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Perspective

I am a user of AD tools, not a developer

This presentation is a "lab report" on the turn of events following a presentation at

the Society for Computational Economics

I hope some of my mistakes make for useful lessons
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Mistake Number 1

It’s "automatic" isn’t it?

Well, you get to do some amazing stuff with AD, but "automatic" might be a

stretch.

It seems obvious, but are you sure that the code for your function is differentiable?

This might be trickier to ascertain than you might think at first and might not be

picked up by your AD tool
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Mistake Number 1 (continued)

A composition of functions might be differentiable even if the underlying

functions are not

As a simple example think of adding two functions with perfectly symmetric

kinks. Their sum is differentiable but the original functions are not

This kind of problem seems pervasive when relying on some common matrix

decompositions (SVD, Eigenvalue/Eigenvector decomposition)
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Mistake Number 2

The simplest code to write is the faster to differentiate

Not when it involves, for example, imaginary numbers

You might be better off rewriting your code than struggling to understand what is

stumping your AD tool
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Mistake Number 3

Dual language programming makes your life easy

Well, at times, but you might be much better off sticking to one language only, as

most AD tools handle gracefully only one language

Grandiose plans of differentiating separately the different parts of the code with a

“Black Box” approach can slow you down more than you think

Most tools don’t have extensive documentation and reverse-engineering the

calling structure of intermediate functions can be quite painful
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Mistake Number 4

So what if my function calls all sorts of LAPACK and BLAS routines?

Surely someone has else differentiated them.

Well, not yet.
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Which tool to pick?

Fortunately for users, several options exist for various programming languages

When choosing between alternatives, take a good look at the documentation that

is shared

Sooner or later, the tool you are using will have trouble digesting some of the

code you intend to differentiate

Chances are you’ll be scouring the manuals then

If you are starting off, it might pay to pick a well documentedtool, even if it is not

the most efficient
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What’s next?

An example of the use of Automatic Differentiation

SDGE Estimation Made Easier

(preliminary joint work with Gary Anderson and Houtan Bastani)
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What do we do?

We build the score and information matrix for the likelihoodfunction of a
dynamic general equilibrium model using automatic differentiation techniques.

As a byproduct, we compute the first and second derivative of reduced-form
parameters in the solution of a SDGE model with respect to thefundamental
parameters.

Our toolbox is applicable to linear and linearized models.

Through Monte Carlo experiments, we show that finding the maximum of the
likelihood of several (two, at the moment) SDGE models is greatly facilitated by
more precise computation of the information matrix.

Higher precision in the information matrix also facilitates sizing asymptotic
standard errors for maximum likelihood estimates.
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Finite Difference Derivatives

Analytical derivatives are only available for special cases of the models we are

interested in. Limitation is on the number of state variables.

The macroeconometrics literature has relied on finite difference methods to obtain

the Jacobian. The Broyden updating algorithm is typically used for the Hessian.

The error bounds for FD derivatives depend on the size of higher derivatives.

In practice, choice of step size can dramatically affect theresults. (Will provide

examples.)
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Key Elements of Solving a Model Under Rational Expectations

Upon linearization, any SDGE model can be written as:

H(θ)







EtXt+1
Xt
Xt−1






= 0.

The model’s solution takes the form:

Xt = S(H(θ))Xt−1,

PartitioningXt such thatXt =

(

xt
εt

)

yields

xt = A(H(θ))xt−1 +B(H(θ))εt.
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The Likelihood Function

Given a subset of the entries inxt as observable, call these entriesyt , the
state-space representation of the system takes the form:

xt = A(H(θ))xt−1 +B(H(θ))εt

yt = Cxt

Using the Kalman Filter, we can express the likelihood function for the model as:
L = L(A(θ), B(θ), C, yt−h, ..., yt) whereyt−h andyt are respectively the
first and last observation points available.

Our routines produce∂L
∂θ

and∂
2L
∂θ2

.

As an intermediate product, our routines yield first and second derivatives ofA
andB wrt θ.
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Computational choices

AIM algorithm, as detailed in Anderson (1987).

Anderson showed a roadmap to build the jacobian and hessian of the solution for

a linear model.

Automatic differentiation facilitates the implementation of Gary’s algorithm.

Kalman filter with training, as detailed in Hamilton, or Durbin and Koopman.

– Plan to add menu of choices for initialization
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Implementation Details

We used Tapenade in vector mode.

Tapenade required limited manual intervention on our part.Remarkable, given

code consisted of 80 subroutines for a total of over 17,000 lines (56 kb)

The derivative-augmented code produced by Tapenade coversapproximately

25,000 lines (78 kb).

The original code was written in a mixture of C and Fortran 77 (Lapack and Blas

routines).
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Blas Functions

daxpy.f dcopy.f ddot.f dgemm.f dgemv.f dger.f
dnrm2.f drot.f dscal.f dswap.f dtrmm.f dtrmv.f
dtrsm.f

Lapack Functions

dgebak.f dgebal.f dgeesx.f dgehd2.f dgehrd.f dgeqp3.f
dgeqr2.f dgeqrf.f dgesv.f dgetf2.f dgetrf.f dgetrs.f
dhseqr.f dlacn2.f dlacpy.f dladiv.f dlaexc.f dlahqr.f
dlahr2.f dlaln2.f dlange.f dlanv2.f dlapy2.f dlaqp2.f
dlaqps.f dlaqr0.f dlaqr1.f dlaqr2.f dlaqr3.f dlaqr4.f
dlaqr5.f dlarfb.f dlarf.f dlarfg.f dlarft.f dlarfx.f
dlartg.f dlascl.f dlaset.f dlassq.f dlaswp.f dlasy2.f
dorg2r.f dorghr.f dorgqr.f dorm2r.f dormqr.f dtrexc.f
dtrsen.f dtrsyl.f dtrtrs.f
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Testing Tapenade’s output

Two decompositions in the model solution, the real Schur decomposition and the

singular-value decomposition, are not always unique.

Restrictions on model features could ensure uniqueness Schur and SVD

decompositions. We verified that Tapenade derivatives satisfied some basic

analytical properties but our test failed for models implying non-uniqueness of

the Schur and SVD decompositions.
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The Real Schur Decomposition

We relied on the Lapack routine DGEESX to implement the real Schur

decomposition.

For a given real matrixE , this decomposition produces a unitary matrixX , such

thatT = XHEX is block triangular.

SinceXunitary,XHX = XXH = 0 . Then∂X
H

∂θ
X +X∂XH

∂θ
= 0 .

This property failed to be met by our AD derivatives when our choice of E

implied a non-unique Schur decomposition.

We substituted the AD derivative for the DGEESX routine withthe analytical

derivative of the Schur decomposition as outlined in Anderson 1987.
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The Singular Value Decomposition

We relied on the DGESVD routine in the Lapack library to implement the

singular value decomposition

Given a real matrixE , produces unitary matricesU andV and a diagonal matrix

D , such thatE = UDV T .

Given∂E
∂θ

, thenUT ∂E
∂θ
V = UT ∂U

∂θ
D+ ∂D

∂θ
+D∂V

∂θ
V , where∂D

θ
is diagonal

andUT ∂U
∂θ

and∂V
∂θ
V are both antisymmetric.

Our AD derivative of the routine DGESVD failed to satisfy this property when the

matrixE had repeated singular values (making the decomposition non-unique).

We substituted our AD derivative with the analytical derivative derived by

Anderson 1987.
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Testing the Tapenade Output

For special cases of our model that could be simplified we computed analytical

derivatives and found them in agreement with our AD derivatives.

To test the derivatives for more complex models that we couldnot solve

analytically, we relied on comparisons with centered FD derivatives.

Generally with a step size of10−8 we found broad agreement between our AD

derivatives and FD first derivatives. For second derivatives, matching is

conditional on ad hoc choice of step size.
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Do AD derivatives improve the quality of ML estimates?

Use two SDGE models to investigate this question.

1) simple RBC model with log utility and fixed labor

2) variant of Smets-Wouters model
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RBC model

max
ct,kt+1,it

∞
∑

t=0

βt log(ct)

+βtλct [e
ztkαt − ct − it]

+βtγt

[

(1 − δ)kt + it − kt+1

]

wherelog(zt) = ρz log(zt−1) + σzεt andεt ∼ NID

This is incredibly simple, but deceptively tough to estimate with limited data.

Following Uhlig’s toolbox paper, we can use simple symbolicdifferentiation to

check the AD derivatives.
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Monte Carlo Experiment

Calibrate model in a standard way.

Generate 100 repetitions of 200 observations for quarterlydata for one observed

series:ct.

For each repetition of the data, estimate 4 parameters of themodel:α, δ, ρz, εz.
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Optimization Algorithm

Our maximum likelihood estimates were constructed using the MATLAB

optimization routine FMINUNC. Boundaries are imposed witha simple penalty

function.

Very similar results obtained using unconstrained optimization algorithm in NAG

library

When the optional argument “LargeScale” is set to “ON” a variant of a

Newton-Raphson algorithm that takes as inputs the jacobianand Hessian

When “LargeScale” is set to “OFF”, FMINUNC imputes the Jacobian with FD

methods and the Hessian with Broyden’s algorithm.

Algorithm requires initial point to conduct search.
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Initialization Points

Parameter values used in the data-generating process:

α δ ρz σz
0.3 0.025 0.95 0.4

Consider 2 alternative choices for initial point for search:

1) start close to true value for the parameters to be estimated

α δ ρz σz
0.3 0.05 0.8 0.3

2) start away from the true values

α δ ρz σz
0.5 0.3 0.1 0.2
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A much larger model

The Households in the model solve:

max
[Ct(h),Wt(h),It(h),Kt+1(h),Bt+1(h)]

Et

∞
∑

j=0

βj
(

U(Ct+j(h), Ct+j−1(h))

+V (Lt+j(h))
)

+ βjλt+j(h)
[

Πt(h) + Tt+j(h) + (1 − τLt)Wt+j(h)Lt+j(

+(1 − τKt)Rkt+jKt+j(h) −
1

2
ψIPt+j

(

It+j(h) − It+j−1(h)
)2

It+j−1(h)

−Pt+jCt+j(h) − Pt+jIt+j(h) −
∫

s
ψt+j+1,t+jBt+j+1(h) +Bt+j(h)

]

+βjQt+j(h)
[

(1 − δ)Kt+j(h) + It+j(h) −Kt+j+1(h)
]

.
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Model Description (continued)

Final production

Yt =

[

∫ 1

0
Yt(f)

1
1+θp

]1+θp

(1)

Intermediate prodution

Yt(f) = eZtKt(f)
αLdt (f)

1−α. (2)

where technology is given by

log(Zt) = ρz log(Zt−1) + σzεzt, (3)

Finally, the government sector sets a nominal risk-free interest rate according to
the reaction function:

it =
π

β
− 1 + γπ(πt − π) + γy(log(Yt) − log(Yt−1) + εit, (4)
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The government budget constraint is

τLtWtLt + τKtRKtKt = Gt + Tt. (5)

we introduce shocks to labor taxes, capital taxes and government spending.



Monte Carlo Experiments

Generate 100 repetitions of 200 observations for quarterlydata for four observed

series: gdp growth, inflation, wage inflation, policy interest rate

Estimate 6 parameters of the model keeping all other parameters at their value in

the data-generating process.

- Autoregressive coefficient on technology shock, and standard deviation of inno-

vation.

- Weights on inflation and output growth in the interest rate reaction function.

- Calvo parameters for wages and prices.
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Initialization point

ρz σz γπ γy ψp ψw
Truth 0.95 0.1125 1.5 0.5 0.75 0.75

Initial Pt 0.6 0.4 3 0.15 0.5 0.5
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Related Papers

Anderson G (1987) sketches an algorithm to obtain the solution of the linear

approximation of a SDGE model and its first and second derivatives.

Anderson E, Hansen, McGrattan, and Sargent (1996) computesanalytical first

derivative of the solution of a SDGE model.

Bastani Guerrieri (2008) builds the first derivative for thelikelihood of a SDGE

model with AD tools and documents some advantages for numerical optimization

of the likelihood.

Iskrev (2008) focuses on the use of the information matrix tostudy identification.
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Conclusion

We showed that the use of AD derivatives facilitates the estimation of a DGE

model

Apart from speed gains, the accuracy gains over FD derivatives lead to higher

convergence rates of commonly used optimization algorithms and more reliable

measures of the asymptotic standard errors

Other applications include:

– checks on local identification

– gauging the importance of priors in Bayesian estimation

– facilitating the implementation of the Metropolis Hastings algorithm
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