Computation of Moral-Hazard Problems with Applications in Designing Executive Compensation Contracts

Che-Lin Su
The University of Chicago
Booth School of Business
Che-Lin.Su@ChicagoBooth.edu

Based on joint work with Kenneth L. Judd, Chris Armstrong, and David Larcker

ICE 2010
July 19 – 30, 2010
Agenda

● Static Moral-Hazard Model
 ○ With Kenneth Judd (Hoover Institution & NBER)
 ○ Deterministic contract
 ○ LP lottery approach
 ○ MPEC formulation
 ○ Hybrid method for a global solution
 ○ Numerical results on deterministic contract
 ○ Contract with action lotteries and numerical results

● Executive Compensation Design
 ○ With David Larcker and Chris Armstrong (Stanford GSB)
Complementarity

Complementarity in simplest form: for $x, y \in \mathbb{R}$

$$0 \leq x \perp y \geq 0 \iff x \geq 0, y \geq 0, x = 0 \text{ or } y = 0$$
Complementarity

Complementarity in simplest form: for $x, y \in \mathbb{R}$

\[0 \leq x \perp y \geq 0 \iff x \geq 0, y \geq 0, x = 0 \text{ or } y = 0 \]

Complementarity between nonnegative vectors: $x, y \in \mathbb{R}^n_+$

\[0 \leq x \perp y \geq 0 \iff x_i \geq 0, y_i \geq 0, x_i = 0 \text{ or } y_i = 0, \text{ for all } i \]
Complementarity

Complementarity in simplest form: for $x, y \in \mathbb{R}$

$$0 \leq x \perp y \geq 0 \iff x \geq 0, y \geq 0, x = 0 \text{ or } y = 0.$$

Complementarity between nonnegative vectors: $x, y \in \mathbb{R}^n_+$

$$0 \leq x \perp y \geq 0 \iff x_i \geq 0, y_i \geq 0, x_i = 0 \text{ or } y_i = 0, \text{ for all } i.$$

Complementarity Problem: Given a mapping $F : \mathbb{R}^n_+ \rightarrow \mathbb{R}^n$, find a vector $x \in \mathbb{R}^n_+$ satisfying

$$0 \leq x \perp F(x) \geq 0$$
Complementarity

Complementarity between nonnegative vectors: \(x, y \in \mathbb{R}_+^n \)

\[
0 \leq x \perp y \geq 0 \iff x_i \geq 0, y_i \geq 0, x_i = 0 \text{ or } y_i = 0, \text{ for all } i.
\]

Complementarity Problem: Given a mapping \(F : \mathbb{R}_+^n \rightarrow \mathbb{R}^n \), find a vector \(x \in \mathbb{R}_+^n \) satisfying

\[
0 \leq x \perp F(x) \geq 0
\]

- First-order optimality conditions: \(f \) smooth

\[
\text{argmin}\{f(x) : x \geq 0\} \subseteq \{x^* : 0 \leq x \perp \nabla_x f(x) \geq 0\}
\]
Complementarity

Complementarity between nonnegative vectors: \(x, y \in \mathbb{R}_n^+ \)

\[
0 \leq x \perp y \geq 0 \iff x_i \geq 0, y_i \geq 0, x_i = 0 \text{ or } y_i = 0, \text{ for all } i.
\]

Complementarity Problem: Given a mapping \(F : \mathbb{R}_n^+ \rightarrow \mathbb{R}^n \), find a vector \(x \in \mathbb{R}_n^+ \) satisfying

\[
0 \leq x \perp F(x) \geq 0
\]

- First-order optimality conditions: \(f \) smooth

\[
\text{argmin}\{f(x) : x \geq 0\} \subseteq \{x^* : 0 \leq x \perp \nabla_x f(x) \geq 0\}
\]

- Nash equilibrium in game theory: \(f_1, f_2 \) smooth

\[
\left[\begin{array}{c}
\text{argmin}\{f_1(x; y) : x \geq 0\} \\
\text{argmin}\{f_2(y; x) : y \geq 0\}
\end{array} \right] \subseteq \left\{ (x^*, y^*) : \begin{bmatrix}
0 & \leq x \perp \nabla_x f_1(x; y) \geq 0 \\
0 & \leq y \perp \nabla_y f_2(y; x) \geq 0
\end{bmatrix} \right\}
\]
Complementarity

Complementarity between nonnegative vectors: \(x, y \in \mathbb{R}_+^n \)

\[
0 \leq x \perp y \geq 0 \iff x_i \geq 0, y_i \geq 0, x_i = 0 \text{ or } y_i = 0, \text{ for all } i.
\]

Complementarity Problem: Given a mapping \(F : \mathbb{R}_+^n \rightarrow \mathbb{R}^n \), find a vector \(x \in \mathbb{R}_+^n \) satisfying

\[
0 \leq x \perp F(x) \geq 0
\]

Mathematical Programs with Equilibrium Constraints (MPEC):

\[
\text{minimize}_{(x)} \quad f(x) \\
\text{subject to} \quad g(x) \leq 0 \\
0 \leq x \perp F(x) \geq 0
\]
Static Moral-Hazard Model

expected utility $W(c, a)$:
$$\sum_i p(q_i | a) w(q_i - c_i)$$

compensation ($\$)$:
$$c = (c_i) \text{ with } c_i \in \mathbb{R}_+$$

outcomes ($\$)$: $q_i \in Q$

uncertainty: $p(q_i | a)$

action ($\$)$: $a \in A \subset \mathbb{R}_+$

expected utility $U(c, a)$:
$$\sum_i p(q_i | a) u(c_i, a)$$
Timeline of Moral-Hazard Model

- Notations:
 - $a \in A \subset \mathbb{R}$; $q_i \in Q = \{q_1, \ldots, q_N\}$; $c = (c_1, \ldots, c_N) \in \mathbb{R}^N_+$
 - Uncertainty: $p(q_i|a)$
 - Utility: principal $w(q_i - c_i)$; agent $u(c_i, a)$
 - Expected utility: principal $W(c, a) = \sum_i p(q_i|a)w(q_i - c_i)$;

 agent $U(c, a) = \sum_i p(q_i|a)u(c_i, a)$
Timeline of Moral-Hazard Model

- Notations:
 - $a \in A \subset \mathbb{R}$; $q_i \in Q = \{q_1, \ldots, q_N\}$; $c = (c_1, \ldots, c_N) \in \mathbb{R}_+^N$
 - Uncertainty: $p(q_i | a)$
 - Utility: principal $w(q_i - c_i)$; agent $u(c_i, a)$
 - Expected utility: principal $W(c, a) = \sum_i p(q_i | a)w(q_i - c_i)$;

 agent $U(c, a) = \sum_i p(q_i | a)u(c_i, a)$

- The principal and the agent agree to the contract with a suggested action a and compensation schedule $c = (c_1, \ldots, c_N)$
Timeline of Moral-Hazard Model

- Notations:
 - $a \in A \subset \mathbb{R}$; $q_i \in Q = \{q_1, \ldots, q_N\}$; $c = (c_1, \ldots, c_N) \in \mathbb{R}_+^N$
 - Uncertainty: $p(q_i | a)$
 - Utility: principal $w(q_i - c_i)$; agent $u(c_i, a)$
 - Expected utility: principal $W(c, a) = \sum_i p(q_i | a)w(q_i - c_i)$;
 agent $U(c, a) = \sum_i p(q_i | a)u(c_i, a)$

- The principal and the agent agree to the contract with a suggested action a and compensation schedule $c = (c_1, \ldots, c_N)$
- The agent implements the suggested but unobservable action a
Timeline of Moral-Hazard Model

- Notations:
 - $a \in A \subset \mathbb{R}$; $q_i \in Q = \{q_1, \ldots, q_N\}$; $c = (c_1, \ldots, c_N) \in \mathbb{R}_+^N$
 - Uncertainty: $p(q_i | a)$
 - Utility: principal $w(q_i - c_i)$; agent $u(c_i, a)$
 - Expected utility: principal $W(c, a) = \sum_i p(q_i | a) w(q_i - c_i)$; agent $U(c, a) = \sum_i p(q_i | a) u(c_i, a)$

- The principal and the agent agree to the contract with a suggested action a and compensation schedule $c = (c_1, \ldots, c_N)$
- The agent implements the suggested but unobservable action a
- Output q_i is realized
Timeline of Moral-Hazard Model

- Notations:
 - $a \in A \subset \mathbb{R}$; $q_i \in Q = \{q_1, \ldots, q_N\}$; $c = (c_1, \ldots, c_N) \in \mathbb{R}^N$
 - Uncertainty: $p(q_i | a)$
 - Utility: principal $w(q_i - c_i)$; agent $u(c_i, a)$
 - Expected utility: principal $W(c, a) = \sum_i p(q_i | a)w(q_i - c_i)$;
 agent $U(c, a) = \sum_i p(q_i | a)u(c_i, a)$

- The principal and the agent agree to the contract with a suggested action a and compensation schedule $c = (c_1, \ldots, c_N)$
- The agent implements the suggested but unobservable action a
- Output q_i is realized
- Compensation c_i is paid according to the realized output q_i
Optimal Deterministic Contract

maximize \(W(c, a)\)

subject to \(U(c, a) \geq U_0\) (Reservation Utility)

\(a \in \text{argmax}\{U(c, \tilde{a}) : \tilde{a} \in A\}\)

\(c \in \mathbb{R}^N_+\)
Optimal Deterministic Contract

maximize \((c, a)\) \(W(c, a)\)

subject to

\(U(c, a) \geq U_0\) (Reservation Utility)

\(a \in \arg\max\{U(c, \tilde{a}) : \tilde{a} \in \mathcal{A}\}\)

\(c \in \mathbb{R}^N_+\)

- Both \(c\) and \(a\) are continuous variables
- Need global optimality at both levels
Optimal Deterministic Contract

\[
\begin{align*}
\text{maximize}_{(c,a)} & \quad W(c, a) \\
\text{subject to} & \quad U(c, a) \geq U_0 \quad \text{(Reservation Utility)} \\
& \quad a \in \arg\max\{U(c, \tilde{a}) : \tilde{a} \in \mathcal{A}\} \\
& \quad c \in \mathbb{R}_+^N
\end{align*}
\]

- Both \(c \) and \(a \) are continuous variables
- Need global optimality at both levels
- First-order approach [Mirrlees ’75] [Rogerson ’85]
 - Replace \(\{\max U(c, a) : a \in \mathcal{A}\} \) by first-order conditions, but usually, \(U(c, a) \) is not concave in \(a \) for all \(c \)
LP Lotteries Approach

- [Myerson '82] [Prescott & Townsend '84a, b] [(Ned) Prescott '04]
- Consider finite action set \mathcal{A} and finite compensation set \mathcal{C} with element ξ
LP Lotteries Approach

- [Myerson '82] [Prescott & Townsend '84a, b] [(Ned) Prescott '04]
- Consider finite action set \mathcal{A} and finite compensation set \mathcal{C} with element ξ
- Timeline
 - The principal and the agent agree to the contract with lotteries $\pi(a)$ and $\pi(\xi|q, a)$
LP Lotteries Approach

- [Myerson ’82] [Prescott & Townsend ’84a, b] [(Ned) Prescott ’04]
- Consider finite action set \mathcal{A} and finite compensation set \mathcal{C} with element ξ
- Timeline
 - The principal and the agent agree to the contract with lotteries $\pi(a)$ and $\pi(\xi|q, a)$
 - The action lottery is done according to the agreed probabilities $\pi(a)$
LP Lotteries Approach

• [Myerson '82] [Prescott & Townsend '84a, b] [(Ned) Prescott '04]

• Consider finite action set \mathcal{A} and finite compensation set \mathcal{C} with element ξ

• Timeline
 - The principal and the agent agree to the contract with lotteries $\pi(a)$ and $\pi(\xi|q, a)$
 - The action lottery is done according to the agreed probabilities $\pi(a)$
 - Output q is realized
LP Lotteries Approach

• [Myerson ’82] [Prescott & Townsend ’84a, b] [(Ned) Prescott ’04]

• Consider finite action set \mathcal{A} and finite compensation set \mathcal{C} with element ξ

• Timeline

 ◦ The principal and the agent agree to the contract with lotteries $\pi(a)$ and $\pi(\xi|q, a)$

 ◦ The action lottery is done according to the agreed probabilities $\pi(a)$

 ◦ Output q is realized

 ◦ Compensation is paid according to the agreed lottery conditional on the action a and the realized output q: $\pi(\xi|q, a)$
LP Lotteries Approach

- **Ideas:** Consider action and compensation lotteries
 - Construct an action grid \(A = \{a_1, \ldots, a_M\} \) and a compensation grid \(C = \{\xi_1, \ldots, \xi_L\} \)
 - Introduce probability measures \(\pi(a) \) and \(\pi(\xi|q, a) \)
 - Transform ODC into an LP with \(\pi = (\pi(\xi, q, a))_{\xi \in C, q \in Q, a \in A} \)
LP Lotteries Approach

- **Ideas:** Consider action and compensation lotteries
 - Construct an action grid $\mathcal{A} = \{a_1, \ldots, a_M\}$ and a compensation grid $\mathcal{C} = \{\xi_1, \ldots, \xi_L\}$
 - Introduce probability measures $\pi(a)$ and $\pi(\xi|q,a)$
 - Transform ODC into an LP with $\pi = (\pi(\xi,q,a))_{\xi \in \mathcal{C}, q \in \mathcal{Q}, a \in \mathcal{A}}$

- **Disadvantages:**
 - The resulting LP is large:
 - $L \times M \times N$ variables and $M \times (N + M - 1) + 2$ constraints.
 - If $M = 50$, $N = 40$, $L = 500$, ⇒ an LP with one million variables and 4452 constraints.
 - Economic choice variables are continuous in nature
 - The curse of dimensionality for multidimensional problems
MPEC Approach for finite A

- Goal of [Su-Judd '05]: Allow continuous compensation $c \in \mathbb{R}_+^N$ (and keep finite A)
MPEC Approach for finite \mathcal{A}

- Goal of [Su-Judd ’05]: Allow continuous compensation $c \in \mathbb{R}_+^N$ (and keep finite \mathcal{A})

- Idea: Introduce mixed-strategy profile $\delta = (\delta_1, \ldots, \delta_M)$ for agent's action choices $\mathcal{A} = \{a_1, \ldots, a_M\}$:

$$\delta_k \iff a_k \text{ for } k = 1, \ldots, M$$
MPEC Approach for finite \mathcal{A}

- **Goal of [Su-Judd '05]:** Allow continuous compensation $c \in \mathbb{R}_+^N$ (and keep finite \mathcal{A})

- **Idea:** Introduce mixed-strategy profile $\delta = (\delta_1, \ldots, \delta_M)$ for agent's action choices $\mathcal{A} = \{a_1, \ldots, a_M\}$:

$$\delta_k \iff a_k \quad \text{for } k = 1, \ldots, M$$

- Agent's mixed strategy problem is an LP

$$a^* \in \arg\max \left\{ U(c, a) : a \in \{a_1, \ldots, a_M\} \right\}$$

$$\Leftrightarrow$$

$$\delta^* \in \arg\max \left\{ \sum_{k=1}^M U(c, a_k)\delta_k : e^T\delta = 1, \delta \geq 0 \right\}$$
MPEC Approach for finite \mathcal{A}

- **Goal of [Su-Judd ’05]:** Allow continuous compensation $c \in \mathbb{R}^N_+$ (and keep finite \mathcal{A})

- **Idea:** Introduce mixed-strategy profile $\delta = (\delta_1, \ldots, \delta_M)$ for agent's action choices $\mathcal{A} = \{a_1, \ldots, a_M\}$:

 $$
 \delta_k \iff a_k \quad \text{for } k = 1, \ldots, M
 $$

- Agent's mixed strategy problem is an LP

 $$
 a^* \in \arg\max \ \{ U(c, a) : a \in \{a_1, \ldots, a_M\} \}
 \quad \iff \\
 \delta^* \in \arg\max \ \left\{ \sum_{k=1}^{M} U(c, a_k)\delta_k : e^T\delta = 1, \delta \geq 0 \right\}
 $$

 Optimality + strong duality \quad \iff \quad \text{Let } U(c) := (U(c, a_k))_{k=1}^{M}

 δ^* solves

 $$
 \begin{cases}
 0 \leq \delta \perp (U(c)^T\delta) \ e - U(c) \geq 0 \\
 e^T\delta = 1
 \end{cases}
 $$
MPEC Approach for finite \mathcal{A}

maximize \((c, a) \) \[W(c, a) \]

subject to \(U(c, a) \geq U_0 \)

\(a \in \text{argmax} \{U(c, \tilde{a}) : \tilde{a} \in \mathcal{A} = \{a_1, \ldots, a_M\}\} \)

\(c \in \mathbb{R}^N_+ \)
MPEC Approach for finite A

maximize$_{(c, \delta)}$ $W(c)^T \delta$

subject to

$U(c)^T \delta \geq U_0$

$e^T \delta = 1$

$0 \leq \delta \perp (U(c)^T \delta) e - U(c) \geq 0$

$c \in \mathbb{R}^N_+$
MPEC Approach for finite \mathcal{A}

maximize$_{(c,\delta)}$ $W(c)^T \delta$

subject to $U(c)^T \delta \geq U_0$

$e^T \delta = 1$

$0 \leq \delta \perp (U(c)^T \delta) e - U(c) \geq 0$

$c \in \mathbb{R}_+^N$

This is a Mathematical Program with Equilibrium Constraints (MPEC)!
MPEC Approach for finite \mathcal{A}

\[
\begin{align*}
\text{maximize}_{(c, \delta)} & \quad W(c)^T \delta \\
\text{subject to} & \quad U(c)^T \delta \geq U_0 \\
& \quad e^T \delta = 1 \\
& \quad 0 \leq \delta \perp (U(c)^T \delta) e - U(c) \geq 0 \\
& \quad c \in \mathbb{R}_+^N
\end{align*}
\]

This is a Mathematical Program with Equilibrium Constraints (MPEC)!

Problem Size: $(N + M)$ variables, $2M + 2$ constraints
MPEC Approach for finite \mathcal{A}

maximize (c, δ) $W(c)^T \delta$

subject to $U(c)^T \delta \geq U_0$

$e^T \delta = 1$

$0 \leq \delta \perp (U(c)^T \delta) e - U(c) \geq 0$

$c \in \mathbb{R}^N_+$

This is a Mathematical Program with Equilibrium Constraints (MPEC)!

Problem Size: $(N + M)$ variables, $2M + 2$ constraints

Lemma:

(i) $(c^*, \delta^*) \in \text{SOL}(\text{MPEC}) \implies (c^*, a^*_i) \text{ an ODC with } a^*_i \in \mathcal{A} \text{ finite, and } i \in \{j : \delta^*_j > 0\}$.

(ii) (c^*, a^*_i) an ODC with $a^*_i \in \mathcal{A} \text{ finite} \implies (c^*, e_i) \in \text{SOL}(\text{MPEC})$, where e_i is the i-th column of an identity matrix
A Hybrid Method [Su-Judd ’05]

Observations:

- MPEC: Allows continuous compensation $c \in \mathbb{R}_+^N$ but may stop at local maximum
- LP: Produce global optimal but the grid C may be too coarse
A Hybrid Method [Su-Judd ’05]

Observations:

- MPEC: Allows continuous compensation $c \in \mathbb{R}_+^N$ but may stop at local maximum

- LP: Produce global optimal but the grid C may be too coarse

Goal: Combine the best features of both to find a global solution with continuous compensation $c \in \mathbb{R}_+^N$
A Hybrid Method [Su-Judd ’05]

Observations:

• MPEC: Allows continuous compensation \(c \in \mathbb{R}_+^N \) but may stop at local maximum

• LP: Produce global optimal but the grid \(C \) may be too coarse

Goal: Combine the best features of both to find a global solution with continuous compensation \(c \in \mathbb{R}_+^N \)

Step 0: Construct a coarse grid \(C \)

Step 1: Solve the LP for the given grid \(C \)

Step 2: Setup and solve the MPEC:

\[
\begin{cases}
(2.1) : \text{ construct } (c^0, \delta^0) \text{ using LP solution} \\
(2.2) : \text{ Solve the MPEC with the feasible starting pt } (c^0, \delta^0)
\end{cases}
\]

Step 3: Refine the grid and repeat Step 1 and Step 2
A Hybrid Method [Su-Judd ’05]

Observations:

- MPEC: Allows continuous compensation $c \in \mathbb{R}^N_+$ but may stop at local maximum
- LP: Produce global optimal but the grid C may be too coarse

Goal: Combine the best features of both to find a global solution with continuous compensation $c \in \mathbb{R}^N_+$

Step 0: Construct a coarse grid C

Step 1: Solve the LP for the given grid C

Step 2: Setup and solve the MPEC:

\[
\begin{align*}
(2.1) & : \text{ construct } (c^0, \delta^0) \text{ using LP solution} \\
(2.2) & : \text{ Solve the MPEC with the feasible starting pt } (c^0, \delta^0)
\end{align*}
\]

Step 3: Refine the grid and repeat Step 1 and Step 2

Result: A hybrid solution is always better than an LP solution
An Example in [Karaivanov ’01]

- Risk-neutral principal: \(w(q_i - c_i) = q_i - c_i \)
- Risk-averse agent: \(u(c_i, a) = \frac{c_i^{1-\gamma}}{1-\gamma} + \kappa \frac{(1-a)^{1-\delta}}{1-\delta} \)
- Two outcomes: \(q_H = $3 \) and \(q_L = $1 \)
- Action set: \(|A| = 10 \) with equally-spaced effort level within \([0.01, 0.99]\)
- The production technology \(p(q = q_H | a) = a^\alpha \) with \(0 < \alpha < 1 \)

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>(\kappa)</th>
<th>(\delta)</th>
<th>(\alpha)</th>
<th>(U_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
<td>0.7</td>
<td>1</td>
</tr>
</tbody>
</table>

- Both LP and MPEC are coded in AMPL and solved by SNOPT on NEOS server (host: prado.iems.northwestern.edu)
LP Solutions

LP Solutions with 8 different grids (# of constraints = 112)

| $|C|$ | # of Variables | Read Time (in sec.) | Solve Time (in sec.) | # of Iterations | Objective Value |
|-----|----------------|---------------------|----------------------|-----------------|-----------------|
| 21 | 420 | 0.01 | 0.04 | 37 | 1.875882746 |
| 41 | 820 | 0.02 | 0.07 | 46 | 1.877252910 |
| 81 | 1620 | 0.03 | 0.12 | 46 | 1.877259193 |
| 161 | 3220 | 0.06 | 0.25 | 46 | 1.877262265 |
| 321 | 6420 | 0.13 | 0.58 | 69 | 1.877263785 |
| 641 | 12820 | 0.26 | 1.12 | 52 | 1.877259905 |
| 1281| 25620 | 0.53 | 2.67 | 101 | 1.877262221 |
| 2561| 51220 | 1.09 | 4.81 | 73 | 1.877262201 |
| 5121| 102420 | 2.46 | 11.70 | 101 | 1.877263113 |

- Warm Start: Simplex method.
Hybrid Solution

<table>
<thead>
<tr>
<th></th>
<th>Read Time</th>
<th>Solve Time</th>
<th># of Iterations</th>
<th>Objective Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>C</td>
<td>$</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>MPEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting Point $\delta_6 = 1, \delta_i(\neq 6) = 0$</td>
<td>0.02</td>
<td>0.01</td>
<td>13</td>
<td>1.877265298</td>
</tr>
</tbody>
</table>
Hybrid Solution

<table>
<thead>
<tr>
<th>LP</th>
<th>Read Time (in sec.)</th>
<th>Solve Time (in sec.)</th>
<th># of Iterations</th>
<th>Objective Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>C</td>
<td>)</td>
<td>0.01</td>
<td>0.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MPEC</th>
<th>Read Time (in sec.)</th>
<th>Solve Time (in sec.)</th>
<th># of Major Iterations</th>
<th>Objective Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Point</td>
<td>(\delta_6 = 1, \delta_{i(\neq 6)} = 0)</td>
<td>0.02</td>
<td>0.01</td>
<td>13</td>
</tr>
</tbody>
</table>

LP solution

<table>
<thead>
<tr>
<th>LP</th>
<th>Read Time (in sec.)</th>
<th>Solve Time (in sec.)</th>
<th># of Iterations</th>
<th>Objective Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>C</td>
<td>)</td>
<td>2.46</td>
<td>11.70</td>
</tr>
</tbody>
</table>
Contract with Action Lotteries

• A probability distribution $\pi(a)$ and a compensation schedule $c(a) \in R^N$ for every action $a \in A$
Contract with Action Lotteries

- A probability distribution \(\pi(a) \) and a compensation schedule \(c(a) \in R^N \) for every action \(a \in A \)
- Modifications:
 - Objective function: \(\sum_a \pi(a)W(c(a), a) \)
 - Participation constraint: \(\sum_a \pi(a)U(c(a), a) \geq U_0 \)
 - Incentive compatibility constraints:
 \[
 \begin{align*}
 &\pi(a) \geq 0 \\
 &U(c(a), a) \geq U(c(a), a_1), \\
 &\vdots \\
 &U(c(a), a) \geq U(c(a), a_M).
 \end{align*}
 \]
 If \(\pi(a) > 0 \), then
 \[
 \begin{align*}
 &\pi(a) \geq 0 \\
 &\pi(a)(U(c(a), a) - U(c(a), \tilde{a})) \geq 0, \quad \forall (a, \tilde{a}) \in A \times A
 \end{align*}
 \]
Contract with Action Lotteries

- A probability distribution $\pi(a)$ and a compensation schedule $c(a) \in \mathbb{R}^N$ for every action $a \in \mathcal{A}$

maximize $\sum_{a \in \mathcal{A}} \pi(a) W(c(a), a)$

subject to $\sum_{a \in \mathcal{A}} \pi(a) U(c(a), a) \geq U_0$,

$\sum_{a \in \mathcal{A}} \pi(a) = 1$,

$\pi(a) (U(c(a), a) - U(c(a), \tilde{a})) \geq 0, \quad \forall (a, \tilde{a}(\neq a)) \in \mathcal{A} \times \mathcal{A}$,

$\pi(a) \geq 0, \quad \forall a \in \mathcal{A}$.
Star-Shaped Feasible Region

maximize \(f(x, y) \)

s.t. \(x \geq 0 \)

\(xy \geq 0 \)

\((-2, 0)\) \quad \(0, -2)\)

\((1, 0)\)
Star-Shaped Feasible Region

- Nonconvex feasible region due to switch-off constraints [Scholtes '04]
- LICQ fails on y-axis
MPEC for Action Lotteries

\[\pi(a) \geq 0, \quad \text{if } \pi(a) > 0, \quad \text{then} \quad \begin{cases} U(c(a), a) \geq U(c(a), a_1), \\ \vdots \\ U(c(a), a) \geq U(c(a), a_M). \end{cases} \]

\[\forall a \in A: \begin{cases} \pi(a) (U(c(a), a) - U(c(a), \tilde{a})) \geq 0, \quad \forall \tilde{a} \neq a \in A, \\ \pi(a) \geq 0. \end{cases} \]

\[\forall a \in A: \begin{cases} U(c(a), a) - U(c(a), \tilde{a}) + s(a, \tilde{a}) \geq 0, \quad \forall \tilde{a} \neq a \in A, \\ 0 \leq \pi(a) \perp s(a, \tilde{a}) \geq 0. \end{cases} \]
MPEC for Action Lotteries

maximize \(\sum_{a \in A} \pi(a)W(c(a), a) \)

subject to \(\sum_{a \in A} \pi(a)U(c(a), a) \geq U_0, \)

\(\sum_{a \in A} \pi(a) = 1, \)

\(\forall a \in \mathcal{A} : \) \[\begin{cases}
U(c(a), a) - U(c(a), \tilde{a}) + s(a, \tilde{a}) \geq 0, & \forall \tilde{a}(\neq a) \in \mathcal{A}, \\
0 \leq \pi(a) \perp s(a, \tilde{a}) \geq 0.
\end{cases} \]
The A-L Example in [Prescott ’04]

Hybrid method: LP with 11 compensation grid points and then switch to MPEC.

Hybrid Solutions with 10 different action grids, $|C| = 11$, $|Q| = 50$

| $|A|$ | t_{LP} (in sec.) | LP Obj. Val. | t_{MPEC} (in sec.) | MPEC Obj. Val. | t_{Total} (in sec.) |
|-----|-------------------|--------------|----------------------|----------------|----------------------|
| 6 | 2 | 1.75868508 | 1 | 1.76234445 | 3 |
| 11 | 4 | 1.75868508 | 2 | 1.76234448 | 6 |
| 16 | 9 | 1.76265085 | 3 | 1.76565622 | 12 |
| 21 | 12 | 1.76351860 | 11 | 1.76630661 | 23 |
| 26 | 21 | 1.75924445 | 6 | 1.76298273 | 27 |
| 31 | 38 | 1.76265085 | 11 | 1.76565620 | 49 |
| 36 | 64 | 1.75606325 | 16 | 1.76051776 | 80 |
| 51 | 102 | 1.75924445 | 22 | 1.76298271 | 124 |
| 76 | 266 | 1.75778364 | 127 | 1.76298273 | 393 |
| 101 | 575 | 1.75572408 | 1108 | 1.76234445 | 1683 |
| 151 | 4203 | 1.75534000 | 14018 | 1.75996707 | 18221 |
Extensions

- MPEC formulations are also given for:
 - Contracts with compensation lottery (randomized payment)
 - Contracts with action and compensation lotteries
 - Multidimensional action choices - little economic theory, make special assumptions
 - Multidimensional compensation choices - infeasible for LP
Extensions

• MPEC formulations are also given for:
 ◦ Contracts with compensation lottery (randomized payment)
 ◦ Contracts with action and compensation lotteries
 ◦ Multidimensional action choices - little economic theory, make special assumptions
 ◦ Multidimensional compensation choices - infeasible for LP

• Future research
 ◦ Tournament (single-principal multi-agent) problem
 [Lazear & Rosen ’81]
 ◦ Incentive problem with both hidden information and moral-hazard
 ◦ Dynamic contracts (multi-period moral-hazard problem)
 [Phelan & Townsend ’91]
 ◦ Executive compensation (with D. Larcker and C. Armstrong)
Executive Compensation

• Components of Compensation
 o Fixed Salary s
 o Stocks β_0
 o Options β_1 (with Strike Price K to be Determined)
 o Payment $c_i = s + \beta_0 \cdot p_i + \beta_1 \cdot \max(q_i - K, 0)$

• Action Choices for the CEO (Agent)
 1. mean (a) and/or variance (σ) of the performance of business operations
An Example

- Risk-neutral principal: \(w(q_i - c_i) = q_i - c_i \)
- Risk-averse agent: \(u(c_i, a) = \frac{c_i^{1-\gamma}}{1-\gamma} - \mu a^2 \)
- Outcomes \(q_i \): equally-spaced stock price level within \([0, 160]\)
- Action set: \(|A| = 50\) with equally-spaced effort level within \([0, 50]\)
- The production technology

\[
p(q|a) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{(q - (C + M \times a))^2}{2\sigma^2} \right)
\]

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>(\mu)</th>
<th>(C)</th>
<th>(M)</th>
<th>(U_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.0025</td>
<td>60</td>
<td>((0.25, 0.5, 0.75))</td>
<td>1</td>
</tr>
</tbody>
</table>
Flexible Modeling Framework

(1) agent effort has a positive, but decreasing impact on the mean of the distribution
(2) agent effort has positive and increasing impact on volatility
(3) multiple options with different exercise prices
(4) multiple agent effort: the agent can “diversify” some of his holdings into the risk-free asset
(5) more realistic participation constraint – min utility is a function of estimated agent effort
(6) multiple period variations of these settings
(7) “robust” contracts – very simple compensation plans are almost as good as the very complicated plans that are observed in the real world?