Derivative of Value Functions

• Maximization step in the conventional DP algorithm:

$$V_t(x_i) = v_i = \max_{a_i \in \mathcal{D}(x_i,t)} u_t(x_i, a_i) + \beta E\{V_{t+1}(x_i^+) \mid x_i, a_i\},\$$

- Conventional fitting step: use the Lagrange data $\{(x_i, v_i) : i = 1, ..., m\}$ to construct the approximated value function $\hat{V}_t(x)$.
- Envelope theorem: Let

$$V(x) = \max_{y} f(x,y)$$

s.t. $g(x,y) = 0$.

Let $y^*(x)$ be the optimizer and $\lambda^*(x)$ be the shadow price.

$$\frac{\partial V}{\partial x} = \frac{\partial f}{\partial x}(x, y^*(x)) + \lambda^*(x)^\top \frac{\partial g}{\partial x}(x, y^*(x)).$$

Optimal Growth Models

• Optimal Growth Problem:

$$V_0(k_0) = \max_{c,l} \sum_{t=0}^{T-1} \beta^t u(c_t, l_t) + \beta^T u_T(k_T), \quad (1)$$

s.t. $k_{t+1} = F(k_t, l_t) - c_t, \quad 0 \le t < T,$

• DP model of optimal growth problem:

$$V_t(k) = \max_{c,l} u(c,l) + \beta V_{t+1}(F(k,l)-c),$$

Multi-Stage Portfolio Optimization

- *W_t*: wealth at stage *t*; stocks' random return: *R* = (*R*₁,...,*R_n*); bond's riskfree return: *R_f*;
- $S_t = (S_{t1}, \dots, S_{tn})^\top$: money in the stocks; $B_t = W_t e^\top S_t$: money in the bond,

•
$$W_{t+1} = R_f(W_t - e^\top S_t) + R^\top S_t$$

• Multi-Stage Portfolio Optimization Problem:

$$V_0(W_0) = \max_{X_t, 0 \le t < T} E\{u(W_T)\},\$$

• Bellman Equation:

$$V_t(W) = \max_{S} E\{V_{t+1}(R_f(W - e^{\top}S) + R^{\top}S)\},\$$

W: state variable; S: control variables.

Derivative of Value Functions: Examples

• For the optimal growth DP model,

$$V_t'(k) = \beta V_{t+1}'(F(k,l^*) - c^*)F_k(k,l^*),$$

where c^* and l^* are the optimal controls for the given k.

• For the multi-stage portfolio optimization problem,

$$V'_t(W) = R_f E\{V'_{t+1}(R_f(W - e^{\top}S^*) + R^{\top}S^*)\},\$$

where S^* are the optimal portfolio invested in stocks.

• It seems that we need to compute $V'_{t+1}(F(k, l^*) - c^*)$ or $E\{V'_{t+1}(R_f(W - e^{\top}X^*) + R^{\top}X^*)\}$, which are expensive. However, problem (1) has other equivalent forms. We choose a form such that dV(x)/dx can be easily computed.

Derivative of Value Functions in Optimal Growth Models

• For the optimal growth problem,

$$V_t(k) = \max_{k^+,c,l} u(c,l) + \beta V_{t+1}(k^+),$$

s.t. $F(k,l) - c - k^+ = 0,$

with k^+ , c and l as control variables.

• New formula for computing $V'_t(k)$:

$$V_t'(k) = \lambda F_k(k, l^*),$$

where λ is the shadow price for the constraint $F(k, l) - c - k^+ = 0$, and given directly by optimization packages.

Derivative of Value Functions in Portfolio Optimization

• For the multi-stage portfolio optimization problem,

$$V_{t}(W) = \max_{B,S} E\{V_{t+1}(R_{f}B + R^{\top}S)\}, \qquad (2)$$

s.t. $W - B - e^{\top}S = 0,$

with the bond allocation B and the stock allocation S.

• New formula for computing $V'_t(W)$:

$$V_t'(W) = \lambda,$$

where λ is the shadow price for the constraint $W - B - e^{\top}S = 0$.

Derivative of Value Functions in General Models

• For an optimization problem,

$$V(x) = \max_{y} f(x, y)$$

s.t. $g(x, y) = 0, h(x, y) \ge 0,$

we can modify it as

$$V(x) = \max_{y,z} f(z,y)$$

s.t. $g(z,y) = 0, h(z,y) \ge 0, x - z = 0,$

by adding a trivial control variable *z* and a trivial constraint x - z = 0.

• Then by the envelope theorem, we get

$$V'(x) = \lambda,$$

where λ is the shadow price for the trivial constraint z = x.

Numerical DP Algorithm with Hermite Interpolation

Initialization. Choose the approximation nodes, $X_t = \{x_{it} : 1 \le i \le m_t\}$ for every t < T, and choose a functional form for $\hat{V}(x; \mathbf{b})$. Let $\hat{V}(x; \mathbf{b}^T) \equiv u_T(x)$.

Step 1. Maximization step. For each $x_i \in X_t$, $1 \le i \le m_t$, compute

$$v_{i} = \max_{a_{i} \in \mathcal{D}(y_{i},t), y_{i}} u_{t}(y_{i},a_{i}) + \beta E\{\hat{V}(x_{i}^{+}; \mathbf{b}^{t+1}) \mid y_{i}, a_{i}\},$$

s.t. $x_{i} - y_{i} = 0,$

and $s_i = \lambda_i$, where λ_i is the shadow price of the constraint $x_i - y_i = 0$.

Step 2. Hermite fitting step. Compute the \mathbf{b}^t such that $\hat{V}(x; \mathbf{b}^t)$ approximates (x_i, v_i, s_i) data.

Revised Schumaker Shape-Preserving Interpolation

Step 1. Compute $\delta = (v_2 - v_1)/(x_2 - x_1)$. If $|(s_1 + s_2)/2 - \delta| < \varepsilon$, then

$$s(x) = v_1 + s_1(x - x_1) + \frac{(s_2 - s_1)(x - x_1)^2}{2(x_2 - x_1)},$$

and STOP.

Step 2. If $(s_1 - \delta)(s_2 - \delta) \ge 0$, set

$$\xi = (x_1 + x_2)/2, \ a = b = \xi - x_1, \ \bar{s} = 2\delta - \frac{s_1 + s_2}{2}$$

Else let

$$\lambda = \frac{s_2 - s_1}{x_2 - x_1}, \ a = (s_2 - \delta)/\lambda, \ b = (\delta - s_1)/\lambda, \ \xi = x_1 + a, \ \bar{s} = \delta.$$

Then

$$s(x) = \begin{cases} v_1 + s_1(x - x_1) + C_1(x - x_1)^2, & x \in [x_1, \xi], \\ A_2 + \bar{s}(x - \xi) + C_2(x - \xi)^2, & x \in [\xi, x_2], \end{cases}$$

where $C_1 = (\bar{s} - s_1)/(2a)$, $A_2 = v_1 + a(s_1 + \bar{s})/2$, and $C_2 = (s_2 - \bar{s})/(2b)$.

Chebyshev Interpolation with Hermite Information

If we have Hermite data {(x_i, v_i, s_i) : i = 1,...,m} on [a,b], then the following system of 2m linear equations produces coefficients for degree 2m − 1 Chebyshev polynomial interpolation on the Hermite data:

$$\sum_{j=0}^{2m-1} c_j T_j(z_i) = v_i, \quad i = 1, \dots, m,$$
$$\frac{2}{b-a} \sum_{j=0}^{2m-1} c_j T'_j(z_i) = s_i, \quad i = 1, \dots, m,$$

where $z_i = \frac{2x_i - a - b}{b - a}$ (i = 1, ..., m) are the Chebyshev nodes in [-1, 1], and $T_j(z)$ are Chebyshev basis polynomials.

Numerical Examples for Optimal Growth Problems

•
$$\beta = 0.95; f(k,l) = Ak^{\alpha}l^{1-\alpha}$$
 with $\alpha = 0.25, A = (1-\beta)/(\alpha\beta);$

$$u(c,l) = \frac{c^{1-\gamma}}{1-\gamma} - B\frac{l^{1+\eta}}{1+\eta}$$

with $B = (1 - \alpha)A^{1 - \gamma}$. $k \in [0.2, 3]$.

• Errors for optimal consumptions at stage 0:

$$\max_{k \in [0.2,k]} \frac{|c_{0,DP}^*(k) - c_0^*(k)|}{1 + |c_0^*(k)|},$$

where $c_{0,DP}^*$ is the optimal consumption at stage 0 computed by numerical DP algorithms, and c_0^* is the optimal consumption directly computed by SNOPT in AMPL code on the model (1). Errors of optimal solutions computed by numerical DP algorithms with Chebyshev interpolation

on *m* Chebyshev nodes using with Lagrange vs. Hermite data

γ	η	т	Lagrange		Hermite	
			error of c_0^*	error of l_0^*	error of c_0^*	error of l_0^*
0.5	0.1	5	2.3(-2)	1.0(-1)	2.0(-3)	9.0(-3)
		10	1.1(-3)	5.0(-3)	6.1(-6)	2.4(-5)
		20	1.4(-5)	2.7(-5)	4.3(-7)	4.5(-6)
0.5	1	5	2.4(-2)	3.1(-2)	2.2(-3)	2.8(-3)
		10	1.3(-3)	1.6(-3)	6.9(-6)	8.1(-6)
		20	1.6(-5)	9.5(-6)	4.1(-7)	2.4(-6)
2	0.1	5	1.1(-2)	1.6(-1)	1.1(-3)	1.9(-2)
		10	5.9(-4)	1.0(-2)	4.2(-6)	6.1(-5)
		20	4.6(-6)	6.7(-5)	4.3(-7)	2.4(-6)
2	1	5	2.0(-2)	7.0(-2)	2.0(-3)	8.7(-3)
		10	9.7(-4)	4.7(-3)	7.8(-6)	3.3(-5)
		20	7.3(-6)	3.0(-5)	1.3(-6)	2.9(-6)
6	1	5	1.4(-2)	1.2(-1)	1.5(-3)	1.7(-2)
		10	6.2(-4)	9.0(-3)	5.4(-6)	7.2(-5)
		20	4.2(-6)	5.5(-5)	4.8(-7)	2.5(-6)

Note: a(k) means $a \times 10^k$.

Errors of optimal solutions computed by numerical DP algorithms with Schumaker interpolation

on *m* nodes using Lagrange vs. Hermite data

	η	т	Lagrange		Hermite	
γ			error of c_0^*	error of l_0^*	error of c_0^*	error of l_0^*
0.5	0.1	10	1.8(-2)	1.6(-1)	2.3(-3)	2.0(-2)
		20	4.8(-3)	5.5(-2)	2.4(-4)	1.8(-3)
		40	5.2(-4)	5.1(-3)	9.3(-5)	9.1(-4)
0.5	1	10	2.1(-2)	5.0(-2)	3.6(-3)	8.9(-3)
		20	6.6(-3)	1.9(-2)	3.2(-4)	9.3(-4)
		40	9.0(-4)	2.6(-3)	1.3(-4)	2.9(-4)
2	0.1	10	7.8(-3)	2.2(-1)	9.7(-4)	2.7(-2)
		20	2.2(-3)	6.7(-2)	1.0(-4)	2.9(-3)
		40	2.8(-4)	7.6(-3)	2.8(-5)	7.0(-4)
2	1	10	1.4(-2)	1.1(-1)	2.2(-3)	1.7(-2)
		20	5.2(-3)	4.3(-2)	3.0(-4)	2.0(-3)
		40	1.3(-3)	1.1(-2)	6.1(-5)	4.9(-4)
6	1	10	7.5(-3)	1.6(-1)	1.2(-3)	2.4(-2)
		20	2.8(-3)	6.1(-2)	1.5(-4)	2.8(-3)
		40	7.7(-4)	1.7(-2)	5.0(-5)	1.0(-3)

Note: a(k) means $a \times 10^k$.

Exact optimal allocation and value functions

