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Complementarity Problem: Given a mapping F : IRn
+ → IRn,

find a vector x ∈ IRn
+ satisfying

0 ≤ x ⊥ F (x) ≥ 0

• First-order optimality conditions: f smooth

argmin{f(x) : x ≥ 0} ⊆ {x∗ : 0 ≤ x ⊥ ∇xf(x) ≥ 0}

• Nash equilibrium in game theory: f1, f2 smooth





argmin{f1(x; y) : x ≥ 0}
argmin{f2(y; x) : y ≥ 0}



 ⊆







(x∗, y∗) :





0 ≤ x ⊥ ∇xf1(x; y) ≥ 0

0 ≤ y ⊥ ∇yf2(y; x) ≥ 0











– p.3/22



Complementarity
Complementarity between nonnegative vectors: x, y ∈ IRn

+

0 ≤ x ⊥ y ≥ 0 ⇐⇒ xi ≥ 0, yi ≥ 0, xi = 0 or yi = 0, for all i.

Complementarity Problem: Given a mapping F : IRn
+ → IRn,

find a vector x ∈ IRn
+ satisfying

0 ≤ x ⊥ F (x) ≥ 0

Mathematical Programs with Equilibrium Constraints (MPEC):

minimize(x) f(x)

subject to g(x) ≤ 0

0 ≤ x ⊥ F (x) ≥ 0
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Static Moral-Hazard Model
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Timeline of Moral-Hazard Model

• Notations:

◦ a ∈ A ⊂ IR; qi ∈ Q = {q1, . . . , qN}; c = (c1, . . . , cN ) ∈ IRN
+

◦ Uncertainty: p(qi|a)

◦ Utility: principal w(qi − ci); agent u(ci, a)

◦ Expected utility: principal W (c, a) =
∑

i

p(qi|a)w(qi − ci);

agent U(c, a) =
∑

i

p(qi|a)u(ci, a)
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Timeline of Moral-Hazard Model

• Notations:

◦ a ∈ A ⊂ IR; qi ∈ Q = {q1, . . . , qN}; c = (c1, . . . , cN ) ∈ IRN
+

◦ Uncertainty: p(qi|a)

◦ Utility: principal w(qi − ci); agent u(ci, a)

◦ Expected utility: principal W (c, a) =
∑

i

p(qi|a)w(qi − ci);

agent U(c, a) =
∑

i

p(qi|a)u(ci, a)

• The principal and the agent agree to the contract with a suggested

action a and compensation schedule c = (c1, . . . , cN )

• The agent implements the suggested but unobservable action a

• Output qi is realized

• Compensation ci is paid according to the realized output qi
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Optimal Deterministic Contract

maximize(c,a) W (c, a)

subject to U(c, a) ≥ U0 (Reservation Utility)

a ∈ argmax{U(c, ã) : ã ∈ A}
c ∈ IRN

+
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Optimal Deterministic Contract

maximize(c,a) W (c, a)

subject to U(c, a) ≥ U0 (Reservation Utility)

a ∈ argmax{U(c, ã) : ã ∈ A}
c ∈ IRN

+

• Both c and a are continuous variables

• Need global optimality at both levels

• First-order approach [Mirrlees ’75] [Rogerson ’85]

◦ Replace {max U(c, a) : a ∈ A} by first-order conditions, but

usually, U(c, a) is not concave in a for all c
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LP Lotteries Approach

• [Myerson ’82] [Prescott & Townsend ’84a, b] [(Ned) Prescott ’04]

• Consider finite action set A and finite compensation set C with

element ξ
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LP Lotteries Approach

• [Myerson ’82] [Prescott & Townsend ’84a, b] [(Ned) Prescott ’04]

• Consider finite action set A and finite compensation set C with

element ξ

• Timeline

◦ The principal and the agent agree to the contract with lotteries

π(a) and π(ξ|q, a)

◦ The action lottery is done according to the agreed probabilities

π(a)

◦ Output q is realized

◦ Compensation is paid according to the agreed lottery

conditional on the action a and the realized output q: π(ξ|q, a)
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LP Lotteries Approach

• Ideas: Consider action and compensation lotteries

◦ Construct an action grid A = {a1, . . . , aM} and a

compensation grid C = {ξ1, . . . , ξL}
◦ Introduce probability measures π(a) and π(ξ|q, a)

◦ Transform ODC into an LP with π = (π(ξ, q, a))ξ∈C,q∈Q,a∈A
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LP Lotteries Approach

• Ideas: Consider action and compensation lotteries

◦ Construct an action grid A = {a1, . . . , aM} and a

compensation grid C = {ξ1, . . . , ξL}
◦ Introduce probability measures π(a) and π(ξ|q, a)

◦ Transform ODC into an LP with π = (π(ξ, q, a))ξ∈C,q∈Q,a∈A

• Disadvantages:

◦ The resulting LP is large:

L ∗ M ∗ N variables and M ∗ (N + M − 1) + 2 constraints.

If M = 50, N = 40, L = 500, ⇒ an LP with one million

variables and 4452 constraints

◦ Economic choice variables are continuous in nature

◦ The curse of dimensionality for multidimensional problems
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MPEC Approach for finite A
• Goal of [Su-Judd ’05]: Allow continuous compensation c ∈ IRN

+ (and

keep finite A)
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MPEC Approach for finite A
• Goal of [Su-Judd ’05]: Allow continuous compensation c ∈ IRN

+ (and

keep finite A)

• Idea: Introduce mixed-strategy profile δ = (δ1, . . . , δM ) for agent’s

action choices A = {a1, . . . , aM}:

δk ⇐⇒ ak for k = 1, . . . , M

• Agent’s mixed strategy problem is an LP

a∗ ∈ argmax {U(c, a) : a ∈ {a1, . . . , aM}}
m

δ∗ ∈ argmax

{

M
∑

k=1

U(c, ak)δk : eT δ = 1, δ ≥ 0

}

Optimality + strong duality m Let U(c) := (U(c, ak))M
k=1

δ∗ solves







0 ≤ δ ⊥
(

U(c)Tδ
)

e − U(c) ≥ 0

eTδ = 1
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MPEC Approach for finite A

maximize(c,a) W (c, a)

subject to U(c, a) ≥ U0

a ∈ argmax {U(c, ã) : ã ∈ A = {a1, . . . , aM}}
c ∈ IRN

+
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MPEC Approach for finite A

maximize(c,δ) W (c)Tδ

subject to U(c)Tδ ≥ U0

eTδ = 1

0 ≤ δ ⊥
(

U(c)Tδ
)

e − U(c) ≥ 0

c ∈ IRN
+

This is a Mathematical Program with Equilibrium Constraints (MPEC)!

Problem Size: (N + M) variables, 2M + 2 constraints

Lemma:

(i) (c∗, δ∗) ∈ SOL(MPEC) =⇒ (c∗, a∗
i ) an ODC with a∗

i ∈ A finite, and

i ∈ {j : δ∗j > 0}.
(ii) (c∗, a∗

i ) an ODC with a∗
i ∈ A finite =⇒ (c∗, ei) ∈ SOL(MPEC),

where ei is the i-th column of an identity matrix
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A Hybrid Method [Su-Judd ’05]
Observations:

• MPEC: Allows continuous compensation c ∈ IRN
+ but may stop at

local maximum

• LP: Produce global optimal but the grid C may be too coarse
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• MPEC: Allows continuous compensation c ∈ IRN
+ but may stop at

local maximum

• LP: Produce global optimal but the grid C may be too coarse

Goal: Combine the best features of both to find a global solution with

continuous compensation c ∈ IRN
+

Step 0: Construct a coarse grid C
Step 1: Solve the LP for the given grid C
Step 2: Setup and solve the MPEC :







(2.1) : construct (c0, δ0) using LP solution

(2.2) : Solve the MPEC with the feasible starting pt (c0, δ0)

Step 3: Refine the grid and repeat Step 1 and Step 2
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A Hybrid Method [Su-Judd ’05]
Observations:

• MPEC: Allows continuous compensation c ∈ IRN
+ but may stop at

local maximum

• LP: Produce global optimal but the grid C may be too coarse

Goal: Combine the best features of both to find a global solution with

continuous compensation c ∈ IRN
+

Step 0: Construct a coarse grid C
Step 1: Solve the LP for the given grid C
Step 2: Setup and solve the MPEC :







(2.1) : construct (c0, δ0) using LP solution

(2.2) : Solve the MPEC with the feasible starting pt (c0, δ0)

Step 3: Refine the grid and repeat Step 1 and Step 2

Result: A hybrid solution is always better than an LP solution – p.11/22



An Example in [Karaivanov ’01]

• Risk-neutral principal: w(qi − ci) = qi − ci

• Risk-averse agent: u(ci, a) =
c
1−γ
i

1 − γ
+ κ

(1 − a)1−δ

1 − δ

• Two outcomes: qH = $3 and qL = $1

• Action set: |A| = 10 with equally-spaced effort level within

[0.01, 0.99]

• The production technology p(q = qH |a) = aα with 0 < α < 1

γ κ δ α U0

0.5 1 0.5 0.7 1

• Both LP and MPEC are coded in AMPL and solved by SNOPT on

NEOS server (host: prado.iems.northwestern.edu)
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LP Solutions

LP Solutions with 8 different grids (# of constraints = 112)

# of Read Time Solve Time # of Objective

|C| Variables (in sec.) (in sec.) Iterations Value

21 420 0.01 0.04 37 1.875882746

41 820 0.02 0.07 46 1.877252910

81 1620 0.03 0.12 46 1.877259193

161 3220 0.06 0.25 46 1.877262265

321 6420 0.13 0.58 69 1.877263785

641 12820 0.26 1.12 52 1.877259905

1281 25620 0.53 2.67 101 1.877262221

2561 51220 1.09 4.81 73 1.877262201

5121 102420 2.46 11.70 101 1.877263113

• [(Ned) Prescott ’04]: Dantzig-Wolfe decomposition.

• Warm Start: Simplex method.
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Hybrid Solution

LP Read Time Solve Time # of Objective

|C| (in sec.) (in sec.) Iterations Value

21 0.01 0.04 37 1.875882746

MPEC Read Time Solve Time # of Major Objective

Starting Point (in sec.) (in sec.) Iterations Value

δ6 = 1, δi( 6=6) = 0 0.02 0.01 13 1.877265298
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Hybrid Solution

LP Read Time Solve Time # of Objective

|C| (in sec.) (in sec.) Iterations Value

21 0.01 0.04 37 1.875882746

MPEC Read Time Solve Time # of Major Objective

Starting Point (in sec.) (in sec.) Iterations Value

δ6 = 1, δi( 6=6) = 0 0.02 0.01 13 1.877265298

LP solution

LP Read Time Solve Time # of Objective

|C| (in sec.) (in sec.) Iterations Value

5121 2.46 11.70 101 1.877263113

– p.14/22



Contract with Action Lotteries

• A probability distribution π(a) and a compensation schedule

c(a) ∈ RN for every action a ∈ A
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Contract with Action Lotteries

• A probability distribution π(a) and a compensation schedule

c(a) ∈ RN for every action a ∈ A
• Modifications:

◦ Objective function:
∑

a π(a)W (c(a), a)

◦ Participation constraint:
∑

a π(a)U(c(a), a) ≥ U0

◦ Incentive compatibility constraints:

π(a) ≥ 0

if π(a) > 0, then



















U(c(a), a) ≥ U(c(a), a1),
...

U(c(a), a) ≥ U(c(a), aM ).

m
π(a) ≥ 0

π(a)(U(c(a), a) − U(c(a), ã)) ≥ 0, ∀(a, ã) ∈ A×A
– p.15/22



Contract with Action Lotteries

• A probability distribution π(a) and a compensation schedule

c(a) ∈ RN for every action a ∈ A

maximize
∑

a∈A

π(a)W (c(a), a)

subject to
∑

a∈A

π(a)U(c(a), a) ≥ U0,

∑

a∈A

π(a) = 1,

π(a) (U(c(a), a) − U(c(a), ã)) ≥ 0, ∀ (a, ã( 6= a)) ∈ A×A,

π(a) ≥ 0, ∀ a ∈ A.

– p.15/22



Star-Shaped Feasible Region
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Star-Shaped Feasible Region

• Nonconvex feasible region due to switch-off constraints [Scholtes ’04]

• LICQ fails on y-axis

– p.16/22



MPEC for Action Lotteries

π(a) ≥ 0, if π(a) > 0, then



















U(c(a), a) ≥ U(c(a), a1),
...

U(c(a), a) ≥ U(c(a), aM ).

m

∀ a ∈ A :







π(a) (U(c(a), a) − U(c(a), ã)) ≥ 0, ∀ ã( 6= a) ∈ A,

π(a) ≥ 0.

m

∀ a ∈ A :







U(c(a), a) − U(c(a), ã) + s(a, ã) ≥ 0, ∀ ã( 6= a) ∈ A,

0 ≤ π(a) ⊥ s(a, ã) ≥ 0.
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MPEC for Action Lotteries

maximize
∑

a∈A

π(a)W (c(a), a)

subject to
∑

a∈A

π(a)U(c(a), a) ≥ U0,

∑

a∈A

π(a) = 1,

∀ a ∈ A :







U(c(a), a) − U(c(a), ã) + s(a, ã) ≥ 0, ∀ ã( 6= a) ∈ A,

0 ≤ π(a) ⊥ s(a, ã) ≥ 0.
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The A-L Example in [Prescott ’04]
Hybrid method: LP with 11 compensation grid points and then switch to MPEC.

Hybrid Solutions with 10 different action grids, |C| = 11, |Q| = 50

tLP LP tMP EC MPEC tT otal

|A| (in sec.) Obj. Val. (in sec.) Obj. Val. (in sec.)

6 2 1.75868508 1 1.76234445 3

11 4 1.75868508 2 1.76234448 6

16 9 1.76265085 3 1.76565622 12

21 12 1.76351860 11 1.76630661 23

26 21 1.75924445 6 1.76298273 27

31 38 1.76265085 11 1.76565620 49

36 64 1.75606325 16 1.76051776 80

51 102 1.75924445 22 1.76298271 124

76 266 1.75778364 127 1.76298273 393

101 575 1.75572408 1108 1.76234445 1683

151 4203 1.75534000 14018 1.75996707 18221

– p.18/22



Extensions

• MPEC formulations are also given for :

◦ Contracts with compensation lottery (randomized payment)

◦ Contracts with action and compensation lotteries

◦ Multidimensional action choices - little economic theory, make

special assumptions

◦ Multidimensional compensation choices - infeasible for LP
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Extensions

• MPEC formulations are also given for :

◦ Contracts with compensation lottery (randomized payment)

◦ Contracts with action and compensation lotteries

◦ Multidimensional action choices - little economic theory, make

special assumptions

◦ Multidimensional compensation choices - infeasible for LP

• Future research

◦ Tournament (single-principal multi-agent) problem

[Lazear & Rosen ’81]

◦ Incentive problem with both hidden information and

moral-hazard

◦ Dynamic contracts (multi-period moral-hazard problem)

[Phelan & Townsend ’91]

◦ Executive compensation (with D. Larcker and C. Armstrong)
– p.19/22



Executive Compensation

• Components of Compensation

◦ Fixed Salary s

◦ Stocks β0

◦ Options β1 (with Strike Price K to be Determined)

◦ Payment ci = s + β0 ∗ pi + β1 ∗ max(qi − K, 0)

• Action Choices for the CEO (Agent)

1. mean (a) and/or variance (σ) of the performance of

business operations

– p.20/22



An Example

• Risk-neutral principal: w(qi − ci) = qi − ci

• Risk-averse agent: u(ci, a) =
c
1−γ
i

1 − γ
− µa2

• Outcomes qi: equally-spaced stock price level within [0, 160]

• Action set: |A| = 50 with equally-spaced effort level within [0, 50]

• The production technology

p(q|a) =
1√
2πσ

∗ exp

(

− (q − (C + M ∗ a))2

2σ2

)

γ µ C M U0

0.5 0.0025 60 (0.25, 0.5, 0.75) 1
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Flexible Modeling Framework

(1) agent effort has a positive, but decreasing impact on the

mean of the distribution

(2) agent effort has positive and increasing impact on volatility

(3) multiple options with different exercise prices

(4) multiple agent effort: the agent can“diversify”some of his

holdings into the risk-free asset

(5) more realistic participation constraint – min utility is a

function of estimated agent effort

(6) multiple period variations of these settings

(7) “robust”contracts – very simple compensation plans are

almost as good as the very complicated plans that are

observed in the real world?
– p.22/22
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