whereas basic economic intuition says that the
economic response should be proportional to variance, which is 2. Furthermore,
the perturbation variable in Fleming (1971) was instantaneous variance. Therefore,
C. = 0 is a natural result.

Further differentiation with respect to € produces a linear equation for C.. (k*,0)

shows that
u/// C’/C/FQ + ZUIIC/F + u//C//FZ
UIIC/F/ _I_ BUIFII

Cee (K*,0) =

where all the derivatives of u and F' are evaluated at the steady-state values of ¢ and
k. This can be continued to compute higher-order derivatives as long as v and F'
have the necessary derivatives.

It may initially appear more natural to use variance, 2, as the perturbation
variable since C; (k,0) = 0. However, using the variance would cause difficulty in a
discrete-time problem. The £ term C... is nonzero in the deterministic case since
skewness can be nonzero. This is not a problem in the continuous-time, Ito process
case since all odd (instantaneous) moments are zero. A Taylor series in €2 in discrete-
time stochastic problems would miss the €® terms and would fail at or before the
g3 term. In terms of asymptotic theory, the appropriate gauge for discrete-time

stochastic problems is ¥ instead of £2*.

4. PERTURBATIONS OF THE DETERMINISTIC MODEL
We now begin applying perturbation methods to rational expectations models of the
form in (1).We first describe the perturbation method for the deterministic problem.
The deterministic problem has independent interest. Since the perturbations are with
respect to the state variables x, we drop the € parameter in this section to simplify

the notation.



PERTURBATION METHODS FOR GENERAL DYNAMIC STOCHASTIC MODELS 18

Suppose that z € R” and y € R™. Then Y (z) : R* — R™, g : R" x R™ x R" x
R™ xR — R™, and F' : R" x R™ — R". Note that we assume that the number of
equations in g = 0 equals the number of free variables, m. We express equilibrium in
the more convenient form
g" (@Y (x), & (z),Y (x))

X (z)— F'(z,Y (x)) (12)

YA () =YX (2))

0=G(z,Y (z),X (z),Y (2))

where ¢g" denotes the p’th equation in the collection of equilibrium equations. This
formulation uses expressions Y (z) and F'(z,Y (z)) as well as the composite expres-
sions X (z) — F (z,Y (x)) and YV () = V(X (x)) = Y(F (2,Y (x)). The introduction
of the intermediate terms X (x) and ) (x) helps us make clear the essentially lin-
ear structure of the problem. It also indicates a direction for efficient programming
since it tells us that we should separately compute the derivatives of X (z) and Y ()
before we compute the derivatives of g (z,Y (z),X (x),) (x)). This approach also
distinguishes the cases where Y occurs as Y (z) as opposed to Y (F (z,Y (z)). Y*
will refer to occurrences of Y (x) and Y4 will refer to occurrences of Y (F (x,Y (x)).
We used FI, F7, etc., to refer to components of F (x,Y (z)) = X (x). X1, X7, etc.,
will also refer to components of X (z), and components of Y (z) = Y (F (z,Y (z)))
will be denoted Y4, VB, Y2 etc.

The objective is to find the derivatives of Y () with respect to = at the determin-
istic steady state, and use that information to construct Taylor series approximations

of Y (z). In conventional notation, that Taylor series is expressed as

Y(2) =y + Y (2,,0) (2 — 2) + (2 — 2.) | Yoo (2,0) (2 — 2) + ..
but tensor notation expresses it as

V() = g+ V(e 0) (o i) + Vi (2,0) (o7 = a?) (29 —a0)

+Yijk (2., 0) (' — 21) (27 — 2d) (2% — 2f) + ...
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Deterministic Steady State and the Linear Approximation. Perturba-

tion methods begin with the deterministic steady state, which is the solution to

0 =9 (x*a Ysy Ty y*)

T = F(ze, )

This is a nonlinear set of equations. The second step in perturbation methods is
to compute the linear terms of the approximation Y, (x,,0). Standard linearization
methods show that the coefficients Y, (z,,0) are the solution, y = y, + Y, (z — z,),

to the linear rational expectations model
gl + ghy + gl + ghyii =0 (13)

where all the gradients of ¢g” in (13) are evaluated at the deterministic steady state.
We assume locally unique and stable dynamics. This may not be true for all steady
states; we confine our attention to only saddlepoint stable steady states. This lin-
earization procedure is justified by the implicit function theorem applied to (6). The
solution is

Yo — ys = H (20 — x) (14)

Anderson et al. (1996) and Anderson, Evans, Sargent, and McGrattan (1996) survey
methods for solving such models. This is the difficult step computationally, but can

be handled by conventional methods.

Theorem 1. If g and F' are locally analytic in a neighborhood of (T, Vs, T«, Y ),
and (13) has a unique locally asymptotically stable solution, then for some ¢ > 0
there is a unique function Y (z) such that Y (x) solves (12) and is locally analytic for
|t — z.|| < e. In particular, Y (x) is infinitely differentiable and its derivatives solve

the equations derived by implicit differentiation (12).
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Proof. This follows from the standard application of the analytic implicit
function theorem to the space of sequences that converge to the steady state at an
exponential rate. W

Before we move on to the second-order approximation, we need to formulate the
first order problem in functional and tensor form. We start with equilibrium expressed
in the form (12). Let Z (z) = (x,Y (x), X (z),Y (z)). The first-order derivatives with

respect to the x* variables are

0 = g/'(Z (@) +0a(Z (@)Y (@) + g7 (2 (2)) X (2) + g4 (2 () Y] (x)
X' (x) = F (2,Y (2))+ F (2,Y (2)) Y (15)
Vi) = VX (@)X (2)

At the steady state (we drop arguments here since they are all understood to have

their steady state values)

0 = g'+g"Y "+ /X + g4
Xl = Fl Ry
V= v

After substitution, we see that the tensor (matrix) Y;* is the solution to

0=g!'+ gtV + gf (F! + FLY?) + ghY{* (F] + Fly®)

)

This is a matrix polynomial equation for the matrix Y;*(x,) with n* equations in the

n? unknown values Y;*. This is also the H matrix in (14) computed by standard

methods.
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Before we move to higher order approximations, we express the first order system

in (15) in a convenient form. Let

g6 (Z(x)) g1 (Z2(x)) g4(Z2(2))
G(2@)y=| —Fi(z,Y (2)) L, 0
0 0 1,

The («, I, A) subscript notation represents the fact that G (Z (x)), is three columns
of tensors, the first being derivatives with respect to «, etc. The 1, (1,,) entry in
G (Z (x)), represents the n x n (m x m) identity map?. Then the system of equations

in (15) defining the first-order coefficients can be expressed as

Y (x) 0 gt (Z (x))
0=G(Z@)| &) |- 0 + | Bl (2,Y (2)) | (16)
Vi () YA(X ()X () 0

Y () 0 gi (24)
0=G(z)x | X (z.) | — 0 +| F (zav)
Vi (@) Yit(z) X (@) 0

where 2§ = Z (z,). We will use the form in (16) below.

Second-order Approximation. We next want to compute Y;?(x*), the Hessian

of Y*(x) at x = .. Let D, f(x) represent the total derivative of f(z) w.r.t. 7. Dif-

2We use the 1,, notation instead of the Kronecker delta tensor 62 notation since we do not want

to change indices.
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ferentiation of (16) with respect to 27 shows

v (2) Ve (2)
0 = Di(G(Z@)h) | & (x) | +9(Z @) ara | X2 (17)
Vi (z) Vi (@)
0 gi (2 (z))
_ 0 +Dj | F!(2,Y (2))
Yii(X ()& (2) & (2) + YA(X (2)) X (2) 0

Ve () 9; (%)
0 = Di(G(z)) | & (2.) | +Di| Fl(2.,Y (2.)) (18)

Vit (@) 0
0 0 0 YA ()

—| & (@) & (2.) V() O X (@)
0 0 0 Vi (x.)
Yii (@)

+G (z)n | A (2)
Vi (x.)

which is a linear equation in the unknowns (Y% (2.), X} (2.),Y: (2.)). Note here

that the solvability condition is the nonsingularity of G(zZ) plus some other terms.

Theorem 2. (Y (z.), X} (.), V] (x.)) satisfies the linear system (18). It is uniquely

solved by (18) if and only if (18) is nonsingular
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Third-order approximation. The third-order terms Z%, (z) are found by dif-

ijk

ferentiating (17) with respect to z7, producing

Y (x) g; (2 (x))
0 = Dp| Di(G(2()y) | & (z) [+D;| F(z,Y(2))
Vi (z) 0

Ya (@) Y3, (@)
DR (G (2 (@)y) | () [ +G(Z(@)) | Xy (2)
yz‘? (z) yf}k (z)

0

DijpY (X (2))
0
The steady state is now given by
0 = (Terms without Zijx) + G (Z (2))y | Xl (z) | = | DY (X (i) | (19)

yz’?k () 0

where

DV (X (1)) = Vi () X (2) &) () X/ (22)
YA (@) Do, (X (22) X (2))

Y i () X () X () + Y7 () Xy (2)

1, 2,

Theorem 3. (Y%, (z.), X}, (x.), V4, (x.)) satisfies the linear system (19). It is

uniquely solved by (19) if and only if (19) is nonsingular

There are two items to note. First, Y, (z.) satisfies a linear system of equations.
Second, the solvability matrix for Z;;;(x.) will be different than the solvability ma-

trix for Z;;(x.). The fact that the solvability conditions change as we change order
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is a potential problem. However, one suspects that these matrices are generically
determinate, but that remains an open issue.

The following is an obvious continuation of our method.

Theorem 4. Given the solution to all lower order derivatives, the degree m deriva-

tives (Y, (z.), X/

11..%m

(z.), Vi, (x.)) satisty a linear equation that is solvable if

the linear map

Y;?zm () 0
Gz | XL, () || VAL (@)X (w)- Xl () + YA (@) XL, (2)
yf...im () 0

is invertible.

4.1. Algorithm. We have established that Taylor expansions of the equilibrium
equations produce a series of linear equations in the derivatives of Y once we get past
the first-order terms. This implies that a fairly simple algorithm can be applied once

we have the linear systems. Define

where

Xl(x) = F'(2,Y (2))
Vi) = YHX(2))

The steady state definition tells us that G (z.) = 0. Furthermore, if Y;* (z,) is fixed

at its true linear solution, G¥ (z,) = 0. The preceding calculations show that the
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Taylor expansion continues with the form

G'(ze+ev) = G' () +eGY (2.) 0" (20)
+e? (MY (w.) + NL2 (2.) Vi () '
+e? (M2 (w.) + N7 () Vg (@) v'o/o

+...

where each M#* (x,) and N*(z,) term involves no derivative of Y () of order ¢
or higher. Therefore, we take a specific problem, have the computer produce the
Taylor series expansion in (20) where the Y (z.), Y;§ (7.), etc., terms are left free,
and then compute them in a sequentially linear fashion by solving in sequence the

linear systems

0 = My () +NE*(2.) Y5 (22)

0 = ME*(2.) + N2 (2.) Y (22)

where at each stage we use the solutions in the previous stage.

5. A GENERAL STOCHASTIC PROBLEM

We next compute the stochastic portion of our approximation. The stochastic rational

expectations problem is

0 = E{g"(ze, 4, Toy1, Yer1,€2) |0}, p=1,...,m

Ti = Flzyynez), i=1,..,n
The objective is to find some equilibrium rule, Y (z, ¢), such that

E{g(z,Y (z,e),F(x,Y (x,¢),e2) , Y (F (z,Y (z,€) ,e2) ,¢),ez) [z} =0  (21)
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We have constructed the derivatives of Y (z,0) with respect to the components of x.
We now compute the £ derivatives.

Before we describe our method, we first present an example which highlights the
pitfalls of pursuing a Taylor series expansion procedure in a casual fashion ignoring
the relevant mathematics. We will posit a simple example of a rational expectations
model and follow the approach taken in Kydland and Prescott (1982), and elsewhere.
This casual application of the standard approach will produce a nonsensical result
and highlight a potential problem. We will then proceed to develop an approach

consistent with the implicit function theorem.

5.1. A Cautionary Example. We now present a simple example which high-
lights the dangers of a casual approach to computing Taylor series expansions. Sup-
pose that an investor receives K endowment of wealth and that there are two possible
investments, [; and Iy; therefore, I; ;4 [, = K. We allow negative values for /; ; and
I, making this example like a portfolio problem. Assume a gross “adjustment cost”
for deviations of type 1 investment from some target I equal to o (] =1 )2 /2 units
of utility. In period ¢+ 1 the investments produce f (I3, I, Z¢+1) of the consumption
good. Assume f (I14, a4, Ziy1) = 11t + I24Zi 41 where Z; is log Normal with mean
1+ p and variance 0. Assume that all of the second-period gross return is consumed

and that the utility function is u (¢) = ¢'=7/ (1 — 7). The complete utility function is
U (I, Ing, Ziy1) = —a (L1 — Dz [2+ E{u (I, + 12:7,)} (22)

This is a rational expectations model where the endogenous variables are defined by

the equations

0 = —« (Il,t — j) + Et {Ul (Il,t + IQ’tZt) Zt} (23)
? — Il’t‘i‘Ig’t
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This is a trivial rational expectations model®, but if a method cannot reliably ap-
proximate the solution to this problem then we would not have any confidence in its
general validity.
The deterministic “steady state” is [;; = I, Iy = K — I; that is, we set type
1 investment equal to the type 1 target I and put the rest of the capital in type 2
investments.?. This is obvious since the investments have the same return and there
is an adjustment cost for any deviations of I ; from zero. We now want to know how
the investment policy is altered if we add some noise to the risky type 2 investment.
If we were to take a certainty equivalent approximation then the investment rules
are unchanged by an increase in variance. However, this will produce nonsensical
answers if I < 0 and I>; > K since this would imply that there is some chance that
I+ 1,7, < 0, implying negative consumption. A more sophisticated application of
the key idea in Kydland and Prescott (1982)° tells us to replace the utility function
in (22) with a quadratic approximation around the deterministic consumption K and
solve the resulting linear equation for I ;. For any I, p, and 02, as « goes to zero we
converge to the limiting investment rule
I, = K% (24)
Consider the situation when p/y > 02+ 2, as is the case when p = .06 and 0% = .04,
the standard calibration for equity investment, and v = 1, which is log utility. In

this case I, the safe investment, would be negative, implying that one borrows

3This example is also a bit silly with the utility adjustment costs, but it is an attempt to construct
an example which looks like a portfolio problem (think of I; and I as investments in alternative

securities) but avoids the complications examined in Judd and Guu (2001).
4Note that if I < 0 then I > K.
5Strictly speaking, Kydland and Prescott assume additive noise in the law of motion for the

state, in which case their approximation is certainty equivalent. However, the application of their

key linear-quadratic approximation idea to this example with nonadditive disturbances is clear.
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(I;+ < 0) to buy more than K dollars of the risky investment. This, however, is
nonsensical since the support of log Normal 7 is all of the nonnegative real line,
implying that there is some chance of negative consumption, which is inconsistent
with CRRA utility. The possibility of a negative consumption makes expected utility
undefined and can be avoided® by choosing any nonnegative I; ;. Therefore, the ad
hoc approximation in (24) cannot be a useful approximation to the the solution of
(23).

What went wrong? There is an implicit constraint on consumption being positive
in (23) since the utility function is not defined for negative consumption. However,
that constraint is not binding in the deterministic problem since consumption is
surely positive. Since this constraint is not present in the deterministic case, it is
not present when one executes a purely local procedure. If there are no restrictions
placed on the random disturbances, the Kydland and Prescott (1982) procedure im-
plicitly replaces a nonlinear problem with a linear-quadratic problem globally. The
approximate quadratic utility function is defined for negative consumption and is not
an appropriate global approximation since the true utility function may not be de-
fined for negative consumption. Therefore, without restrictions on the disturbances,
the Kydland and Prescott approach is not a local analysis based on some implicit
function theorem.

This is not a problem unique to the strategy recommended by Kydland and
Prescott. The second-order procedure of Sims (2000) is a natural extension of Kyd-
land and Prescott and would fail in this case for similar reasons. In fact, any scheme
using purely local information and moments and ignoring global considerations can
fail on problems like this since local information cannot alone model global consid-

erations. The approximation procedure advocated in Campbell (2002) is different

6The reason for choosing log Normal z is obvious; if we had made z Normal than no nonzero

choice for I5 is consistent with the nonnegativity constraint on consumption.
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but also fails on this point, often producing approximations with positive probabili-
ties of negative consumption. Campbell’s approach begins with the observation that
one can analytically compute expected utility if utility is CRRA and consumption
is log Normal. Therefore, it would be nice if our portfolio problems always reduced
to computing the expected CRRA utility of log Normal consumption. However, if
asset returns are log Normal, consumption will generally not be log Normal since
nontrivial linear combinations of log Normal returns are not log Normal. Camp-
bell approximates the original portfolio problem (our problem in (23) is a portfolio
problem if & = 0) by replacing the ex post distribution of consumption with an “ap-
proximating” log Normal distribution, and then finds that portfolio which maximizes
the approximate expression for expected utility. Of course, the support of the log
Normal approximation will not include any negative values and if mean returns are
sufficiently large relative to the variance and risk aversion, the Campbell “approxi-
mation” will short bonds and cause a positive probability of negative consumption.

These problems do not go away even if we take the time period to zero. If we were
to embed (23) in a sequence of problems with ever shorter time periods, we would
want to maintain the Sharpe ratio, p/0?, above some positive limit. Then, for many
7, the approximation in (24) would always be greater than K, implying shorting in
each discrete-time problem and a positive probability of negative consumption.

The mathematical economics literature has long been aware of this problem and
has recognized the importance of proceeding locally. In particular, Samuelson (1970)
noted this problem and assumed that the disturbance Z has bounded support. Judd
and Guu (2001) generalized this to a local analyticity condition. Judd (1998) (see
chapter 16) also points out the importance of controlling the distribution of Z. In
this paper, we will proceed with a bounded support assumption since that is the
most general way to proceed. We will display the critical conditions which need to

be checked before one can proceed with a perturbation approximation of rational
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expectations models.

5.2. Local Perturbation Approach for Stochastic Models. We have already

computed the Taylor series approximation of the deterministic problem

Y (r,6) = yo+ Y (2.,0) (¢ —al)
+Y$ (24,0) (2 — al) (27 — 2])
Y (2., 0) (2° — 2l) (a7 — 2]) (a8 — 2f)

+...

We next move to the stochastic terms, Y. (x4, 0), Yz (z4,0), etc. The general stochas-

tic system is

0 = E{g(®, Y, Tes1, Yeg1,€2) |24}

Tip1 = F(x,y,ez)
which implies the functional equation

0 = EA{¢"(z,Y (x,e),F(x,Y (z,€),e2),Y(F (x,Y (z,¢) ,e2)),e2)}  (25)
= N(Y)(z,¢)

holds at all (z,¢). Differentiation with respect to € shows

0 = E{gVo+g; (FIY2+ Fl2) + g (Y (FIYS + Fl2) +Y2) + 290}
= E{giY}+ E{g{FY2} + E{g/ iz} + E{gY/ PV
+E{ghY/ FyFl 2} + E{giV'} + E{zg!}
= YO (E{gi} + E{giFl} + E{diY/'Fl} + 64 E {d4}) (26)

+E{gf Flz} + E{ghY{ FyF. 2} + E {2}
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holds at all (z,e)7. Note that in the last step we use the identity Y4 = 62Y.*. At the
steady state of the deterministic case, (x,¢) = (x,,0), the £z terms collapse to zero,

the derivatives ¢*, g/, g4, FX, FI, and g* become deterministic, and (26) reduces to
0=Y" (gh + g7 Fa + ghY{ Ey +024) + (g8 + g/ FX + hY/ FRF) E{2} - (27)
which has a unique solution for Y. iff all the terms in (26) exists at ¢ = 0 and
Ny = gh + gi FL+ ghY{ FL + 644

is an invertible matrix. The problem of existence arises with the terms g and F!
which only arise here. As we saw above, there are examples where these terms do
not exist.

We can take higher-order derivatives of (25) with respect to ¢ to arrive at equations

forY¢ Yo

2, Y2 etc. The formulas are complex, however, the pattern is clear. For example,

the derivative of (26) with respect to ¢ implies

0 = YI(B{gh}+E{giFy} +E{ghY{'Fo} +0,E{gh})
ve jg (E{gi} + E{giFl} + E{d4Y ' F1} + 0.E {dh})
j (E{g{F!z} + E{LY ' FIF!2} + E{zg"})
which in turn implies that Y2 (., 0) solve an equation of the form

OZYEC;./V’Y—FM

where M contains only derivatives of ¢ and F' and moments of z. This will de-

termine Y2 (x,,0) if the terms in M exists and Ny is invertible. Notice that the

"We are slightly abusing notation by writing

d . L
Eg (m,y,x,y,gz) = 9e (m,y,x,y,az) z

More formally, this should be g5 (z,y,Z, §,£2) z but we use the g. (...) notation for its mnemonic

advantage. The same comment applies to our notation Fy (...).
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solvability condition, the invertibility of Ay, is the same as the solvability condition
for Y.* (z.,0). Continuing this process shows that the ¢ derivatives of Y exist as long
as ¢ and F have the necessary derivatives and the moments of z exist. The next

theorem summarizes our argument under the assumption that g is analytic.

Theorem 5. If (i) ¢" (x,y,,9y,c2) exists and is analytic for all z in some neigh-
borhood of (z,y,2,9,€) = (T«, Yx, Tx, Y, 0), (ii) there exists a unique deterministic
solution Y (z,0) locally analytic in x, and (iii) Ny is invertible, then there is anr > 0
such that for all (z,e) € B, (x4,0), there exists a unique solution Y (x,e) to (25).
Furthermore, all derivatives of Y (x,¢) exist in a neighborhood of (z.,0) and can be

solved by implicit differentiation.

Proof. Application of the implicit function theorem for analytic functions. See
Zeidler (1986). H

This theorem sounds obvious, but the conditions are important ones and should
be checked. In particular, our example in (23) fails to satisfy condition (7). One
natural and general way to insure (i) is to assume z has bounded support. This
may sound limiting since many popular processes in dynamic analyses, such as linear
processes with Normal or log Normal. Also, continuous time Ito processes often
imply finite-horizon distributions with infinite support. However, assuming z has
bounded support is a suitable assumption for discrete-time models, and, in fact, may
be a superior way to approximate continuous-time problems. Consider, for example,
Merton’s (1972) portfolio analysis. For some parameters, investors will short the
bond market and use the proceeds to buy stocks even for log utility. Our example
above shows that this would be unwise in a discrete-time model where returns have
log Normal returns since there would be some chance that wealth goes negative.
Therefore, assuming log Normal returns in a discrete-time model is a poor way to

approximate the continuous-time model. Why is there such a difference? In the
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continuous-time model with an Ito process driving the returns, an investor hit with a
series of negative return shocks can reduce his exposure to risk before his wealth goes
negative, but this is impossible in the discrete-time model and log Normal returns.
The finite-support assumption for z similarly allows an investor facing a series of
negative shocks to adjust his position before hitting ruin.

The key point is that there are regularity conditions which must be satisfied
if we are to use the implicit function theorem to justify asymptotic expansions as
approximations. OQur example shows that it may not be possible to combine popular
utility functions with popular stochastic processes. We take the view that it is more
important to accurately approximate the economic process than to stay with popular

stochastic processes. Therefore, we assume Assumption 1:

Assumption 1: The support of z is finite and E {z} = 0.

The following theorem follows directly from F {z} = 0 and successive differen-
tiation of (25). It just ratifies common sense that a first-order change in standard
deviation affects nothing, and that the dominant order effect is variance, which here

equals 2.

Theorem 6. If E{z} =0, then 0 =Y*=Y3 =Y = ...

ety
Proof. 0= YY" follows from (27) and E {z} = 0. The other results follow from

the fact that derivatives of (26) with respect to state variables in = will always reduce

to expressions of the form 0 =Y3 , (..)+ (..) E{z}. ®

6. NONLOCAL ACCURACY TESTS
Perturbation methods produce the best possible asymptotically valid local approxi-
mations to a problem. However, we often want to use them for nonlocal approxima-

tions. The existing literature shows that Taylor series approximations are often quite
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good even for states not close to the deterministic steady state. Judd and Guu (1993,
1997) investigated this issue in simple growth models. They find that, for empirically
reasonable choices of tastes and technology, linear approximations do well for small
but nontrivial neighborhoods of the deterministic steady state. However, the region
of validity will be too small if the stochastic shocks cause the state to wander sub-
stantially from the deterministic steady state. Fortunately, they find that the quality
of the approximations improve substantially as the higher—order terms are added.
They also find that the certainty nonequivalence terms are important to achieve high
quality approximations for stochastic approximations. More precisely, they substi-
tute the computed Taylor series into the defining equations and evaluate the resulting
error. The resulting error for capital stocks near the steady state is often the order
of machine zero, an accomplishment which few other methods can claim. While their
investigations have been limited to relatively small models, there is no reason to
suspect that the performance of this approach will decay drastically as we move to
larger models. In any case, any user of these methods should use some diagnostics to
estimate the region where the constructed series is a good approximation.

It is tempting to compute higher-order approximations and then just assume that
they are better than the certainty equivalent linear approximation. This approach is
dangerous since it ignores the essential fact of Taylor series expansions — their range
of validity is limited. Some elementary analysis shows the importance of this fact.
Suppose that f(z) = (9802 — 198z + 332)71 and we wanted to compute its power series

around x = 100. The fourth-order Taylor series is
F(z) = 99990001 — 39998002 + 59999z — 40023 + 2*

To measure the accuracy of this Taylor series, we computed the relative error in

logarithm terms,

E (r) = log,g

f@) _
(@) 1"
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The results are displayed in Table 1.

Table 1: Relative errors in Taylor series

expansion of (9802 — 198z + 22) "

r—100:| 1 2 3 5 1 15
E(z):|-13 -97 -7.2 -42 0 24

Table 1 says that the fourth-order Taylor series approximation has very small
errors for x within 0.5% of the central value of x = 100, but that it falls apart when
|z — 100] > 1. We also computed the order 5, 10, and 20 Taylor series expansions and
found the approximations to get better for |x — 100| < 1 but worse for |z — 100| > 1.
It appears that we cannot construct a Taylor series based at x = 100 which is valid
for any value of x more than 1% away from x = 100. The key fact is that the
radius of convergence for the power series expansion of f (z) around x = 100 is 1.
This follows directly from the theory of power series in the complex plane. The
polynomial 9802 — 198z + 22 has two zeroes of z = 100 + &/—1, both of which are
distance 1 away from x = 100. Therefore, the infinite-order Taylor series based at
x = 100 has a radius of convergence equal to 1. Radii of convergence for power
series can be small; in fact, they can be arbitrarily small even when the function is
simple and has no singularities on the real line. We have no idea about the radius
of convergence for the Taylor series constructed by our methods. This is particularly
problematic for us in stochastic models where, in reasonably calibrated cases, we do
expect the state variables to roam more than 1% away from the deterministic steady
state.

This cautionary example and the portfolio example above both show that we need
ways to determine if our solutions are good, and these evaluations should be performed
for any application before a computed approximation is accepted and used to make

some economically substantive point. Therefore we need to develop diagnostic tools
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which can be applied to any problem.

To measure the accuracy of our approximations we evaluate

E(z,e) = nlaxgﬂ‘(x,§>(x,5),IT(x,§>(x,5),52),i>(l7(x,§>(x,5),5z),5),52>
w
where g* is a normalized, unit-free, version of g*. The specific details of the normal-
ization depends on the equation. For example, Euler equations should be normalized
so that the errors are in terms of percentage of consumption. Specifically, the unnor-

malized Euler equation is often expressed as

0= (c;) = BE{u (1) Reya}

which has units “utils per unit of consumption”. We need to get rid of both the
utility and consumption units. A unit-free version is

EA{u (ci41) Rija}
' (cr)

0=1-5

a form often used in empirical studies. If an equation is a market-clearing condition
with form form 0 = S — D for supply S and demand D, then a natural unit-free
form would be 0 = 1 — D/S where any deviation expresses the excess supply as a
fraction of total supply. In general, we need to use some set of equations g where
deviations from zero represent a unit-free measure of irrationality of the agents, lack
of market-clearing, mistakes in predictions, and whatever else is involved in describing

equilibrium, all of which we want to make small in any approximation.

7. SPECIFIC EXAMPLES

We have developed the full perturbation method for stochastic models and proposed

diagnostic tests to ascertain accuracy. We next apply this approach to dynamic
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programming problems of the form

max Et Z BtU(Ct, lt>
T=t

{Lt,I3}

Ct:F(KtlaKfa"'7KfaLt79t)_Z]Z;
=1
K=K +y E Ly, 1=1,---,n

01 = M, + 06,0,

where K/, 7= 1,--- ,n, is the stock of type 7 capital goods at the beginning of period
t, I! is gross investment of type i capital in period ¢, 0; is the productivity level in
period ¢, and &, is the i.i.d. productivity shock with mean zero and unit variance.
We assume that &, is truncated Normal with truncation at 3 standard deviations.
The function ¢,(I{/K}) represents net investment of type i capital after deducting
adjustment costs. We assume that ¢,(-) has the following form

oi(s) =1 - 2 (29)

Denote K; = (K}, K?,--- ,K}"), st = I'/K}. Let V(K;) be the value function.

The Bellman equation for the above problem can be written as:

V(K;) = max u(c, ly) + BEV (K1)

Li,st
subject to
o = F(Kyl) =30 siK;
= (L+e(spspKf, i=1,---.n (29)
01 = ANy +co&y,y

The law of motion equation in (29) displays the position and of the perturbation
parameter €. The &, shocks are i.i.d. random variables and are unchanged by the
perturbation. The deterministic case is when ¢ = 0 since then the £, shocks have no

effect on production. When ¢ = 1, the variance of the productivity shocks is o2.
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The first order conditions are:

0 = welen, ) Fr(Kely) 4+ wlct, lt) (30)
0 = —ucler,l) + BEAVi(K1)} (@i(s)s; + w(s))) (31)
‘/;(Kt) = Uc<ct7 lt) (Fi(Kty lt) - Szlf) + BE, {W(Ktﬂ)} (1 + %(53‘,)) (32)

while F; = 0F(K,L)/0K", V; = OV (K)/OK". Note that the Euler equations (30),
(31) and (32) are functional equations, which implicitly defines the policy functions
l; = L(K;) and s! = S(K}), and the gradient functions V;(K). We are going to solve
these functions by the perturbation method as described by Judd (1998), that is, to

compute Taylor expansions around the steady state and use them as approximations.

7.1. Error Bounds. At each capital stock K, the error bound of our solution,

E(K;), is defined as the maximum of absolute Euler equation errors at this point.

E(K;) = max{|[EL[|, || Ex,

By,

72' — ]_7 . 7n}
where £, E,, By, are normalized errors, as given by:
El = (UCE + ul)/ul
Exi = BEAVi(Ke)} (&(s))s +@(s))) fuc — 1
By, = 1—u.(Fi—s}) — BEAVi(Ke1)} (1 +¢,(s)) /Vi(Ky)

Normally we expect the error bounds become bigger as we move away from the steady
state. To see how the errors grow, we introduce an overall measure of error bounds

as a function of relative distance from the steady state. Formally, for every r» > 0, we

(575 <

=1

can define:

E(r) = sup {E(K)

where K denotes the steady state value of K*. The E(r) is the error bound function

we are seeking.
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In practice, however, we cannot check all points on the surface of a sphere. We
must confine to some finite sets. Let D = {—1,0,1}". Define

X = (acl,---,:v") xi:L, de D, d#0

n i\ 2
D i1 (@)
Thus all points in X are on the surface of a unit sphere. We define our error bound

function as

E(r) =max{ B(K) | K; = (1+r2")K;, * € X }

7.2. Computational Results. Our examples use the following functional forms:

l Cl—v l1+77
= — >0 >0
u(cﬂ ) 1 _ f}/ 1 + 77’ ’7 ) 77

F(K1) = (KY)™ (K% (K" 1720 0> 0, Y oy <1

We compute the model for the cases of 2,3 and 4 capital goods. In all the cases we
choose 8 = 0.95, and 6, = 0.1, all 7. We test the algorithm on several parameter
values displayed in Table 1. For each combination of parameters in Table 1, we
compute the first through fourth, and sometimes fifth, order Taylor series expansion.
For each case, we compute F (r) for various values of radii r, dimensions n, and
expansion orders k. We then find the worst case for each scenario. That is, for radius
r, dimension n, and order k, we find that case which had the worst F (r). We report
the worst cases in Table 2. For example, in the two capital good cases, the worst
Euler equation error for the linear approximation at radius r was 10732, That worst
case may be different for the » = .05 case and for the £k = 2 case. Therefore, every

solution for the cases in Table 1 was better than the errors reported in Table 2.
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Table 1: Parameter Values
(n,a;): (2,.15), (3,.1), (4, .075)
v: 0.5, 2, 5,10
n: 10, 3, 1
(A, 0): (0, 0), (0.05,0), (0.10, 0) (0.01, 0.90), (0.01, 0.95)

The results in Table 2 show that the higher order approximations are very valuable
and follow our intuition. For a fixed order k, the errors of the k’th order approxi-
mation increase as we move away from the steady state. The linear approximation
is acceptable for r < .01, but is of questionable value for » > .05. None of the
approximations have acceptable Euler equation errors for r = .5.

For any fixed radius r we see that there is substantial payoff to using higher-
order approximations. In particular, at » = 0.10, the linear approximation has Euler
equation errors up to 10% of consumption but the fifth-order approximation has

normalized errors on the order of 10~°, an improvement of four orders of magnitude.
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Table 2: Error bounds log,, E(r)

r

k=1 k=2 k=3 k=4 k=5

0.01
0.05
0.10
0.20
0.30
0.40
0.50

0.01
0.05
0.10
0.20
0.30
0.40
0.50

0.01
0.05
0.10
0.20
0.30
0.40
0.50

-3.2
-1.8
-1.1
-0.5
-0.1
0.2
0.6

-3.2
-1.8
-1.2
-0.6
-0.2
0.2
0.5

-3.3
-1.9
-1.3
-0.7
-0.3
0.1
0.4

2 capital good cases

-3.7
-2.8
-2.1
-1.2
-0.6
-0.2
0.2

-4.1
-4.1
-3.1
-1.9
-1.3
-0.7
-0.2

-9.5
-5.1
-4.1
-2.6
-1.8
-1.1
-0.6

3 capital good cases

-3.8
-2.9
-2.2
-1.3
-0.7
-0.3
0.1

-4.0
-4.0
-3.3
-2.1
-1.3
-0.8
-0.4

-5.5
-5.2
-4.3
-2.8
-1.9
-1.3
-0.8

4 capital good cases

-3.9
-3.0
-2.3
-1.4
-0.8
-0.4
-0.1

-4.1
-4.1
-3.4
-2.2
-1.5
-0.9
-0.5

-5.6
-5.6
-4.4
-2.9
-2.1
-1.5
-1.0

-5.7
-5.7
-5.1
-3.4
-2.3
-1.6
-1.0

41
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Table 2 examined the quality of the approximations near the deterministic steady
state. While this information is useful and exactly the kind of information which is
related to the implicit function theorem, it does not tell us what we need to know
about how good the approximation is for a stochastic problem because we do not
know the range of the states. For example, the linear approximation looks good for
only k within 5% of the steady state. If the capital stocks stay within that range,
the linear approximation may be acceptable, but we would not be so accepting if the
stochastic shocks pushes some capital stocks to levels more than 10% away from the
steady state.

Tables 3 and 4 address these issues with stochastic simulation for a particular
case. Tables 3 and 4 takes a degree k approximation and uses it to simulate the
economy for 10° periods. We compute the deviation, (K; — K)/K, from the steady
state and the magnitude of the Euler equation error at each realized state. Table 3
reports the mean deviation from the steady state of the capital stock, the standard
deviation, and the maximum deviation. The mean deviation for k = 1 is nearly zero,
as it should be since the linear approximation is a certainty equivalent approximation.
Higher order approximations indicate that the mean capital stock is about 2% from
the deterministic steady state, a fact not possible to approximate with the linear
approximation. The other moments are largely unaffected by the higher orders of

approximation.
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Table 3: (K — K)/K along the simulation path
v =10, 7 =10, (7, \) = (0.1,.95)

k=1 k=2 k=3 k=4 k=5
mean -0.002 0.019 0.018 0.019 0.019
std. dev. 0.087 0.090 0.089 0.089 0.089
maximum 0.257 0.304 0.291 0.294 0.293

minimum -0.249 -0.229 -0.227 -0.226  -0.226

Table 4 reports the mean of the absolute value of the errors, their standard devia-
tion, and the maximum Euler equation error over the 10,000 period simulation. Since
the true distribution of the states is not centered at the deterministic steady state,

the results in Table 4 are not as impressive as in Table 2, but they again indicate the

great value of higher-order approximations.

Table 4: Error bounds log,, F(r) along simulation paths
v =10, n =10, (o,\) = (0.1,.95)
k=1 k=2 k=3 k=4 k=5

mean 26x107% 1.2x107° 1.1x107* 6.2x107° 3.4x 1077
std. dev. 3.7x1072 25x107% 15x107% 1.6x107* 1.4x10°°
maximum 4.4 x 107" 4.0x107* 9.8x107® 3.0x107% 29x107°

We need to be clear about these error results. We do not present them to indi-
cate that higher-order perturbation methods are good approximations and that the
reader should feel free to apply them to his problems. Our point is that these error
analyses need to be done as part of any application of perturbation methods. It is
the critical fifth step in the perturbation method. The statistics displayed in Tables

2 and 4 should be reported in any application of the perturbation method just as ¢
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statistics and confidence intervals are reported in any application of regression and
other statistical methods.

Table 5 displays the computational costs associated with the higher-order approx-
imations. We see that the number of derivatives to compute rise substantially as we
increase approximation order and dimensions. There is a similar increase in time
and space needed to compute the approximations. We include statistics on space
since the space necessary to store all the necessary derivatives may be a limitation for
perturbation methods. While the computational costs are substantial, they are not a
serious problem. With increasing speed of computers and the fall in memory prices,
perturbation methods are clearly competitive with alternatives for multidimensional

problems.
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no. of

capitals

9a
2b
3a
3b
49
4b

2(1

3a
3b
49
4b

Table 5: Computation costs

state endog.

vars.

[ N SV R )

T = W W

2
3
3
4
4
)

Note: a is the riskless case and b is the risky case

order
vars. 1 2 3 4 5 6 7
number of derivatives to compute
5 10 25 45 70 100 135 175
5 20 70 170 345 625 1045
7 21 63 133 238 385
7 35 140 385 875 1757
9 36 126 306 621
9 54 243 747 1881
computing time in seconds
5 0 0.03 037 338 236 148 923
5 0 0.06 0.83 155 199 907
7 0 0.13 234 35.0 415 308
7 0 022 6.58 127 1424
9 0 040 9.89 202
9 0 0.66 22.8 640
memory used in megabytes
5 25 25 28 42 120 48.0 200
5 26 26 31 7.2 51.0 440
7 26 26 38 170 132
7 277 27 48 33.0 386
9 27 28 69 74.0
9 28 29 95 135

45
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Table 6 summarizes the steps of the perturbation method.

Table 6: Perturbation Method for Rational Expectations Models

Step 1: Compute the deterministic steady state with nonlinear
equation solver

Step 2:  Compute linear approximation with some rational expectations
solution method

Step 3: Compute higher-order terms of deterministic problem through
differentiation and linear equation solving

Step 4: Compute stochastic deviation terms through differentiation
and linear equation solving

Step 5: Compute normalized errors in ergodic set of states through

deterministic sampling and stochastic simulation

8. CONCLUSION
This paper has shown that it is feasible to apply perturbation methods to numerically
solve rational expectations models substantially more complex than the usual rep-
resentative agent, single good model. However, theory shows that the perturbation
approach faces some limitations related to the range of the stochastic shocks and the
local validity of the approximations. In response, we develop diagnostic methods to

evaluate the approximations.
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