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Computing Equilibria of Repeated And Dynamic Games

A specific example: Dynamic Oligopoly

Oligopoly game with endogenous productive capacity.

e Study the nature of dynamic competition and its evolution.

e Study the nature of cooperation and competition.
e Specifically:
e Is ability to collude affected by state variables?

e Do investment decisions increase gains from cooperation?

e Does investment present opportunities to deviate from
collusive agreements?
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Existing Literature in Dynamic Oligopoly

Existing literature in 10

e Two stage games

e Firms choose capacities in stage one, prices in stage two

e Kreps-Scheinkman (1983), Davidson-Deneckere (1986)
e Dynamic games

e Firms choose capacities and prices

¢ Benoit-Krishna (1987), Davidson-Deneckere (1990)
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Goals revisited

e Limiting assumptions in previous work

e Capacity chosen at t=0, OR
e No disinvestment, OR
e Examine only equilibria supported by Nash reversion, OR

e Restrictive functional forms for demand and cost functions

e Our goal: Examine full set of pure strategy Nash equilibria

for dynamic games with arbitrary cost and demand functions.
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Stage Game: Environment

N infinitely lived agents.

Individual state: z; € X;

Aggregate state: z € X = x| X;

Finite action space for player i: A;,i=1,....N

Action profiles: A = x| A;

Aggregate state evolution: g: A x X — X
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Stage Game: Payoffs

e Per period payoff function IT; : A — R

Minimal payoffs

I, , = minTIl;(a, z)
acA

Maximal payoffs
IL, , = max IL;(a, )

Equilibrium payoffs in state & contained in

W-’AU_ Xz I[Hzmv ac]

Payoff correspondence:
W:X = RY
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Dynamic Game

e Action space: A®

e h;: t-period history:

e Set of t-period histories: H;

{{as,xs}i;%),a:t} with s = g(xs_1,a5-1),as € A
e Preferences:

L ):1—(5

EOEfildtHi ((Zt, Oft).

e Strategies: {0;.};2, with o;; : Hy — A;.
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Equilibrium Payoff Correspondence

o SPE payoff correspondence: V* = {V|z € X}

e P: set of all correspondences W : X = RV s.t.
e Graph of W is compact

e Graph of W contained within Graph of P.

e V" may be shown to be an element of P.
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Steps: Computing the Equilibrium Value Correspondence

@ Define an operator that maps today's equilibrium values to
tomorrow's at each state.

® Show that this operator is monotone and the equilibrium
correspondence is its largest fixed point.

© Define approximation for operator and correspondences that
o Represents correspondence parsimoniously on computer
e Preserves monotonicity of operator

O Define an appropriately chosen initial correspondence, apply
the monotone operator until convergence.
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Step 1: Set Valued Dynamic Programming

e Recursive formulation

e Each SPE payoff vector is supported by
e profile of actions consistent with Nash today
e continuation payoffs that are SPE payoffs

e Construct self-generating correspondences to find V*
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Step 1: Operator

B*:P—P.

o let WeP.

B* W)z = Uu (1 — 0)lI(a, z) + dw}
subject to:

w € Wg(a,z)
and for each Vi € N, Va € A;

(1 - 6)]-_-[2(0/7 ﬂj) + 6“)1, > Hl(da A—j, fE) + 6ﬂi,g(&,a_i,m)}
where 1; ; = min{w;|w € W, }.
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Step 2: Self-generation

A correspondence W is self-generating if :

W C B*(W).

An extension of the arguments in APS establishes the following:

e Graph of any self-generating correspondence is contained
within Graph(V*),

o V™ itself is self-generating.
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Self-generation visually
State 3 State 4 B(W)(x4)
v2 v2
B(W)(x3)
v1 v1
State 1 State 2
v2 v2
B(W)(x1) B(W)(x2)
vl

v1
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Self-generation visually

State 3 State 4
v2 v2 B(W)(x4)
v1 v1
State 1 State 2
v2 v2 V(x2)
W)(x1
B(W)(x Vix1) p
v

v1
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Computing Equilibria of Repeated And Dynamic Games

Step 2: Factorization

b € B*(W), if there is an action profile a and continuation payoff
w € Wy(az), St

e b is value of playing a today in state x and receiving
continuation value w ,

for each 4, player i will choose to play a;

x! = g(a,x) if no defection

z = g(a;,a—_;, x) if defection.

e punishment value drawn from set W;.
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Factorization |

State 3

State 4

L

State 1

State 2
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Factorization 1l

State 3

State 4
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Computing Equilibria of Repeated And Dynamic Games

Step 2: Eqm Value Correspondence as Fixed Point

e Monotonicity: B* is monotone in the set inclusion ordering:
If Wi C Ws, then B*(W;) C B*(Ws)

e Compactness: B* preserves compactness.
e Implications:

1) V* is the maximal fixed point of the mapping B*;

2) V* can be obtained by repeatedly applying B* to any set that
contains graph of V*.
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Step 3: Approximating Value Correspondences

e Represent candidate value correspondences on computer
e Preserve monotonicity of operator

e Proceed in 2 steps

@ Convexify underlying game.

® Develop method for approximating convex-valued
correspondences.
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Step A: Public randomization

e Public lottery with support contained in W, z)-

Public lottery specifies continuation values for the next period
e Lottery dependent on current actions determines Nash
equilibrium for next period.
e Strategies now condition on histories of actions and lottery
outcomes.

Modified operator:

B(W) = co(B*(co(W))), W eP.

V' equilibrium value correspondence of supergame with public
randomization.

e B is monotone and V is the largest fixed point of B.
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Environment: Dynamic Cournot with Capacity

e Firm i has sales of ¢; € Q;(k;), and unit cost ¢;.

e MC= maintenance cost of machine

SP= resale/scrap value of machine

FC =cost of a new machine

Cost of capital maintenance and investment:

Clki k) =
MC*(kz—l)—SP*(kz—k;) Ifk);ﬁkz
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Profit: Dynamic Cournot with Capacity

e Firm i's current profits:

IL(q1, g2, ki, k) = ¢i(p(q1, q2) — ¢i)

—C(k

i 2)

e Linear demand curve:

p(q1,q2) = max {a —b(q1 + ¢2),0}.

D¢
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Stage Game: Dynamic Cournot with Capacity

Action Space:

e sets of outputs

e sets of capital stocks
State Space:

e set of feasible capital stocks
Ai=Qi x K;

X:K1XK2
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Dynamic Strategies and Payoffs

e Strategies: collection of functions that map from histories of
outputs and capital stocks into current output and capital
choices.

e Maximize average discounted profits.

8

(1-0)'c

5 §' i 4(q1, g2, ki, k7)

~
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Dynamic Duopoly: Example 1

Finite action version of the dynamic duopoly game.

Discretize action space over ¢; and k;

Full capacity: Actions from interval [0, Q]

Partial capacity: Actions from interval [0, Q/2]

Firms endowed with 1 machine each.

4 states: (k1,k2) € {(1,1),(1,2),(2,1),(2,2)}

48 hyperplanes for the approximation.
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Monotone Operator and Convergence
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Fluctuation Market Power
Parameters: MC =SP=1.5, FC =2.5, § = 0.8, Q = 6.0 c=0.6,b=0.3a=6.0
p(g1,92) = max {a—b(q1 + g2),0}.

Example 1: Reversible Investment
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Error Bounds

State 1,1

State 1,2

©

10 11 12 13

State 2,1

10 11

State 2,2

10 11 12 13 14 15
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Striving for Market Power |

State (1,1) State (1,2)
14 14
13 13
.2) frontier
12 12
" (2,1) frontier 11
10 \ 10
9 9
9 10 11 12 13 14 9 10 11 12 13 14
State (2,1) State (2,2)
14 14
13 13 (1,2) frontier
12 12
1 1 (2,1) frontier
10 10
9 9
9 10 11 12 13 14 9 10 11 12 13 14

o = = = = o
30/46



Computing Equilibria of Repeated And Dynamic Games

Striving for Market Power I

State (1,1) State (1,2)
“ a2 "
13 13
(1,2) frontier

12 12
" (2,1) frontier 1"
10 10
9 9

L74

o 10 11 12 13 14 10 11 12 13 14

v
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14 -~ 14
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10
9
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Striving for Market Power Il

State (1,1) State (1,2)
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Striving for Market Power : Strategies

State (1,1)

State (1,2)
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Strategies: Fluctuating Market Power

e Firms can do better than symmetric Nash collusion.

e Frontier of equilibrium value sets supported by
e continuation play where firms alternate having market power.

e Worst equilibrium payoffs

e firms produce at full capacity in current period

e over-investment and over-production thereafter (symmetric
cases).
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Striving for Market Power : Strategies
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Striving for Market Power : Strategies

Table: Equilibrium Path

Node (%] (%] kl kg a1 q2
1 128289 9.0232 1 1 3.0 3.0
2 14.0571 86750 2 1 6.0 3.0
3 13.8064 89118 2 1 6.0 3.0
4 134930 92078 2 1 6.0 3.0
5 13.1012 95777 2 1 6.0 3.0
6 12,6115 10.0401 2 1 6.0 3.0
7 11,9994 106181 2 1 6.0 3.0
8 11.2342 113407 2 1 6.0 3.0
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Worst Equilibrium
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Worst Equilibrium ¢=0.9

With higher per unit cost (c=0.9), playing uncooperatively
too costly.

Following one period of over investment and over production
e Firms move towards Pareto frontier.
e Continuation values increasing over time

e Followed by alternating market power and high profits

Nature of cooperation depends on state and on history.

Markov perfect eqm. cannot capture this.
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Striving for cooperation
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Striving for cooperation

Node U1 U2 k1 k2 q1 q2
2 7.57200031384894  7.57200031384894 2 2 6.0 6.0
3 7.59000039231118  7.59000039231118 2 2 6.0 6.0
4 7.61250049038897  7.61250049038897 2 2 6.0 6.0
5 7.64062561298621  7.64062561298621 2 2 6.0 6.0
6 7.67578201623276  7.67578201623276 2 2 6.0 6.0
7 7.71972752029095  7.71972752029095 2 2 6.0 6.0
8 7.77465940036369  7.77465940036369 2 2 6.0 6.0
9 7.84332425045461  7.84332425045461 2 2 6.0 6.0
10 7.92915531306827  7.92915531306827 2 2 6.0 6.0
11 8.03644414133533  8.03644414133533 2 2 6.0 6.0
12 8.17055517666916  8.17055517666916 2 2 6.0 6.0
13 8.33819397083645  8.33819397083645 2 2 6.0 6.0
14 8.54774246354557  8.54774246354557 2 2 6.0 6.0
15 8.80967807943196  8.80967807943196 2 2 6.0 6.0
16 9.13709759928994  9.13709759928994 2 2 6.0 6.0
17 9.54754361279848  9.54754361279842 2 2 6.0 6.0
18 10.0594295159981  10.0594295159980 2 1

1 2
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Summary

e Computation of equilibrium value correspondence reveals

e dynamic interaction and competition missed by simplifying
assumptions

e rich set of equilibrium outcomes that involve

fluctuating market power

over-investment and over-production when cooperation breaks
down

worst equilibrium resembles prisoner's dilemma
best equilibria resemble battle of the sexes.

equilibria with current profit of leading firm less than smaller
firm
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Supergames with Continuous States

e Approximation substantially more complicated than discrete
states.

e Goal: Find an approximation scheme with right properties
that preserves outer/inner bounds.

e Use set-valued step functions.

e See unpublished mimeo: Sleet and Yeltekin (1999); “On the
approximation of value correspondences”.
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Number of players

e So far examples have N = 2.

e Algorithm applicable to N > 2
e Some computational issues.

e Computational power. No of optimizations rise exponentially.
e Choice of hyperplanes non-trivial. [Sampling on a sphere.]

e Harder to define/calculate error bounds.
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Sampling surface of sphere
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Continuous Actions

Optimizations are LP problems.

LP has nearly negligible approximation error.

Using LP ensures outer and inner approx. do not have
optimization error.

NLP methods can introduce optimization errors that distort
the inner/outer structure.

My advice: Stick to discrete actions.
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Dynamic Games in Macro

e Credible policy designed as dynamic game between planner
—+continuum of agents with capital.

e One large strategic player + continuum of non-strategic
players.

e How does one apply a variant of APS 7

e Use planner’s value and tomorrow’s marginal utility of capital.

e Example: Phelan and Stacchetti (Econometrica, 2001):
Ramsey tax model w/ capital and no govt commitment.
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