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Introduction

• Repeated and dynamic games have been used to model
dynamic interactions in:

• Industrial organization,

• Principal-agent contracts,

• Social insurance problems,

• Political economy games,

• Macroeconomic policy-making.
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Introduction

• These problems are difficult to analyze unless severe
simplifying assumptions are made:

• Equilibrium selection

• Functional form (cost, technology, preferences)

• Size of discounting
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Goal

• Examine entire set of pure-strategy equilibrium values in
repeated and dynamic games

• Propose a general algorithm for computation that can handle

• large state spaces,

• flexible functional forms,

• any discounting,

• flexible informational assumptions.
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Approach

• Computational method based on Abreu-Pearce-Stacchetti
(APS) (1986,1990) set-valued techniques for repeated games.

• APS show that set of equilibrium payoffs a fixed point of an
operator similar to Bellman operator in DP.

• APS method not directly implementable on a computer.
Requires approximation of arbitrary sets.

• Our method allows for

• parsimonious representation of sets/correspondences on a
computer

• preserves monotonicity of underlying operator.
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Contributions

• Develop a general algorithm that

• computes pure-strategy equilibrium value sets of repeated and
dynamic games,

• provides upper and lower bounds for equilibrium values and
hence computational error bounds,

• computes equilibrium strategies.

• Based on: Judd-Yeltekin-Conklin (2003), Sleet and
Yeltekin(2003), Yeltekin-Judd (2011)
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REPEATED GAMES
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Stage Game

• Ai – player i’s action space, i = 1, · · · , N

• A = ×N
i=1Ai – action profiles

• Πi(a) – Player i payoff, i = 1, · · · , N

• Maximal and minimal payoffs

Πi ≡ min
a∈A

Πi(a), Π̄i ≡ max
a∈A

Πi(a)
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Supergame G∞

• Action space: A∞

• ht: t-period history: {as}t−1s=0 with as ∈ A

• Set of t-period histories: Ht

• Preferences:

wi(a
∞) =

1− δ
δ

E0Σ
∞
t=1δ

tΠi(at).

• Strategies: {σi,t}∞t=0 with σi,t : Ht → Ai.

• Subgame Perfect Equilibrium Payoffs

V ∗ ⊂ W = ×N
i=1[Πi , Πi]
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Example 1: Prisoner’s Dilemma

• Static game: player 1 (2) chooses row (column)

Left Right

Up 4, 4 0, 6

Down 6, 0 0, 0

• Static Nash equilibrium
• (Down, Right) with payoff (0, 0)

• Suppose δ is close to 1

• G∞ includes (Up, Left) forever with payoff (4, 4)
• Rational if all believe a deviation causes permanent reversion

to (Down, Right)

• This is just one of many equilibria.

10 / 44



Computing Equilibria of Repeated And Dynamic Games

Static Equilibrium

• Static game

b11, c11 b12, c12

b21, c21 b22, c22

bij (cij) is player 1’s (2’s) return if player 1 (2) plays i (j).
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Recursive Formulation

• Each SPE payoff vector is supported by

• profile of actions consistent with Nash today

• continuation payoffs that are SPE payoffs

• Each stage of subgame perfect equilibrium of G∞ is a static
equilibrium to some one-shot game A, augmented by values
from δV ∗:

δ∗b11 + δu11, δ
∗c11 + δw11 δ∗b12 + δu12, δ

∗c12 + δw12

δ∗b21 + δu21, δ
∗c21 + δw21 δ∗b22 + δu22, δ

∗c22 + δw22

δ∗ = 1− δ
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Steps: Computing the Equilibrium Value Set

1 Define an operator that maps today’s equilibrium values to
tomorrow’s.

2 Show operator is monotone and equilibrium payoff set is its
largest fixed point. [Requires some work. We use Tarski’s FP
theorem.]

3 Define approximation for operator and sets that

• Represent sets parsimoniously on computer

• Preserve monotonicity of operator

4 Define appropriately chosen initial set, apply operator until
convergence.
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Step 1: Operator

B∗ : P → P.

• Let W ∈ P.

B∗(W) = ∪(a,w){(1− δ)Π(a) + δw}

subject to:
w ∈ W

and for each ∀i ∈ N, ∀ã ∈ Ai

(1− δ)Πi(a) + δwi ≥ Πi(ã, a−i) + δwi}

where wi = min{wi|w ∈ W}.
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Step 2: Self-generation

A set W is self-generating if :

W ⊆ B∗(W)

An extension of the arguments in APS establishes the following:

• Any self-generating set is contained within V ∗,

• V ∗ itself is self-generating.
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Step 2: Factorization

b ∈ B∗(W) if there is an action profile a and continuation payoff
w ∈ W, s.t

• b is value of playing a today and receiving continuation value
w ,

• for each i, player i will choose to play ai

• punishment value drawn from set W.
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Step 2: Properties of B∗

• Monotonicity: B∗ is monotone in the set inclusion ordering:

If W1 ⊆ W2, then B∗(W1) ⊆ B∗(W2)

• Compactness: B∗ preserves compactness.

• Implications:

1) V ∗ is the maximal fixed point of the mapping B∗;

2) V ∗ can be obtained by repeatedly applying B∗ to any set that
contains V ∗.
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Step 3: Approximation

• V ∗ is not necessarily a convex set

• We need to approximate both V ∗ and the correspondence
B∗(W )

• As a first step, use public randomization to convexify the
equilibrium value set.
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Step 3: Public randomization

• Public lottery with support contained in W.

• Public lottery specifies continuation values for the next period
• Lottery determines Nash equilibrium for next period.

• Strategies now condition on histories of actions and lottery
outcomes.

• Modified operator:

B(W ) = B(co(W)) = co(B∗(co(W))),

where W = co(W)

• V equilibrium value set of supergame with public
randomization.

• B is monotone and V is the largest fixed point of B.
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Step B: Approximations

• Modified operator B preserves monotonicity and compactness.

• Produces a sequence of convex sets that converge to
equilibrium.

• Two approximations:
• outer approximation

• inner approximation
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Piecewise-Linear Inner Approximation

• Suppose we have M points Z = {(x1, y1), ..., (xM , yM )} on
the boundary of a convex set W .

• The convex hull of Z, co(Z), is contained in W and has a
piecewise linear boundary.

• Since co(Z) ⊆ W , we will call co(Z) the inner approximation
to W generated by Z.
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Inner approximation

8

Piecewise-Linear Inner Approximation of Convex Sets

� Suppose we have n points Z = {(x1, y1), ..., (xn, yn)} on the boundary
of a convex set W .

� The convex hull of Z, co(Z), is contained in W and has a piecewise

linear boundary, as illustrated by the polygon in Figure 1.

� Since co(Z) ⊆ W , we will call co(Z) the inner approximation to W
generated by Z.

Inner approximations
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Piecewise-Linear Outer Approximation

• Suppose we have

• M points Z = {(x1, y1), ..., (xM , yM )} on the boundary of W,
and

• corresponding set of subgradients, R = {(s1, t1), ..., (sM , tM )};

• Therefore,

• the plane six+ tiy = sixi + tiyi is tangent to W at (xi, yi),
and

• the vector (si, ti) with base at (xi, yi) points away from W .
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Outer approximation

9

Piecewise-Linear Outer Approximation of Convex Sets

� Suppose we have
� n points Z = {(x1, y1), ..., (xn, yn)} on the boundary of W, and
� the corresponding set of subgradients, R = {(s1, t1), ..., (sn, tn)};

� Therefore,
� the plane six + tiy = sixi + tiyi is tangent to W at (xi, yi), and

� the vector (si, ti) with base at (xi, yi) points away from W .

A convex set and supporting hyperplanes
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Key Properties of Approximations

Definition

Let BI(W ) be an inner approximation of B(W ) and BO(W ) be an
outer approximation of B(W ); that is BI(W ) ⊆ B(W ) ⊆ BO(W ).

Lemma

Next, for any BI(W ) and BO(W ), (i) W ⊆W ′ implies
BI(W ) ⊆ BI(W ′), and (ii) W ⊆W ′ implies BO(W ) ⊆ BO(W ′).
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Step 4: Initial Guesses and Convergence

Proposition

Suppose BO(·) is an outer monotone approximation of B(·). Then
the maximal fixed point of BO contains V . More precisely, if
W ⊇ BO(W ) ⊇ V , then BO(W ) ⊇ BO(BO(W )) ⊇ · · · ⊇ V .

Lemma

W ⊇ BO(W ) ⊇ V .
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Step 4: Initial Guesses and Convergence

Proposition

Suppose BI(·) is an inner monotone approximation of B(·). Then
the maximal fixed point of BI is contained in V . More precisely, if
W ⊆ BI(W ) ⊆ V , then BI(W ) ⊆ BI(BI(W )) ⊆ · · · ⊆ V .

Lemma

W ⊆ BI(W ) ⊆ V .
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Fixed Point

These results together with the monotonicity of the B operator,
implies the following theorem.

Theorem

Let V be the equilibrium value set. Then (i) if W0 ⊇ V then
BO(W0) ⊇ BO(BO(W0)) ⊇ · · · ⊇ V , and (ii) if W0 ⊂ BI(W0)
then BI(W0) ⊂ BI(BI(W0)) ⊆ · · · ⊆ V. Furthermore, any fixed
point of BI is contained in the maximal fixed point of B, which in
turn is contained in the maximal fixed point of BO.
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Monotone Inner Hyperplane Approximation

Input: Points Z = {z1, · · · , zM} such that W = co(Z).

Step 1 Find extremal points of B(W ):

For each search subgradient h` ∈ H, ` = 1, .., L.

(1) For each a ∈ A, solve the linear program

c`(a) = maxw h` · [(1− δ)Π(a) + δw]
(i) w ∈W
(ii) (1− δ)Πi(a) + δwi ≥

(1− δ)Π∗
i (a−i) + δwi, i = 1, .., N

(1)
Let w`(a) be a w value which solves (1).
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Monotone Inner Hyperplane Approximation cont’d

(2) Find best action profile a ∈ A and continuation value:

a∗` = arg max {c`(a)|a ∈ A}
z+` = (1− δ)Π(a∗` ) + δw`(a

∗
` )

Step 2 Collect set of vertices Z+ = {z+` |` = 1, ..., L}, and define
W+ = co(Z+).
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The Outer Approximation, Hyperplane Algorithm

Outer approximation: Same as inner approximation except record
normals and continuation values z+`
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Outer vs. Inner Approximations

• Any equilibrium is in the inner approximation

• Can construct an equilibrium strategy from V .

• There exist multiple such strategies
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The Outer Approximation, Hyperplane Algorithm

• No point outside of outer approximation can be an equilibrium

• Can demonstrate certain equilibrium payoffs and actions are
not possible

• E.g., can prove that joint profit maximization is not possible
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Error Bounds

• Difference between inner and outer approximations is
approximation error

• Computations actually constitute a proof that something is in
or out of equilibrium payoff set - not just an approximation.

• Difference is small in many examples.
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ErrorBounds
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Convergence: Repeated Prisoner’s Dilemma
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Hyperplanes: Repeated Prisoner’s Dilemma
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Example 2: Repeated Cournot Duopoly

• Firm i sales: qi

• Firm i unit cost: ci = 0.6

• Demand: p = max{6− q1 − q2, 0}

• Profit: Πi(q1, q2) = qi(p− ci)

• Nash Eqm. Payoff of Stage Game: (3.24, 3.24)

• Shared Monopoly Payoff : (3.64, 3.64)
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Repeated Cournot
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Example 2: Repeated Cournot Duopoly

• Set of eqm payoffs quite large.

• Shared monopoly profits (+ and ?) are achievable (for
δ = 0.8)

• When costs are positive, threats far worse than reversion to
Nash.
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Strategies: Repeated Cournot
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Strategies: Repeated Cournot
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Example 2: Repeated Cournot Duopoly

• Unlike APS’s imperfect monitoring example, eqm. paths are
not bang-bang.

• Continuation of worst eqm is not worst. Movement towards
cooperation?

• Shared Monopoly: Markov and stationary.

• Low profits today for Firm i are supported by higher
continuation values.
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Next Meeting

• Dynamic Games

• Using algorithm to find endogenous state spaces.

• Extensions to planner+continuum of agents.

• Examples from applications in IO , Macro.
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