Computation of Moral-Hazard Problems with Applications in Designing Executive Compensation Contracts

> CHE-LIN SU The University of Chicago Booth School of Business Che-Lin.Su@ChicagoBooth.edu

Based on joint work with Kenneth L. Judd, Chris Armstrong, and David Larcker

ICE 2010 July 19 - 30, 2010

Agenda

- Static Moral-Hazard Model
 - With Kenneth Judd (Hoover Institution & NBER)
 - Deterministic contract
 - LP lottery approach
 - MPEC formulation
 - Hybrid method for a global solution
 - Numerical results on deterministic contract
 - Contract with action lotteries and numerical results
- Executive Compensation Design
 - With David Larcker and Chris Armstrong (Stanford GSB)

Complementarity in simplest form: for $x, y \in \mathbb{R}$

 $0 \le x \perp y \ge 0 \quad \Longleftrightarrow \quad x \ge 0, \ y \ge 0, \ x = 0 \text{ or } y = 0$

Complementarity in simplest form: for $x, y \in \mathbb{R}$

 $0 \le x \perp y \ge 0 \quad \iff \quad x \ge 0, \ y \ge 0, \ x = 0 \text{ or } y = 0$

Complementarity between nonnegative vectors: $x, y \in \mathbb{R}^{n}_{+}$

 $0 \le x \perp y \ge 0 \quad \iff \quad x_i \ge 0, \ y_i \ge 0, \ x_i = 0 \text{ or } y_i = 0, \text{ for all } i$

Complementarity in simplest form: for $x, y \in \mathbb{R}$

 $0 \le x \perp y \ge 0 \quad \iff \quad x \ge 0, \ y \ge 0, \ x = 0 \text{ or } y = 0.$

Complementarity between nonnegative vectors: $x, y \in \mathbb{R}^n_+$

 $0 \le x \perp y \ge 0 \quad \iff \quad x_i \ge 0, \ y_i \ge 0, \ x_i = 0 \text{ or } y_i = 0, \text{ for all } i.$

Complementarity Problem: Given a mapping $F : \mathbb{R}^n_+ \to \mathbb{R}^n$, find a vector $x \in \mathbb{R}^n_+$ satisfying

 $0 \le \mathbf{x} \perp F(\mathbf{x}) \ge 0$

Complementarity between nonnegative vectors: $x, y \in {\rm I\!R}^{\rm n}_+$

 $0 \le x \perp y \ge 0 \quad \iff \quad x_i \ge 0, \ y_i \ge 0, \ x_i = 0 \text{ or } y_i = 0, \text{ for all } i.$

Complementarity Problem: Given a mapping $F : \mathbb{R}^n_+ \to \mathbb{R}^n$, find a vector $x \in \mathbb{R}^n_+$ satisfying

 $0 \le \mathbf{x} \perp F(\mathbf{x}) \ge 0$

• First-order optimality conditions: *f* smooth

 $\operatorname{argmin}\{f(x): x \ge 0\} \subseteq \{x^*: 0 \le x \perp \nabla_x f(x) \ge 0\}$

Complementarity between nonnegative vectors: $x, y \in {\rm I\!R}^{\rm n}_+$

 $0 \le x \perp y \ge 0 \quad \iff \quad x_i \ge 0, \ y_i \ge 0, \ x_i = 0 \text{ or } y_i = 0, \text{ for all } i.$

Complementarity Problem: Given a mapping $F : \mathbb{R}^n_+ \to \mathbb{R}^n$, find a vector $x \in \mathbb{R}^n_+$ satisfying

 $0 \le x \perp F(x) \ge 0$

• First-order optimality conditions: f smooth

 $\operatorname{argmin}\{f(x): x \ge 0\} \subseteq \{x^*: 0 \le x \perp \nabla_x f(x) \ge 0\}$

• Nash equilibrium in game theory: f_1 , f_2 smooth

$$\left[\begin{array}{c} \operatorname{argmin}\{f_1(x; \boldsymbol{y}) : x \ge 0\} \\ \operatorname{argmin}\{f_2(y; \boldsymbol{x}) : y \ge 0\} \end{array} \right] \subseteq \left\{ (\boldsymbol{x}^*, \boldsymbol{y}^*) : \left[\begin{array}{c} 0 \le x \perp \nabla_x f_1(x; \boldsymbol{y}) \ge 0 \\ 0 \le y \perp \nabla_y f_2(y; \boldsymbol{x}) \ge 0 \end{array} \right] \right\} \\ \xrightarrow{-p.3/22}{} \end{array} \right.$$

Complementarity between nonnegative vectors: $x, y \in {\rm I\!R}^{\rm n}_+$

 $0 \le x \perp y \ge 0 \quad \iff \quad x_i \ge 0, \ y_i \ge 0, \ x_i = 0 \text{ or } y_i = 0, \text{ for all } i.$

Complementarity Problem: Given a mapping $F : \mathbb{R}^n_+ \to \mathbb{R}^n$, find a vector $x \in \mathbb{R}^n_+$ satisfying

 $0 \le \mathbf{x} \perp F(\mathbf{x}) \ge 0$

Mathematical Programs with Equilibrium Constraints (MPEC):

$$\begin{array}{ll} \text{minimize}_{(x)} & f(x) \\ \text{subject to} & g(x) \leq 0 \\ & 0 \leq x \perp F(x) \geq 0 \end{array}$$

Static Moral-Hazard Model

- Notations:
 - $\circ \ a \in \mathcal{A} \subset \mathbb{R}; \ q_i \in \mathcal{Q} = \{q_1, \dots, q_N\}; \ c = (c_1, \dots, c_N) \in \mathbb{R}^{\mathbb{N}}_+$
 - Uncertainty: $p(q_i|a)$
 - Utility: principal $w(q_i c_i)$; agent $u(c_i, a)$
 - Expected utility: principal $W(c, a) = \sum_{i} p(q_i | a) w(q_i c_i);$

agent
$$U(c, \mathbf{a}) = \sum_{i} p(q_i | \mathbf{a}) u(c_i, \mathbf{a})$$

- Notations:
 - $\circ \ a \in \mathcal{A} \subset \mathbb{R}; \ q_i \in \mathcal{Q} = \{q_1, \dots, q_N\}; \ c = (c_1, \dots, c_N) \in \mathbb{R}^{\mathbb{N}}_+$
 - Uncertainty: $p(q_i|a)$
 - Utility: principal $w(q_i c_i)$; agent $u(c_i, a)$
 - Expected utility: principal $W(c, a) = \sum_{i} p(q_i | a) w(q_i c_i);$

agent
$$U(\mathbf{c}, \mathbf{a}) = \sum_{i} p(q_i | \mathbf{a}) u(\mathbf{c}_i, \mathbf{a})$$

• The principal and the agent agree to the contract with a suggested action a and compensation schedule $c = (c_1, \ldots, c_N)$

- Notations:
 - $\circ \ a \in \mathcal{A} \subset \mathbb{R}; \ q_i \in \mathcal{Q} = \{q_1, \dots, q_N\}; \ c = (c_1, \dots, c_N) \in \mathbb{R}^{\mathbb{N}}_+$
 - Uncertainty: $p(q_i|a)$
 - Utility: principal $w(q_i c_i)$; agent $u(c_i, a)$
 - Expected utility: principal $W(c, a) = \sum_{i} p(q_i | a) w(q_i c_i);$

agent
$$U(\mathbf{c}, \mathbf{a}) = \sum_{i} p(q_i | \mathbf{a}) u(\mathbf{c}_i, \mathbf{a})$$

- The principal and the agent agree to the contract with a suggested action a and compensation schedule $c = (c_1, \ldots, c_N)$
- The agent implements the suggested but unobservable action a

- Notations:
 - $\circ \ a \in \mathcal{A} \subset \mathbb{R}; \ q_i \in \mathcal{Q} = \{q_1, \dots, q_N\}; \ c = (c_1, \dots, c_N) \in \mathbb{R}^{\mathbb{N}}_+$
 - Uncertainty: $p(q_i|a)$
 - Utility: principal $w(q_i c_i)$; agent $u(c_i, a)$
 - Expected utility: principal $W(c, a) = \sum_{i} p(q_i | a) w(q_i c_i);$

agent
$$U(\mathbf{c}, \mathbf{a}) = \sum_{i} p(q_i | \mathbf{a}) u(\mathbf{c}_i, \mathbf{a})$$

- The principal and the agent agree to the contract with a suggested action a and compensation schedule $c = (c_1, \ldots, c_N)$
- The agent implements the suggested but unobservable action a
- Output q_i is realized

- Notations:
 - $\circ \ a \in \mathcal{A} \subset \mathbb{R}; \ q_i \in \mathcal{Q} = \{q_1, \dots, q_N\}; \ c = (c_1, \dots, c_N) \in \mathbb{R}^{\mathbb{N}}_+$
 - Uncertainty: $p(q_i|a)$
 - Utility: principal $w(q_i c_i)$; agent $u(c_i, a)$
 - Expected utility: principal $W(c, a) = \sum_{i} p(q_i | a) w(q_i c_i);$

agent
$$U(\mathbf{c}, \mathbf{a}) = \sum_{i} p(q_i | \mathbf{a}) u(\mathbf{c}_i, \mathbf{a})$$

- The principal and the agent agree to the contract with a suggested action a and compensation schedule $c = (c_1, \ldots, c_N)$
- The agent implements the suggested but unobservable action a
- Output q_i is realized
- Compensation c_i is paid according to the realized output q_i

Optimal Deterministic Contract

$$\begin{split} \text{maximize}_{(c,a)} & W(c,a) \\ \text{subject to} & U(c,a) \geq U_0 \text{ (Reservation Utility)} \\ & a \in \operatorname{argmax} \{ U(c,\tilde{a}) : \tilde{a} \in \mathcal{A} \} \\ & c \in \mathrm{I\!R}^{\mathrm{N}}_+ \end{split}$$

Optimal Deterministic Contract

$$\begin{split} \text{maximize}_{(c,a)} & W(c,a) \\ \text{subject to} & U(c,a) \geq U_0 \text{ (Reservation Utility)} \\ & a \in \operatorname{argmax} \{ U(c,\tilde{a}) : \tilde{a} \in \mathcal{A} \} \\ & c \in \mathbb{R}^{\mathbb{N}}_+ \end{split}$$

- Both *c* and *a* are continuous variables
- Need global optimality at both levels

Optimal Deterministic Contract

$$\begin{split} \text{maximize}_{(c,a)} & W(c,a) \\ \text{subject to} & U(c,a) \geq U_0 \text{ (Reservation Utility)} \\ & a \in \operatorname{argmax} \{ U(c,\tilde{a}) : \tilde{a} \in \mathcal{A} \} \\ & c \in \mathrm{I\!R}^{\mathrm{N}}_+ \end{split}$$

- Both *c* and *a* are continuous variables
- Need global optimality at both levels
- First-order approach [Mirrlees '75] [Rogerson '85]
 - Replace $\{\max U(c, a) : a \in A\}$ by first-order conditions, but usually, U(c, a) is not concave in a for all c

- [Myerson '82] [Prescott & Townsend '84a, b] [(Ned) Prescott '04]
- Consider finite action set ${\mathcal A}$ and finite compensation set ${\mathcal C}$ with element ξ

- [Myerson '82] [Prescott & Townsend '84a, b] [(Ned) Prescott '04]
- Consider finite action set ${\mathcal A}$ and finite compensation set ${\mathcal C}$ with element ξ
- Timeline
 - The principal and the agent agree to the contract with lotteries $\pi(a)$ and $\pi(\xi|q, a)$

- [Myerson '82] [Prescott & Townsend '84a, b] [(Ned) Prescott '04]
- Consider finite action set ${\mathcal A}$ and finite compensation set ${\mathcal C}$ with element ξ
- Timeline
 - The principal and the agent agree to the contract with lotteries $\pi(a)$ and $\pi(\xi|q, a)$
 - $\circ~$ The action lottery is done according to the agreed probabilities $\pi({\it a})$

- [Myerson '82] [Prescott & Townsend '84a, b] [(Ned) Prescott '04]
- Consider finite action set ${\mathcal A}$ and finite compensation set ${\mathcal C}$ with element ξ
- Timeline
 - The principal and the agent agree to the contract with lotteries $\pi(a)$ and $\pi(\xi|q, a)$
 - $\circ~$ The action lottery is done according to the agreed probabilities $\pi({\it a})$
 - \circ Output q is realized

- [Myerson '82] [Prescott & Townsend '84a, b] [(Ned) Prescott '04]
- Consider finite action set ${\mathcal A}$ and finite compensation set ${\mathcal C}$ with element ξ
- Timeline
 - The principal and the agent agree to the contract with lotteries $\pi(a)$ and $\pi(\xi|q, a)$
 - $\circ~$ The action lottery is done according to the agreed probabilities $\pi({\it a})$
 - \circ Output q is realized
 - Compensation is paid according to the agreed lottery conditional on the action a and the realized output q: $\pi(\xi|q, a)$

- Ideas: Consider action and compensation lotteries
 - Construct an action grid $\mathcal{A} = \{a_1, \dots, a_M\}$ and a compensation grid $\mathcal{C} = \{\xi_1, \dots, \xi_L\}$
 - Introduce probability measures $\pi(a)$ and $\pi(\xi|q, a)$
 - Transform ODC into an **LP** with $\pi = (\pi(\xi, q, a))_{\xi \in \mathcal{C}, q \in \mathcal{Q}, a \in \mathcal{A}}$

- Ideas: Consider action and compensation lotteries
 - Construct an action grid $\mathcal{A} = \{a_1, \dots, a_M\}$ and a compensation grid $\mathcal{C} = \{\xi_1, \dots, \xi_L\}$
 - Introduce probability measures $\pi(a)$ and $\pi(\xi|q, a)$
 - Transform ODC into an **LP** with $\pi = (\pi(\xi, q, a))_{\xi \in \mathcal{C}, q \in \mathcal{Q}, a \in \mathcal{A}}$
- Disadvantages:

The resulting LP is large:
L * M * N variables and M * (N + M − 1) + 2 constraints.
If M = 50, N = 40, L = 500, ⇒ an LP with one million variables and 4452 constraints

- Economic choice variables are continuous in nature
- The curse of dimensionality for multidimensional problems

• Goal of [Su-Judd '05]: Allow continuous compensation $c \in {
m I\!R}^{
m N}_+$ (and keep finite ${\cal A}$)

- Goal of [Su-Judd '05]: Allow continuous compensation $c \in {\rm I\!R}^{
 m N}_+$ (and keep finite ${\cal A}$)
- Idea: Introduce mixed-strategy profile $\delta = (\delta_1, \dots, \delta_M)$ for agent's action choices $\mathcal{A} = \{a_1, \dots, a_M\}$:

$$\delta_k \iff a_k \quad \text{ for } k = 1, \dots, M$$

- Goal of [Su-Judd '05]: Allow continuous compensation $c \in {\rm I\!R}^{
 m N}_+$ (and keep finite ${\cal A}$)
- Idea: Introduce mixed-strategy profile δ = (δ₁,..., δ_M) for agent's action choices A = {a₁,..., a_M}:

$$\delta_k \iff a_k \quad \text{ for } k = 1, \dots, M$$

• Agent's mixed strategy problem is an LP

- Goal of [Su-Judd '05]: Allow continuous compensation $c \in {\rm I\!R}^{
 m N}_+$ (and keep finite ${\cal A}$)
- Idea: Introduce mixed-strategy profile $\delta = (\delta_1, \dots, \delta_M)$ for agent's action choices $\mathcal{A} = \{a_1, \dots, a_M\}$:

$$\delta_k \iff a_k \quad \text{ for } k = 1, \dots, M$$

• Agent's mixed strategy problem is an LP

$$a^* \in \operatorname{argmax} \{U(c, a) : a \in \{a_1, \dots, a_M\}\}$$

$$\uparrow$$

$$\delta^* \in \operatorname{argmax} \left\{ \sum_{k=1}^M U(c, a_k) \delta_k : e^{\mathrm{T}} \delta = 1, \delta \ge 0 \right\}$$
Optimality + strong duality \uparrow Let $U(c) := (U(c, a_k))_{k=1}^M$

$$\delta^* \text{ solves} \left\{ \begin{array}{c} 0 \le \delta \perp (U(c)^{\mathrm{T}} \delta) \ e - U(c) \ge 0 \\ e^{\mathrm{T}} \delta = 1 \end{array} \right.$$

$$\begin{split} \text{maximize}_{(c,a)} & W(c,a) \\ \text{subject to} & U(c,a) \geq U_0 \\ & a \in \operatorname{argmax} \left\{ U(c,\tilde{a}) : \tilde{a} \in \mathcal{A} = \{a_1, \dots, a_M\} \right\} \\ & c \in \mathbb{R}^{\mathbb{N}}_+ \end{split}$$

$$\begin{split} \text{maximize}_{(c,\delta)} & W(c)^{\mathrm{T}}\delta\\ \text{subject to} & U(c)^{\mathrm{T}}\delta \geq U_{0}\\ & e^{\mathrm{T}}\delta = 1\\ & 0 \leq \delta \perp \left(U(c)^{\mathrm{T}}\delta\right) \, e - U(c) \geq 0\\ & c \in \mathrm{I\!R}^{\mathrm{N}}_{+} \end{split}$$

$$\begin{split} \text{maximize}_{(c,\delta)} & W(c)^{\mathrm{T}}\delta\\ \text{subject to} & U(c)^{\mathrm{T}}\delta \geq U_{0}\\ & e^{\mathrm{T}}\delta = 1\\ & 0 \leq \delta \perp \left(U(c)^{\mathrm{T}}\delta\right) \, e - U(c) \geq 0\\ & c \in \mathrm{IR}^{\mathrm{N}}_{+} \end{split}$$

This is a Mathematical Program with Equilibrium Constraints (MPEC)!

$$\begin{split} \text{maximize}_{(\boldsymbol{c},\boldsymbol{\delta})} & W(\boldsymbol{c})^{\mathrm{T}}\boldsymbol{\delta} \\ \text{subject to} & U(\boldsymbol{c})^{\mathrm{T}}\boldsymbol{\delta} \geq U_{0} \\ & e^{\mathrm{T}}\boldsymbol{\delta} = 1 \\ & 0 \leq \boldsymbol{\delta} \perp \left(U(\boldsymbol{c})^{\mathrm{T}}\boldsymbol{\delta}\right) \, e - U(\boldsymbol{c}) \geq 0 \\ & \boldsymbol{c} \in \mathbb{R}^{\mathrm{N}}_{+} \end{split}$$

This is a Mathematical Program with Equilibrium Constraints (MPEC)! Problem Size: (N + M) variables, 2M + 2 constraints

$$\begin{split} \text{maximize}_{(c,\delta)} & W(c)^{\mathrm{T}}\delta \\ \text{subject to} & U(c)^{\mathrm{T}}\delta \geq U_{0} \\ & e^{\mathrm{T}}\delta = 1 \\ & 0 \leq \delta \perp \left(U(c)^{\mathrm{T}}\delta\right) \, e - U(c) \geq 0 \\ & c \in \mathbb{R}^{\mathrm{N}}_{+} \end{split}$$

This is a Mathematical Program with Equilibrium Constraints (MPEC)! Problem Size: (N + M) variables, 2M + 2 constraints

Lemma:

- (i) $(c^*, \delta^*) \in \text{SOL}(\text{MPEC}) \Longrightarrow (c^*, a_i^*)$ an ODC with $a_i^* \in \mathcal{A}$ finite, and $i \in \{j : \delta_j^* > 0\}.$
- (ii) (c^*, a_i^*) an ODC with $a_i^* \in \mathcal{A}$ finite $\implies (c^*, e_i) \in SOL(MPEC)$, where e_i is the *i*-th column of an identity matrix

Observations:

- MPEC: Allows continuous compensation c ∈ ℝ^N₊ but may stop at local maximum
- LP: Produce global optimal but the grid C may be too coarse

Observations:

- MPEC: Allows continuous compensation $c \in {\rm I\!R}^{\rm N}_+$ but may stop at local maximum
- LP: Produce global optimal but the grid \mathcal{C} may be too coarse

Goal: Combine the best features of both to find a global solution with continuous compensation $c \in {\rm I\!R}^{\rm N}_+$

Observations:

- MPEC: Allows continuous compensation $c \in {\rm I\!R}^{\rm N}_+$ but may stop at local maximum
- LP: Produce global optimal but the grid \mathcal{C} may be too coarse

Goal: Combine the best features of both to find a global solution with continuous compensation $c \in \mathbb{R}^{\mathbb{N}}_+$

- **Step 0:** Construct a coarse grid C
- **Step 1:** Solve the LP for the given grid C

Step 2: Setup and solve the MPEC : $\begin{cases}
(2.1): \text{ construct } (c^0, \delta^0) \text{ using LP solution} \\
(2.2): \text{ Solve the MPEC with the feasible starting pt } (c^0, \delta^0)
\end{cases}$ **Step 3:** Refine the grid and repeat Step 1 and Step 2

Observations:

- MPEC: Allows continuous compensation $c \in {\rm I\!R}^{\rm N}_+$ but may stop at local maximum
- LP: Produce global optimal but the grid \mathcal{C} may be too coarse

Goal: Combine the best features of both to find a global solution with continuous compensation $c \in \mathbb{R}^{\mathbb{N}}_+$

- Step 0: Construct a coarse grid C
- **Step 1:** Solve the LP for the given grid C

Step 2: Setup and solve the **MPEC** : $\begin{cases}
(2.1): \text{ construct } (c^0, \delta^0) \text{ using LP solution} \\
(2.2): \text{ Solve the MPEC with the feasible starting pt } (c^0, \delta^0)
\end{cases}$ **Step 3:** Refine the grid and repeat Step 1 and Step 2

Result: A hybrid solution is always better than an LP solution

An Example in [Karaivanov '01]

- Risk-neutral principal: $w(q_i c_i) = q_i c_i$
- Risk-averse agent: $u(c_i, a) = \frac{c_i^{1-\gamma}}{1-\gamma} + \kappa \frac{(1-a)^{1-\delta}}{1-\delta}$
- Two outcomes: $q_H = \$3$ and $q_L = \$1$
- Action set: $|\mathcal{A}| = 10$ with equally-spaced effort level within [0.01, 0.99]
- The production technology $p(q=q_H|a)=a^{\alpha}$ with $0<\alpha<1$

γ	κ	δ	α	U_0
0.5	1	0.5	0.7	1

• Both LP and MPEC are coded in AMPL and solved by SNOPT on NEOS server (host: prado.iems.northwestern.edu)

LP Solutions

LP Solutions with 8 different grids (# of constraints = 112)

	# of	Read Time	Solve Time	# of	Objective
$ \mathcal{C} $	Variables	(in sec.)	(in sec.)	Iterations	Value
21	420	0.01	0.04	37	1.875882746
41	820	0.02	0.07	46	1.877252910
81	1620	0.03	0.12	46	1.877259193
161	3220	0.06	0.25	46	1.877262265
321	6420	0.13	0.58	69	1.877263785
641	12820	0.26	1.12	52	1.877259905
1281	25620	0.53	2.67	101	1.877262221
2561	51220	1.09	4.81	73	1.877262201
5121	102420	2.46	11.70	101	1.877263113

- [(Ned) Prescott '04]: Dantzig-Wolfe decomposition.
- Warm Start: Simplex method.

Hybrid Solution

LP	Read Time	Solve Time	# of	Objective
$ \mathcal{C} $	(in sec.)	(in sec.)	Iterations	Value
21	0.01	0.04	37	1.875882746
MPEC	Read Time	Solve Time	# of Major	Objective
Starting Point	(in sec.)	(in sec.)	Iterations	Value
$\delta_6 = 1, \delta_{i(\neq 6)} = 0$	0.02	0.01	13	1.877265298

Hybrid Solution

LP	Read Time	Solve Time	# of	Objective
$ \mathcal{C} $	(in sec.)	(in sec.)	Iterations	Value
21	0.01	0.04	37	1.875882746
MPEC	Read Time	Solve Time	# of Major	Objective
Starting Point	(in sec.)	(in sec.)	Iterations	Value
$\delta_6 = 1, \delta_{i(\neq 6)} = 0$	0.02	0.01	13	1.877265298

LP solution

LP	Read Time	Solve Time	# of	Objective
$ \mathcal{C} $	(in sec.)	(in sec.)	Iterations	Value
5121	2.46	11.70	101	1.877263113

Contract with Action Lotteries

• A probability distribution $\pi(a)$ and a compensation schedule $c(a) \in R^N$ for every action $a \in \mathcal{A}$

Contract with Action Lotteries

- A probability distribution $\pi(a)$ and a compensation schedule $c(a) \in R^N$ for every action $a \in \mathcal{A}$
- Modifications:
 - Objective function: $\sum_{a} \pi(a) W(c(a), a)$
 - Participation constraint: $\sum_{a} \pi(a) U(c(a), a) \ge U_0$
 - Incentive compatibility constraints:

$$\begin{aligned} \pi(a) \geq 0 \\ \left\{ \begin{array}{l} U(c(a), a) \geq U(c(a), a_1), \\ \vdots \\ U(c(a), a) \geq U(c(a), a_M). \\ \uparrow \\ \pi(a) \geq 0 \\ \\ \pi(a)(U(c(a), a) - U(c(a), \tilde{a})) \geq 0, \quad \forall (a, \tilde{a}) \in \mathcal{A} \times \mathcal{A} \end{aligned} \right. \end{aligned}$$

Contract with Action Lotteries

• A probability distribution $\pi(a)$ and a compensation schedule $c(a) \in R^N$ for every action $a \in \mathcal{A}$

 $\begin{array}{ll} \text{maximize} & \sum_{a \in \mathcal{A}} \pi(a) W(c(a), a) \\ \text{subject to} & \sum_{a \in \mathcal{A}} \pi(a) U(c(a), a) \geq U_0, \\ & \sum_{a \in \mathcal{A}} \pi(a) = 1, \\ & \pi(a) \left(U(c(a), a) - U(c(a), \tilde{a}) \right) \geq 0, \quad \forall \left(a, \tilde{a} (\neq a) \right) \in \mathcal{A} \times \mathcal{A}, \\ & \pi(a) \geq 0, \quad \forall a \in \mathcal{A}. \end{array}$

Star-Shaped Feasible Region

Star-Shaped Feasible Region

- Nonconvex feasible region due to switch-off constraints [Scholtes '04]
- LICQ fails on *y*-axis

MPEC for Action Lotteries

$$\forall a \in \mathcal{A}: \begin{cases} \pi(a) \left(U(c(a), a) - U(c(a), \tilde{a}) \right) \ge 0, \quad \forall \tilde{a}(\neq a) \in \mathcal{A}, \\ \pi(a) \ge 0. \end{cases}$$

$$\forall a \in \mathcal{A}: \quad \begin{cases} U(\boldsymbol{c}(\boldsymbol{a}), a) - U(\boldsymbol{c}(\boldsymbol{a}), \tilde{a}) + s(\boldsymbol{a}, \tilde{a}) \ge 0, \quad \forall \, \tilde{a}(\neq a) \in \mathcal{A}, \\ 0 \le \pi(\boldsymbol{a}) \perp s(\boldsymbol{a}, \tilde{a}) \ge 0. \end{cases}$$

MPEC for Action Lotteries

 $\begin{array}{ll} \text{maximize} & \sum_{a \in \mathcal{A}} \pi(a) W(c(a), a) \\ \text{subject to} & \sum_{a \in \mathcal{A}} \pi(a) U(c(a), a) \geq U_0, \\ & \sum_{a \in \mathcal{A}} \pi(a) = 1, \\ \forall a \in \mathcal{A} : & \begin{cases} U(c(a), a) - U(c(a), \tilde{a}) + s(a, \tilde{a}) \geq 0, & \forall \tilde{a} (\neq a) \in \mathcal{A}, \\ & 0 \leq \pi(a) \perp s(a, \tilde{a}) \geq 0. \end{cases} \end{array}$

The A-L Example in [Prescott '04]

Hybrid method: LP with 11 compensation grid points and then switch to MPEC.

Hybrid Solutions with 10 different action grids, $|\mathcal{C}| = 11$, $|\mathcal{Q}| = 50$

	t_{LP}	LP	t_{MPEC}	MPEC	t_{Total}
$ \mathcal{A} $	(in sec.)	Obj. Val.	(in sec.)	Obj. Val.	(in sec.)
6	2	1.75868508	1	1.76234445	3
11	4	1.75868508	2	1.76234448	6
16	9	1.76265085	3	1.76565622	12
21	12	1.76351860	11	1.76630661	23
26	21	1.75924445	6	1.76298273	27
31	38	1.76265085	11	1.76565620	49
36	64	1.75606325	16	1.76051776	80
51	102	1.75924445	22	1.76298271	124
76	266	1.75778364	127	1.76298273	393
101	575	1.75572408	1108	1.76234445	1683
151	4203	1.75534000	14018	1.75996707	18221

Extensions

- MPEC formulations are also given for :
 - Contracts with compensation lottery (randomized payment)
 - Contracts with action and compensation lotteries
 - Multidimensional action choices little economic theory, make special assumptions
 - Multidimensional compensation choices infeasible for LP

Extensions

- MPEC formulations are also given for :
 - Contracts with compensation lottery (randomized payment)
 - Contracts with action and compensation lotteries
 - Multidimensional action choices little economic theory, make special assumptions
 - Multidimensional compensation choices infeasible for LP
- Future research
 - Tournament (single-principal multi-agent) problem
 [Lazear & Rosen '81]
 - Incentive problem with both hidden information and moral-hazard
 - Dynamic contracts (multi-period moral-hazard problem)
 [Phelan & Townsend '91]
 - Executive compensation (with D. Larcker and C. Armstrong)

Executive Compensation

- Components of Compensation
 - \circ Fixed Salary s
 - Stocks β_0
 - Options β_1 (with Strike Price *K* to be Determined)
 - Payment $c_i = s + \beta_0 * p_i + \beta_1 * \max(q_i K, 0)$
- Action Choices for the CEO (Agent)
 - 1. mean (a) and/or variance (σ) of the performance of business operations

An Example

- Risk-neutral principal: $w(q_i c_i) = q_i c_i$
- Risk-averse agent: $u(c_i, a) = \frac{c_i^{1-\gamma}}{1-\gamma} \mu a^2$
- Outcomes q_i : equally-spaced stock price level within [0, 160]
- Action set: $|\mathcal{A}| = 50$ with equally-spaced effort level within [0, 50]
- The production technology

$$p(q|a) = \frac{1}{\sqrt{2\pi\sigma}} * exp\left(-\frac{(q - (C + M * a))^2}{2\sigma^2}\right)$$

γ	μ	C	M	U_0
0.5	0.0025	60	(0.25, 0.5, 0.75)	1

Flexible Modeling Framework

- (1) agent effort has a positive, but decreasing impact on the mean of the distribution
- (2) agent effort has positive and increasing impact on volatility
- (3) multiple options with different exercise prices
- (4) multiple agent effort: the agent can "diversify" some of his holdings into the risk-free asset
- (5) more realistic participation constraint min utility is a function of estimated agent effort
- (6) multiple period variations of these settings
- (7) "robust" contracts very simple compensation plans are almost as good as the very complicated plans that are observed in the real world?