
Shape-Preserving Dynamic Programming

Kenneth Judd and Yongyang Cai

July 20, 2011

1 Introduction

The multi-stage decision-making problems are numerically challenging. When the
problems are time-separable, dynamic programming (DP) is a popular method to
solve them. In DP problems, if state variables and control variables are continuous
such that value functions are also continuous, then we have to use some approxi-
mation for the value functions, since computers cannot model the entire space of
continuous functions. Discretization of state variables can approximate the value
functions, but it is very time consuming to get a good approximation. Polyno-
mial or spline approximation will save much time, but computational errors may
accumulate through the value function iterations. However, if the value functions
are concave and their approximation preserves the concavity, then computational
error accumulation problem could be solved, see Santos and Vigo-Aguiar (1998),
and Maldonado and Svaiter (2001).

In this paper, we present a shape-preserving DP algorithm with value function
iteration for solving the discrete-time decision-making problems with continuous
states. The paper is constructed as follows. Section 2 introduces the paramet-
ric DP algorithm and describes numerical methods in the algorithm. Section 3
presents the shape-preserving DP algorithm with value function iteration. Sec-
tion 4 and Section 5 give some numerical examples for optimal growth problems
and multi-stage portfolio optimization problems respectively to show the stability
and accuracy of the shape-preserving DP.

2 Numerical Methods for DP

In DP problems, if state variables and control variables are continuous such that
value functions are also continuous, then we have to use some approximation for
the value functions, since computers cannot model the entire space of continuous
functions. We focus on using a finitely parameterizable collection of functions to

1

approximate value functions, V (x) ≈ V̂ (x; c), where c is a vector of parameters.
The functional form V̂ may be a linear combination of polynomials, or it may
represent a rational function or neural network representation, or it may be some
other parameterization specially designed for the problem. After the functional
form is fixed, we focus on finding the vector of parameters, c, such that V̂ (x; c)
approximately satisfies the Bellman equation. Numerical DP with value function
iteration can solve the Bellman equation approximately (see Judd (1998)).

A general DP model is based on the Bellman equation:

Vt(x) = max
a∈D(x,t)

ut(x, a) + βE{Vt+1(x
+) | x, a},

s.t. x+ = g(x, a),

where Vt(x) is called the value function at stage t, x+ is the next-stage state (may
be random) conditional on the current-stage state x and the action a, D(x, t) is
a feasible set of a, and ut(x, a) is the utility function at time t. The following is
the algorithm of parametric DP with value function iteration for finite horizon
problems.

Algorithm 1. Numerical Dynamic Programming with Value Function Iteration
for Finite Horizon Problems

Initialization. Choose the approximation nodes, Xt = {xit : 1 ≤ i ≤ mt} for
every t < T , and choose a functional form for V̂ (x; c). Let V̂ (x; cT) ≡
uT (x). Then for t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.

Step 1. Maximization step. Compute

vi = max
ai∈D(xi,t)

ut(xi, ai) + βE{V̂ (x+i ; ct+1) | xi, ai}

s.t. x+i = g(xi, ai),

for each xi ∈ Xt, 1 ≤ i ≤ mt.

Step 2. Fitting step. Using an appropriate approximation method, compute the
ct such that V̂ (x; ct) approximates (xi, vi) data.

There are three main components in numerical DP: optimization, approximation,
and numerical integration. In the following we focus on discussing approximation
and omit the introduction of optimization and numerical integration.

A linear approximation scheme consists of two parts: basis functions and ap-
proximation nodes. Approximation methods can be classified as either spectral
methods or finite element methods. A spectral method uses globally nonzero basis

2

functions φj(x) and defines V̂ (x; c) =
∑n

j=0 cjφj(x) to be the degree n approxi-
mation. In our examples, we use Chebyshev polynomial interpolation, which is a
spectral method. In contrast, a finite element method uses locally basis functions
φj(x) that are nonzero over sub-domains of the approximation domain. Exam-
ples of finite element methods include piecewise linear interpolation, Schumaker
interpolation, cubic splines, and B-splines. See Judd (1998), Cai (2009), and Cai
and Judd (2010) for more details.

Piecewise linear interpolation is a common way applied by many scholars be-
cause of its simplicity and shape-preservation. But piecewise linear interpolation
has its disadvantage: it is a challenge for optimization software to find the op-
timal solution in the maximization step of the numerical DP algorithm, because
the approximation V̂ (x) is only continuous but not differentiate at the nodes xi.

Here we give a brief introduction of Chebyshev polynomials. Chebyshev ba-
sis polynomials on [−1, 1] are defined as Tj(x) = cos(j cos−1(x)), while general
Chebyshev basis polynomials on [a, b] are defined as Tj((2x− a− b)/(b− a)) for
j = 0, 1, 2, The degree n Chebyshev polynomial approximation for V (x) is

V̂ (x; c) =

n∑
j=0

cjTj ((2x− a− b)/(b− a)) .

With a set of Chebyshev nodes xi and the Lagrange data set {(xi, vi) : i =
1, . . . ,m}, the coefficients cj can be calculated easily by Chebyshev regression
algorithm (see Judd (1998) and Cai (2009)).

3 Shape-preserving DP

In economics and finance, many DP models have the monotone and/or con-
cave/convex value functions such that objective functions in their optimization
models preserve the shape property theoretically. So if we can have the shape-
preserving value function approximation in the fitting step, then it will be very
helpful to get good optimal solutions as the local optimizer will be also the
global optimizer for convex optimization problems. Discretization method and
piecewise linear interpolation method preserve the shape property. Another
shape-preserving method is the so-called Schumaker shape-preserving interpo-
lation method (Schumaker (1983)). A revised version of Schumaker interpolation
is given in Cai (2009) and Cai and Judd (2011). Fiorot and Tabka (1991), and
Steven Pruess (1993) gave some other shape-preserving splines approximation
methods. Judd and Solnick (1994) discussed some theoretical properties of the
shape-preserving splines in numerical DP and applied them in optimal growth

3

problems. Wang and Judd (2000) applied a bivariate shape-preserving spline
interpolation method in numerical DP to solve a savings allocation problem.

For a univariate approximation problem, Schumaker interpolation preserves
the shape properties including monotonicity and concavity. But many approxi-
mation methods such as Chebyshev interpolation/approximation do not have the
shape-preserving property. So we can use a shape-preserving approximation by
adding shape constraints such that the shape properties still hold.

Here we will extend them to a more general shape-preserving approximation
method and its application in numerical DP.

3.1 Shape-preserving Chebyshev Interpolation

One problem for Chebyshev interpolation is the absence of shape-preservation in
the algorithm. To solve this, one way is to modify the Chebyshev coefficients
such that the concavity and monotonicity of the value function can be preserved
at some pre-specified nodes.

For the univariate Chebyshev polynomial approximation on [a, b], we have
V̂ (x; c) =

∑n
j=0 cjTj (z) with z = 2x−a−b

b−a , so

V̂ ′(x; c) =
2

b− a

n∑
j=0

cjT
′
j (z) ,

and

V̂ ′′(x; c) =
4

(b− a)2

n∑
j=0

cjT
′′
j (z) .

Therefore, given the Lagrange data {(xi, vi) : 1 ≤ i ≤ m} generated by the
maximization step of Algorithm 1, if we know that the value function is strictly
increasing and concave, then in the fitting step of Algorithm 1, we could get a
shape-preserving Chebyshev interpolation by solving the following problem:

min
cj

n∑
j=0

1

(j + 1)2
|cj |,

s.t.
n∑
j=0

cjT
′
j (yi) > 0, i = 1, . . . ,m′,

n∑
j=0

cjT
′′
j (yi) < 0, i = 1, . . . ,m′,

n∑
j=0

cjTj (zi) = vi, i = 1, . . . ,m,

4

for a degree-n Chebyshev interpolation on [a, b]. In the model, zi = (2xi − a −
b)/(b − a) (i = 1, . . . ,m) are the interpolation nodes in [−1, 1], and yi (i =
1, . . . ,m′) are pre-specified nodes in [−1, 1] for shape-preserving constraints.

To cancel the absolute operator in the above model, we replace cj by c+j − c
−
j

with c+j , c
−
j ≥ 0 such that |cj | = c+j +c−j . Thus, the above model becomes a linear

programming (LP) problem:

min
cj

n∑
j=0

1

(j + 1)2
(c+j + c−j), (1)

s.t.
n∑
j=0

cjT
′
j (yi) > 0, i = 1, . . . ,m′,

n∑
j=0

cjT
′′
j (yi) < 0, i = 1, . . . ,m′,

n∑
j=0

cjTj (zi) = vi, i = 1, . . . ,m,

cj = c+j − c
−
j , j = 1, . . . , n,

c+j ≥ 0, c−j ≥ 0, j = 1, . . . , n.

In our numerical examples in Sections 4 and 5, we let zi be the Chebyshev
interpolation nodes in [−1, 1] (i.e., zi = − cos((2i− 1)π/(2m))), and let yi be the
equally-spaced nodes in [−1, 1].

Usually we should let m′ > m in order that the approximation function have
the shape-preservation on enough nodes. Moreover, the number of basis terms
of Chebyshev polynomial should not be smaller than the number of Chebyshev
interpolation nodes. That is, we should let n ≥ m−1 so that bothm interpolation
equality constraints and 2m′ shape-preserving constraints could hold in the above
model. In fact, most of coefficient of basis terms with a degree higher than m− 1
are 0 or close to 0 in most cases, so it will have almost the same computation
time with the standard Chebyshev interpolation in the objective function of the
maximization step of numerical DP algorithm.

From Tj(y) = cos(j cos−1(y)), we have

T ′j(y) =
j sin(j cos−1(y))√

1− y2

and

T ′′j (y) =
yT ′j(y)− j2Tj(y)

1− y2
,

5

for any y ∈ (−1, 1), while T ′j(1) = j2, T ′j(−1) = (−1)j+1j2, T ′′j (1) = (j4 − j2)/3
and T ′′j (−1) = (−1)j(j4 − j2)/3, for j = 0, 1, 2,

However, we can also use the following recursive formulas to evaluate Tj(y),
T ′j(y) and T ′′j (y) for any y ∈ [−1, 1]:

T0(y) = 1,

T1(y) = y,

Tj+1(y) = 2yTj(y)− Tj−1(y), j = 1, 2, . . . ,

and

T ′0(y) = 0,

T ′1(y) = 1,

T ′j+1(y) = 2Tj(y) + 2yT ′j(y)− T ′j−1(y), j = 1, 2, . . . ,

and

T ′′0 (y) = 0,

T ′′1 (y) = 0,

T ′′j+1(y) = 4T ′j(y) + 2yT ′′j (y)− T ′′j−1(y), j = 1, 2,

4 Examples for Optimal Growth Problems

We first illustrate our methods with a discrete-time optimal growth problem with
one good and one capital stock. It is to find the optimal consumption function and
the optimal labor supply function such that the total utility over the T -horizon
time is maximal, i.e.,

V0(k0) = max
c,l

T−1∑
t=0

βtu(ct, lt) + βTuT (kT), (2)

s.t. kt+1 = F (kt, lt)− ct, 0 ≤ t < T,

k ≤ kt ≤ k̄, 1 ≤ t ≤ T,
ct ≥ ε, lt ≥ ε, 0 ≤ t < T,

where kt is the capital stock at time t with k0 given, ct is the consumption, lt is
the labor supply, k and k̄ are given lower and upper bound of kt, β is the discount
factor, F (k, l) = k + f(k, l) with f(kt, lt) the aggregate net production function,
and u(ct, lt) is the utility function, where ct is consumption of the good, and lt

6

is the labor supply, and ε is a small positive number to avoid the nonpositive
consumption or labor supply. This objective function is time-separable.

We use the following numerical examples of the finite horizon optimal growth
model to illustrate the importance of the shape-preserving property. In the fol-
lowing examples, we let α = 0.25, β = 0.95, γ = 8, η = 1, A = (1− β)/(αβ) and
T = 50. Let the range of k be [0.1, 10], i.e., k = 0.1 and k̄ = 10. And we choose
ε = 10−6 in the model (2). The production function is f(k, l) = Akαl1−α, and
the terminal value function is

uT (k) =
u(f(k, 1), 1)

1− β
.

We see that the terminal value function is smooth and concave, and the optimal
controls will not be binding at least at the next-to-the-last stage t = T − 1.
Thus, it is supposed that polynomial approximation methods could approximate
the value functions well. However, in our numerical examples in this section,
we found that shape-preservation is still very important in numerical DP: shape-
preserving Chebyshev interpolation has more stable and accurate solutions than
the one without shape-preservation.

4.1 Scaling Technique

A typical utility function in optimal growth problems is a power utility with the
following form

u(c, l) =
c1−γ

1− γ
−B l1+η

1 + η

where B = (1−α)A1−γ , while the aggregate net production function is f(k, l) =
Akαl1−α with A = (1 − β)/(αβ). Thus the steady state of the infinite horizon
deterministic optimal growth problems is kss = 1 while the optimal consumption
and the optimal labor supply at kss are respectively css = A and lss = 1.

However, when β is close to 1 and γ is large, A will be small and the optimal
consumption at various levels of capital k will also be small, such that the utility
function will have a large magnitude. We know a large magnitude in computation
will often incur numerical errors in computation and optimization. An appropri-
ate scaling will improve the computational accuracy, while the scaling does not
affect the optimal solutions.

In the following finite horizon optimal growth examples, we will choose a
scaled power utility function

u(c, l) =
(c/A)1−γ − 1

1− γ
− (1− α)

l1+η − 1

1 + η
.

7

We know this scaling will have the same optimal solutions for consumption and
labor supply. And this scaling technique is very helpful in getting good solutions
from numerical DP.

4.2 Solve Exactly with Large-Scale Optimizers

For the finite horizon optimal growth problem (2), when T is small, we can
use a good large-scale optimization package to solve the problem directly, and its
solution could be better than the solution of (3) given by numerical DP algorithms
because of the numerical approximation errors. But when T is large, the solution
of (3) given by numerical DP algorithms is usually better than the solution of
(2) given by a large-scale numerical optimization package directly. In addition,
if the problem becomes stochastic, i.e., the value function form becomes Vt(x, θt)
where θt is a discrete time Markov chain, then it usually becomes infeasible for an
optimization package to solve the stochastic problem directly with high accuracy
when T > 10. But numerical DP algorithms can still solve it well, see Cai (2009).

In the examples of this section, we choose to solve finite horizon deterministic
optimal growth problems with T ≤ 100, so we will use the solutions of the model
(2) given by SNOPT (Gill, Murray and Saunders (2005)) in GAMS code as the
“true" solutions.

The scaling technique discussed in the above section is also very helpful in
getting good solutions from large-scale optimizers when γ and T is large. For
example, in our numerical example with γ = 8 and T = 50, when SNOPT
is applied as the large-scale optimizer, the solution without using the scaling
technique is not as good as the one using the scaling technique.

4.3 DP Solution

The DP version of the discrete-time optimal growth problem is

Vt(k) = max
c,l

u(c, l) + βVt+1(k
+), (3)

s.t. k+ = F (k, l)− c,
k ≤ k+ ≤ k̄, c ≥ ε, l ≥ ε,

which is the Bellman (1957) equation. Here k is the state variable and (c, l) are
the control variables, and VT (k) = uT (k).

The program code is written in GAMS, and we choose SNOPT (Gill, Murray
and Saunders (2005)) as the optimization solver. We choose m = 40 Chebyshev
interpolation nodes on [0.1, 10].

Figure 1 show the relative errors of optimal controls at each stage in L∞

and L1 respectively. We use the solutions given by directly applying SNOPT

8

in the model (2) as the “true" solutions. The solid lines are errors of solutions
given by numerical DP algorithm with standard degree-39 Chebyshev polynomial
interpolation using m = 40 Chebyshev interpolation nodes in the model (3).
The dashed lines are errors of solutions given by numerical DP algorithm with
shape-preserving Chebyshev polynomial interpolation with m = 40 Chebyshev
interpolation nodes and m′ = 100 equally-spaced nodes for shape constraints
from the models (3) and (1).

From Figure 1, we see that the solid lines for optimal controls are much higher
than the corresponding dashed lines at the first steps, and then they are close
each other. This means that the shape-preservation really helps a lot in obtaining
more stable and accurate solutions in numerical DP algorithms.

5 Example for Multi-stage Portfolio Optimization Prob-
lems

We also illustrate our methods with a multi-stage portfolio optimization problem.
Let Wt be an amount of money planned to be invested at stage t. Assume that
available assets for trading are n stocks and a bond, where the stocks have a
random return vector R = (R1, . . . , Rn) and the bond has a riskfree return Rf for
each period. If St = (St1, . . . , Stn)> is a vector of money invested in the n risky
assets at time t, then money invested in the riskless asset is Bt = Wt − e>St,
where e is a column vector of 1s. Thus, the wealth at the next stage is

Wt+1 = Rf (Wt − e>St) +R>St, (4)

for t = 0, 1, . . . , T − 1.
A simple multi-stage portfolio optimization problem is to find an optimal

portfolio St at each stage t such that we have a maximal expected terminal utility,
i.e.,

V0(W0) = max
Xt,0≤t<T

E{u(WT)},

where WT is the terminal wealth derived from the recursive formula (4) with a
given W0, and u is the terminal utility function, and E{·} is the expectation
operator.

In this section, we present a numerical example with one stock and one bond
available for investment. We assume that the number of periods is T = 6, the
bond has a riskfree return Rf = 1.04, and the stock has a discrete random return

R =

{
0.9, with probability 1/2,

1.4, with probability 1/2.

9

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9
x 10

−3

Number of Periods (T)

L
Inf

 errors for consumption

interpolation without
shape−preservation

shape−preserving
interpolation

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Number of Periods (T)

L
1
 errors for consumption

interpolation without
shape−preservation

shape−preserving
interpolation

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of Periods (T)

L
Inf

 errors for labor

interpolation without
shape−preservation

shape−preserving
interpolation

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8
x 10

−3

Number of Periods (T)

L
1
 errors for labor

interpolation without
shape−preservation

shape−preserving
interpolation

Figure 1: Errors of Numerical DP with Chebyshev interpolation with/without
shape-preservation

10

Let the range of initial wealth W0 as [0.9, 1.1]. The terminal utility function is

u(W) =
(W −K)1−γ

1− γ

with γ = 4 and K = 0.4 so that the terminal wealth should be always bigger
than 0.4. Moreover, we assume that borrowing or shorting is not allowed in this
example, i.e., Bt ≥ 0 and St ≥ 0 for all t.

5.1 Tree Method

In the portfolio optimization problem, if we discretize the random returns of n
stocks as R = R(j) = (R1,j , . . . , Rn,j) with probability qj for 1 ≤ j ≤ m, then it
becomes a tree model:

max
mT∑
k=1

PT,ku(WT,k),

where
Pt+1,k = Pt,[(k−1)/m]+1qmod(k,m)+1,

is the probability of scenario k at stage t+ 1, and

Wt+1,k = Wt,[(k−1)/m]+1(RfBt,[(k−1)/m]+1 +
n∑
i=1

Ri,mod(k,m)+1Si,t,[(k−1)/m]+1),

is the wealth at scenario k and stage t + 1, for 1 ≤ k ≤ mt+1 and 0 ≤ t < T .
Here, W0,1 = W0 is a given initial wealth, P0,1 = 1, mod(k,m) is the remainder
of division of k by m, and [(k− 1)/m] is the quotient of division of (k− 1) by m.
We should add Bt,k ≥ 0 and St,k ≥ 0 for all t, k as bound constraints in the tree
model, if neither shorting stock or borrowing bond is allowed.

Figure 2 shows one simple tree with m = 2 and T = 2 for a portfolio with one
bond and one stock (n = 1). The stock’s random return has a probability q1 to
have a return R1,1, and the probability q2 = 1−q1 to have a return R1,2. So there
are two scenarios at stage 1: (W1,1, P1,1) and (W1,2, P1,2), and four scenarios at
stage 2: (W2,1, P2,1), . . ., (W2,4, P2,4).

The disadvantage of the tree method is that whenm or T is large, the problem
size will exponentially increase and it will be a big challenge for an optimizer
to find an accurate solution. But the disadvantage will disappear if we use DP
algorithms to solve the problem. Since the numerical example in this section is not
large for the above tree model, the exact optimal allocations can be calculated by
the tree model and MINOS optimization package (Murtagh and Saunders (1978))
in AMPL code.

11

W
0

P
0,1

q
1

q
2

W
1,1

P
1,1

W
1,2

P
1,2

q
1

q
2

q
1

q
2

W
2,1

P
2,1

W
2,2

P
2,2

W
2,3

P
2,3

W
2,4

P
2,4

Figure 2: A binary tree with two periods

Figure 3 shows the optimal bond allocation Bt and stock allocation St, for
t = 0, 1, . . . , 5, computed by the tree method for the numerical example.

Next, we will use the exact optimal allocations computed by the tree method
to test stability and accuracy of our shape-preserving algorithms.

5.2 DP Solution

The DP model of this multi-stage portfolio optimization problem is

Vt(W) = max
B,S

E{Vt+1(RfB +R>S)},

s.t. B + e>S = W,

for t = 0, 1, . . . , T − 1, where W is the state variable and S is the control variable
vector, and the terminal value function is VT (W) = u(W). We should add B ≥ 0
and S ≥ 0 as bound constraints in the above DP model, if neither shorting stock
or borrowing bond is allowed.

Since the terminal utility function is u(W) = (W−K)1−γ/(1−γ), this implies
that there should be no possibility to let the terminal wealth WT be lower than
K. It follows that the lower bound of wealth at stage t should be not less than
KRt−Tf . Thus, since we do not allow shorting or borrowing and R is bounded in

12

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.55

0.6

0.65

0.7

0.75
bond allocation at stages

t=5

t=4

t=3

t=2

t=1

t=0

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.25

0.3

0.35

0.4

0.45
stock allocation at stages

t=5

t=4

t=3

t=2

t=1

t=0

Figure 3: Exact optimal allocations

13

this example, the ranges [W t,W t] can be computed in an iterative way:

W t+1 = max
{

min(R)W t,KR
t−T
f

}
W t+1 = max(R)W̄t,

with a given initial wealth bound [W 0, W 0].
Specifically, for the numerical example with K = 0.4, Rf = 1.04, min(R) =

0.9 and max(R) = 1.4, after we choose W 0 = 0.9 and W 0 = 1.1, we have

[W 1,W 1] = [0.81, 1.54],

[W 2,W 2] = [0.729, 2.156],

[W 3,W 3] = [0.656, 3.018],

[W 4,W 4] = [0.59, 4.226],

[W 5,W 5] = [0.531, 5.916],

[W 6,W 6] = [0.478, 8.282].

We see that the range is expanding exponentially along time t. If we use a
fixed range along time t in our numerical DP algorithms, then it will definitely
reduce the accuracy of solutions. So here we choose the above ranges at stages
t = 0, 1, . . . , 5 in both the maximization step and the fitting step of Algorithm 1.

We choose m = 30 Chebyshev interpolation nodes in [W t,W t] for each stage
t = 0, 1, . . . , 5. The computational results of numerical DP algorithms are given
by our GAMS code. We choose SNOPT (Gill, Murray and Saunders (2005)) as the
optimization solver of the nonlinear programming problems in the maximization
step of Algorithm 1, and CPLEX as the solver of the linear programming problems
for shape-preserving Chebyshev interpolation in the fitting step of Algorithm 1.
And the ranges [W t,W t] are given in the previous iterative way.

Figure 4 shows the relative errors of numerical DP algorithms with Chebyshev
interpolation with/without shape-preservation. The vertical axis values of plotted
x-marks and squares for their corresponding horizontal axis value Wt (wealth),
are given as log of relative errors, i.e.,

log10

∣∣∣S∗t,DP − S∗t ∣∣∣
|S∗t |

 ,

where S∗t are true optimal stock allocations for the wealth Wt at stage t which
are given by the tree method, and S∗t,DP are computed optimal stock allocation
from numerical DP algorithms with Chebyshev interpolation with/without shape-
preservation. The squares are errors of solutions given by numerical DP algo-
rithm with standard degree-29 Chebyshev polynomial interpolation using m = 30

14

1 2 3 4

−4

−3

−2

−1

0

Wealth, t=4

log
10

(errors of S
4
)

0.5 1 1.5 2 2.5 3

−4

−3

−2

−1

0

Wealth, t=3

log
10

(errors of S
3
)

1 1.5 2

−4

−3

−2

−1

0

Wealth, t=2

log
10

(errors of S
2
)

0.8 1 1.2 1.4 1.6

−4

−3

−2

−1

0

Wealth, t=1

log
10

(errors of S
1
)

0.9 0.95 1 1.05 1.1

−4

−3

−2

−1

0

Wealth, t=0

log
10

(errors of S
0
)

Errors for Chebyshev interpolation
without shape−preservation

Errors for shape−preserving
Chebyshev interpolation

Figure 4: Relative Errors of Optimal Stock Allocations from Numerical DP with
Chebyshev interpolation with/without shape-preservation

15

Chebyshev interpolation nodes in the model (3). The x-marks are errors of so-
lutions given by numerical DP algorithm with shape-preserving Chebyshev poly-
nomial interpolation with m = 30 Chebyshev interpolation nodes and m′ = 100
equally-spaced nodes for shape constraints from the models (3) and (1).

From Figure 4, we see that most of x-marks (errors for shape-preserving
Chebyshev interpolation) have higher accuracy than their corresponding squares
(errors for standard Chebyshev interpolation), at all stages t = 0, 1, 2, 3, 4.

This means that the shape-preservation really helps a lot in obtaining more
stable and accurate solutions in numerical DP algorithms.

6 Conclusion

This paper presents a general shape-preserving DP algorithm and shows that
shape-preserving property of the value function approximation is critical in sta-
bility and accuracy of numerical dynamic programming.

16

References

[1] Bellman, Richard (1957). Dynamic Programming. Princeton Univer-
sity Press.

[2] Byrd, Richard H., and Jorge Nocedal and Richard A. Waltz (2006).
“KNITRO: an integrated package for nonlinear optimization".

[3] Cai, Yongyang (2009). Dynamic Programming and Its Application
in Economics and Finance. PhD thesis, Stanford University.

[4] Cai, Yongyang, and Kenneth Judd (2010). “Stable and efficient com-
putational methods for dynamic programming”. Journal of the Eu-
ropean Economic Association, Vol. 8, No. 2-3, 626–634.

[5] Cai, Yongyang, and Kenneth Judd (2011). “Dynamic programming
with Hermite information”.

[6] Fiorot, J.C., and J. Tabka (1991). “Shape-preserving C2 cubic poly-
nomial interpolating splines”. Mathematics of Computation, 57(195),
291–298.

[7] Gill, Philip, Walter Murray, Michael Saunders, and Margaret Wright
(1994). “User’s Guide for NPSOL 5.0: a Fortran Package for Non-
linear Programming”. Technical report, SOL, Stanford University.

[8] Judd, Kenneth (1998). Numerical Methods in Economics. The MIT
Press.

[9] Judd, Kenneth, and Andrew Solnick (1994). “Numerical dynamic
programming with shape-preserving splines”.

[10] Maldonado, Wilfredo L., and Benar Fux Svaiter (2001). “On the
accuracy of the estimated policy function using the Bellman con-
traction method”. Economics Bulletin, 3(15), 1–8.

[11] Murtagh, Bruce, and Michael Saunders (1978). “Large-scale linearly
constrained optimization”. Mathematical Programming, 14, 41–72.

[12] Pruess, Steven (1993). “Shape-preserving C2 cubic spline interpola-
tion”. IMA Journal of Numerical Analysis, 13, 493–507.

[13] Rust, John (2008). “Dynamic Programming”. In: New Palgrave Dic-
tionary of Economics, ed. by Steven N. Durlauf and Lawrence E.
Blume. Palgrave Macmillan, second edition.

17

[14] Santos, Manuel S., and Jesus Vigo-Aguiar (1998). “Analysis of a nu-
merical dynamic programming algorithm applied to economic mod-
els”. Econometrica, 66(2), 409–426.

[15] Schumaker, Larry (1983). “On Shape-Preserving Quadratic Spline
Interpolation”. SIAM Journal of Numerical Analysis, 20, 854–864.

[16] Wang, Sheng-Pen, and Kenneth L. Judd (2000). “Solving a savings
allocation problem by numerical dynamic programming with shape-
preserving interpolation”. Computers & Operations Research, 27(5),
399–408.

18

