Computing Equilibria of Repeated And Dynamic Games

Şevin Yeltekin

Carnegie Mellon University

ICE 2012 July 2012

1/46

Computing Equilibria of Repeated And Dynamic Games

DYNAMIC GAMES

A specific example: Dynamic Oligopoly

Oligopoly game with endogenous productive capacity.

- Study the nature of dynamic competition and its evolution.
- Study the nature of cooperation and competition.
- Specifically:
 - Is ability to collude affected by state variables?
 - Do investment decisions increase gains from cooperation?
 - Does investment present opportunities to deviate from collusive agreements?

Existing Literature in Dynamic Oligopoly

Existing literature in IO

- Two stage games
 - Firms choose capacities in stage one, prices in stage two
 - Kreps-Scheinkman (1983), Davidson-Deneckere (1986)
- Dynamic games
 - Firms choose capacities and prices
 - Benoit-Krishna (1987), Davidson-Deneckere (1990)

Goals revisited

- Limiting assumptions in previous work
 - Capacity chosen at t=0 , OR
 - No disinvestment, OR
 - Examine only equilibria supported by Nash reversion, OR
 - Restrictive functional forms for demand and cost functions
- **Our goal**: Examine full set of pure strategy Nash equilibria for dynamic games with arbitrary cost and demand functions.

Stage Game: Environment

- N infinitely lived agents.
- Individual state: $x_i \in X_i$
- Aggregate state: $x \in X = \times_{i=1}^{N} X_i$
- Finite action space for player $i: A_i, i = 1, ..., N$
- Action profiles: $A = \times_{i=1}^{N} A_i$
- Aggregate state evolution: $g: A \times X \to X$

Stage Game: Payoffs

- Per period payoff function $\Pi_i : A \to \Re$
- Minimal payoffs

$$\underline{\Pi}_{i,x} \equiv \min_{a \in A} \Pi_i(a,x)$$

Maximal payoffs

$$\overline{\Pi}_{i,x} \equiv \max_{a \in A} \Pi_i(a,x)$$

• Equilibrium payoffs in state x contained in

$$W_x = \times_{i=1}^{N} [\underline{\Pi}_{i,x}, \overline{\Pi}_{i,x}].$$

• Payoff correspondence:

$$W:X \rightrightarrows \Re^N$$

7 / 46

Dynamic Game

- Action space: A^{∞}
- *h_t*: t-period history:

$$\{\{a_s, x_s\}_{s=0}^{t-1}, x_t\}$$
 with $x_s = g(x_{s-1}, a_{s-1}), a_s \in A$

- Set of t-period histories: H_t
- Preferences:

$$w_i(a^{\infty}, x^{\infty}) = \frac{1-\delta}{\delta} E_0 \Sigma_{t=1}^{\infty} \delta^t \Pi_i(a_t, x_t).$$

• Strategies: $\{\sigma_{i,t}\}_{t=0}^{\infty}$ with $\sigma_{i,t}: H_t \to A_i$.

8 / 46

Equilibrium Payoff Correspondence

- SPE payoff correspondence: $V^* \equiv \{V^*_x | x \in X\}$
- \mathcal{P} : set of all correspondences $\mathcal{W}: X \rightrightarrows \Re^N$ s.t.
 - Graph of $\mathcal W$ is compact
 - Graph of $\mathcal W$ contained within Graph of $\mathcal P$.
 - V^* may be shown to be an element of \mathcal{P} .

Steps: Computing the Equilibrium Value Correspondence

- Define an operator that maps today's equilibrium values to tomorrow's at each state.
- Show that this operator is monotone and the equilibrium correspondence is its largest fixed point.
- **3** Define approximation for operator and correspondences that
 - · Represents correspondence parsimoniously on computer
 - Preserves monotonicity of operator
- Define an appropriately chosen initial correspondence, apply the monotone operator until convergence.

Step 1: Set Valued Dynamic Programming

- Recursive formulation
- Each SPE payoff vector is supported by
 - profile of actions consistent with Nash today
 - continuation payoffs that are SPE payoffs
- Construct self-generating correspondences to find V*

Step 1: Operator

- $B^*: \mathcal{P} \to \mathcal{P}.$
 - Let $\mathcal{W} \in \mathcal{P}$.

$$B^*(\mathcal{W})_x = \bigcup_{(a,w)} \{ (1-\delta)\Pi(a,x) + \delta w \}$$

subject to:

$$w \in \mathcal{W}_{g(a,x)}$$

and for each $\forall i \in N, \, \forall \tilde{a} \in A_i$

 $(1-\delta)\Pi_i(a,x) + \delta w_i \ge \Pi_i(\tilde{a}, a_{-i}, x) + \delta \mu_{i,g(\tilde{a}, a_{-i}, x)}\}$

where $\mu_{i,x} = \min\{w_i | w \in \mathcal{W}_x\}.$

Step 2: Self-generation

A correspondence \boldsymbol{W} is self-generating if :

 $\mathcal{W} \subseteq B^*(\mathcal{W}).$

An extension of the arguments in APS establishes the following:

- Graph of any self-generating correspondence is contained within $Graph(V^*)$,
- V^{*} itself is self-generating.

Self-generation visually

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > 14 / 46

Self-generation visually

Step 2: Factorization

 $b\in B^*(\mathcal{W})_x$ if there is an action profile a and continuation payoff $w\in\mathcal{W}_{g(a,x)},$ s.t

- b is value of playing a today in state x and receiving continuation value w ,
- for each i, player i will choose to play a_i
- $x\prime = g(a, x)$ if no defection
- $\tilde{x} = g(\tilde{a}_i, a_{-i}, x)$ if defection.
- punishment value drawn from set $\mathcal{W}_{\widetilde{x}}$.

Factorization I

< □ > < □ > < ≧ > < ≧ > < ≧ > ≧ < 今 Q (~ 17 / 46 Factorization II

< □ > < □ > < ≧ > < ≧ > < ≧ > ≧ の Q (~ 18/46

Step 2: Eqm Value Correspondence as Fixed Point

• Monotonicity: B^* is monotone in the set inclusion ordering:

If $\mathcal{W}_1 \subseteq \mathcal{W}_2$, then $B^*(\mathcal{W}_1) \subseteq B^*(\mathcal{W}_2)$

- Compactness: B^* preserves compactness.
- Implications:
 - 1) V^* is the maximal fixed point of the mapping B^* ;
 - 2) V^* can be obtained by repeatedly applying B^* to any set that contains graph of V^* .

Step 3: Approximating Value Correspondences

- Represent candidate value correspondences on computer
- Preserve monotonicity of operator
- Proceed in 2 steps
 - 1 Convexify underlying game.
 - 2 Develop method for approximating convex-valued correspondences.

Step A: Public randomization

- Public lottery with support contained in $\mathcal{W}_{g(a,x)}$.
- Public lottery specifies continuation values for the next period
 - Lottery dependent on current actions determines Nash equilibrium for next period.
 - Strategies now condition on histories of actions and lottery outcomes.
- Modified operator:

$$B(W) = co(B^*(co(W))), \qquad W \in \mathcal{P}.$$

- V equilibrium value correspondence of supergame with public randomization.
- B is monotone and V is the largest fixed point of B.

Environment: Dynamic Cournot with Capacity

- Firm *i* has sales of $q_i \in Q_i(k_i)$, and unit cost c_i .
- MC= maintenance cost of machine
- SP= resale/scrap value of machine
- FC =cost of a new machine
- Cost of capital maintenance and investment:

$$C(k_i, k'_i) = \begin{cases} MC * (k_i - 1) + FC * (k'_i - k_i) & \text{if } k'_i \ge k_i \\ \\ MC * (k_i - 1) - SP * (k_i - k'_i) & \text{if } k'_i \le k_i \end{cases}$$

Profit: Dynamic Cournot with Capacity

• Firm *i*'s current profits:

$$\Pi_i(q_1, q_2, k_i, k'_i) = q_i(p(q_1, q_2) - c_i) - C(k_i, k'_i)$$

• Linear demand curve:

$$p(q_1, q_2) = \max \{a - b(q_1 + q_2), 0\}.$$

・ロ ・ ・ 一部 ・ ・ 目 ・ ・ 目 ・ の へ (* 23 / 46

Stage Game: Dynamic Cournot with Capacity

- Action Space:
 - sets of outputs
 - sets of capital stocks
- State Space:
 - set of feasible capital stocks
- $A_i = Q_i \times K_i$
- $X = K_1 \times K_2$

Dynamic Strategies and Payoffs

- Strategies: collection of functions that map from histories of outputs and capital stocks into current output and capital choices.
- Maximize average discounted profits.

$$\frac{(1-\delta)}{\delta} \sum_{t=0}^{t=\infty} \delta^t \Pi_{i,t}(q_1, q_2, k_i, k_i')$$

・ロ ・ ・ 一部 ・ ・ 注 ・ く 注 ・ う Q (や 25 / 46

Dynamic Duopoly: Example 1

- Finite action version of the dynamic duopoly game.
- Discretize action space over q_i and k_i
- Full capacity: Actions from interval $[0, \bar{Q}]$
- Partial capacity: Actions from interval $[0, \bar{Q}/2]$
- Firms endowed with 1 machine each.
- 4 states: $(k_1, k_2) \in \{(1, 1), (1, 2), (2, 1), (2, 2)\}$
- 48 hyperplanes for the approximation.

Monotone Operator and Convergence

27 / 46

Fluctuation Market Power

Parameters: MC =SP=1.5, FC =2.5, $\delta = 0.8$, $\bar{Q} = 6.0$ c = 0.6, b = 0.3, a = 6.0 $p(q_1, q_2) = \max \{a - b(q_1 + q_2), 0\}.$

28 / 46

Error Bounds

Striving for Market Power I

Striving for Market Power II

31 / 46

э

Striving for Market Power III

Striving for Market Power : Strategies

Strategies: Fluctuating Market Power

- Firms can do better than symmetric Nash collusion.
- · Frontier of equilibrium value sets supported by
 - continuation play where firms alternate having market power.
- Worst equilibrium payoffs
 - firms produce at full capacity in current period
 - over-investment and over-production thereafter (symmetric cases).

Striving for Market Power : Strategies

 v_1

Striving for Market Power : Strategies

Node k_2 k_1 v_1 v_2 q_1 q_2 1 12.8289 9.0232 1 1 3.0 3.0 2 14.0571 2 1 8.6750 6.0 3.0 3 13.8064 8.9118 2 1 6.0 3.0 2 4 13.4930 9.2078 1 6.0 3.0 5 13.1012 9.5777 2 1 3.0 6.0 6 12.6115 10.0401 2 1 6.0 3.0 7 1 11.9994 10.6181 2 3.0 6.0 8 11.2342 11.3407 2 1 6.0 3.0

Table: Equilibrium Path

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 ○ の Q @

36 / 46

Worst Equilibrium

► = ∽ ९ ୯ 37 / 46

Worst Equilibrium c=0.9

- With higher per unit cost (c=0.9), playing uncooperatively too costly.
- · Following one period of over investment and over production
 - Firms move towards Pareto frontier.
 - Continuation values increasing over time
 - · Followed by alternating market power and high profits
- Nature of cooperation depends on state and on history.
- Markov perfect eqm. cannot capture this.

Striving for cooperation

▶ ≣ ∽へで 39/46

Striving for cooperation

Node	v_1	v_2	k_1	k_2	q_1	q_2
1	7.47280025107915	7.47280025107915	1	1	3.0	3.0
2	7.57200031384894	7.57200031384894	2	2	6.0	6.0
3	7.59000039231118	7.59000039231118	2	2	6.0	6.0
4	7.61250049038897	7.61250049038897	2	2	6.0	6.0
5	7.64062561298621	7.64062561298621	2	2	6.0	6.0
6	7.67578201623276	7.67578201623276	2	2	6.0	6.0
7	7.71972752029095	7.71972752029095	2	2	6.0	6.0
8	7.77465940036369	7.77465940036369	2	2	6.0	6.0
9	7.84332425045461	7.84332425045461	2	2	6.0	6.0
10	7.92915531306827	7.92915531306827	2	2	6.0	6.0
11	8.03644414133533	8.03644414133533	2	2	6.0	6.0
12	8.17055517666916	8.17055517666916	2	2	6.0	6.0
13	8.33819397083645	8.33819397083645	2	2	6.0	6.0
14	8.54774246354557	8.54774246354557	2	2	6.0	6.0
15	8.80967807943196	8.80967807943196	2	2	6.0	6.0
16	9.13709759928994	9.13709759928994	2	2	6.0	6.0
17	9.54754361279848	9.54754361279842	2	2	6.0	6.0
18	10.0594295159981	10.0594295159980	2	1		
			1	2		

イロト イヨト イヨト イヨト 三日

40 / 46

Summary

- Computation of equilibrium value correspondence reveals
 - dynamic interaction and competition missed by simplifying assumptions
 - rich set of equilibrium outcomes that involve
 - fluctuating market power
 - over-investment and over-production when cooperation breaks down
 - · worst equilibrium resembles prisoner's dilemma
 - best equilibria resemble battle of the sexes.
 - equilibria with current profit of leading firm less than smaller firm

Supergames with Continuous States

- Approximation substantially more complicated than discrete states.
- Goal: Find an approximation scheme with right properties that preserves outer/inner bounds.
- Use set-valued step functions.
- See unpublished mimeo: Sleet and Yeltekin (1999); "On the approximation of value correspondences".

Number of players

- So far examples have N = 2.
- Algorithm applicable to N>2
- Some computational issues.
 - Computational power. No of optimizations rise exponentially.
 - Choice of hyperplanes non-trivial. [Sampling on a sphere.]
 - Harder to define/calculate error bounds.

Continuous Actions

- Optimizations are LP problems.
- LP has nearly negligible approximation error.
- Using LP ensures outer and inner approx. do not have optimization error.
- NLP methods can introduce optimization errors that distort the inner/outer structure.
- My advice: Stick to discrete actions.

Dynamic Games in Macro

- Credible policy designed as dynamic game between planner +continuum of agents with capital.
- One large strategic player + continuum of non-strategic players.
- How does one apply a variant of APS ?
- Use planner's value and tomorrow's marginal utility of capital.
- Example: Phelan and Stacchetti (Econometrica, 2001): Ramsey tax model w/ capital and no govt commitment.