
Tapping the Supercomputer Under Your Desk:

Solving Dynamic Equilibrium Models

with Graphics Processors∗

Eric M. Aldrich† Jesús Fernández-Villaverde‡ A. Ronald Gallant§

Juan F. Rubio-Ramírez¶

September 3, 2010

Abstract

This paper shows how to build algorithms that use graphics processing units

(GPUs) installed in most modern computers to solve dynamic equilibrium models

in economics. In particular, we rely on the compute unified device architecture

(CUDA) of NVIDIA GPUs. We illustrate the power of the approach by solving

a simple real business cycle model with value function iteration. We document

improvements in speed of around 200 times and suggest that even further gains

are likely.

∗We thank Panayiotis Stavrinides, who first pointed out to us the potential of GPUs, Kennetz Czechowski
for invaluable technical help, and the NSF for research support under grants SES0438174 and SES0719405.
Beyond the usual disclaimer, we must note that any views expressed herein are those of the authors and not
necessarily those of the Federal Reserve Bank of Atlanta or the Federal Reserve System.
†Federal Reserve Bank of Atlanta and Duke University, <ealdrich@gmail.com>.
‡University of Pennsylvania, NBER, CEPR, and FEDEA, <jesusfv@econ.upenn.edu>.
§Duke University and New York University, <aronaldg@gmail.com>.
¶Duke University, Federal Reserve Bank of Atlanta, and FEDEA, <jfr23@duke.edu>.

1



1. Introduction

This paper shows how to build algorithms that use graphics processing units (GPUs) to solve

dynamic equilibrium models in economics. In particular, we rely on the compute unified

device architecture (CUDA) of NVIDIA. We report how this approach leads to remarkable

improvements in computation time. As an example, we solve a basic real business cycle

(RBC) model with value function iteration. We document how using the GPU delivers a

speed improvement of around 200 times.

GPUs, a vital piece of modern computing systems,1 are specialized processors designed

to render graphics (linear algebra-like computations) for electronic games and video applica-

tions. The increasing demand for these devices, fueled by the video game industry’s insatiable

appetite for improved graphics processing performance, has forged a market for low-cost

processing units with the number-crunching horsepower comparable to that of a small super-

computer. To illustrate this point, we report in table 1 the theoretical peak performance of

two modern GPUs versus two traditional central processing units (CPUs), expressed as bil-

lions of arithmetic operations that can be computed each second (GFLOP/s), both in single

and double precision.

Table 1: Theoretical peak performance of GPUs versus CPUs

Single GFlopg/s Double GFlopg/s

GeForce mx 280 [GPU] 933 78

Radeon HD 5870 [GPU] 2720 544

Intel Xeon E5345 (Clovertown) [CPU] 37.4 37.4

AMD Opteron 2356 (Barcelona) [CPU] 38.6 38.6

As specialized compute-intensive hardware, GPUs can devote more transistors to data

processing than general purpose CPUs. This gives rise to GPU architectures with hundreds

of cores (as opposed to the dual or quad core CPUs common today) and a shared memory

which, therefore, are well-suited to address problems that can be expressed as data-parallel

computations.2 However, since GPUs were initially designed for rendering 3D graphics and

the set of instructions were specific to each particular GPU, for many years it was diffi cult

to exploit them as general purpose computing devices.

1Most computers have a GPU pre-installed in the factory, either in the motherboard or in a video card.
2Traditional alternatives such as message passing interface (MPI) for parallel computing on many CPUs

rely heavily on distributed memory. This requires the programmer to ensure that all different parts of the
code running in parallel have access to the correct amount of information at the right time to avoid latency
periods that diminish performance. Shared memory gets around this problem because, if the values of the
relevant variables are in the shared region, they are visible to all the relevant threads.

2



In 2007, NVIDIA, one of the leading producers of GPUs, disrupted the supercomputing

community by releasing CUDA, a set of development tools that allow programmers to uti-

lize the tremendous computing capabilities of the GPU for general purpose computations.

To date, CUDA continues to be the trend-setter and most popular implementation of this

programming approach, known as GPU computing. This development tools include an ap-

plication programming interface (API) that allows programmers to easily issue and manage

computations on the GPU as a data-parallel computing device without the need to under-

stand the details of the hardware or write explicitly threaded code.

Furthermore, the CUDA development tools can be downloaded for free from the inter-

net and installed in a few minutes on any regular computer with an NVIDIA GPU. Since

CUDA programming uses CUDA C, a dialect of C/C++, one of the most popular program-

ming languages, fast code development is natural for experienced programmers. Moreover,

the programming community has made third-party wrappers available in Fortran, Java,

Python, and Matlab (among others), which cover all the major languages used by the scien-

tific computing world.

The emergence of GPU computing has the potential to significantly improve numerical

capabilities in economics. Although not all applications are parallelizeable or have the arith-

metic demands to benefit from GPU computing, many common computations in economics

fit within the constraints of the approach. For example, evaluating the likelihood function of a

model for alternative parameters, pre-fetching parameter proposals in a Markov chain Monte

Carlo, checking the payoffs of available strategies in a game, and performing value function

iteration are prime candidates for computation on a GPU. Over the last several decades,

all of these problems have commanded the attention of researchers across different areas in

economics. However, even with the fastest computers many versions of these problems, from

the solution of models with heterogeneous agents to the estimation of rich structural models

with dozens of parameters or the characterization of equilibrium sets of repeated games, have

remained too burdensome for computation in a reasonable amount of time. GPU computing

has the potential to ease many of these computational barriers.

GPU computing has already been successfully applied in biology, engineering, and weather

studies, among other fields, with remarkable results. However, GPU computing has experi-

enced a slow uptake in economics.3 To address this void, our paper demonstrates the potential

of GPUs by solving a basic RBC model.

We selected this application because a well-known approach to solving an RBC model is

to use value function iteration, an algorithm that is particularly easy to express as a data-

3We are only aware of applications in the related field of statistics, as in Lee et al. (2008).

3



parallel computation. Of course, dynamic programming would not be our first choice to

solve an RBC model in real life, as higher-order perturbation and projection methods can

solve the model several orders of magnitude faster and more accurately on a plain vanilla

PC.4 However, since innumerable models from various parts of economics can be cast in the

form of a dynamic programming problem, our application is representative of a larger class

of situations of interest and a wide audience of researchers is familiar with the working of

the model (although we must remember that massive parallelization is useful for many other

algorithms).

Our main finding is that, using value function iteration with binary search, the GPU

solves the RBC model roughly 500 times faster than the CPU for a grid of 262,144 points

(65,536 points for capital and 4 points for productivity). This proves the immense promise

of graphics processors for computation in economics. Parallelization, nevertheless, is less

powerful in some algorithms. To illustrate these limitations, we recompute our model with a

Howard improvement method and grid search. In this case, the GPU is only 3 times faster

than the CPU, a noticeable improvement, but not as spectacular as before. When we let

each processor use the method for which it is best suited, a difference of 200 times favors the

GPU.

As we will emphasize in section 4, these numbers are a lower bound for the possible

speed-ups delivered by graphics processors. First, we are using a GPU with 240 processors,

while there are already GPU cards with 1920 processors and larger memory available on

the market (with substantially more powerful GPUs to be released in the next few months).

Second, algorithm design is bound to improve with experience.

The rest of the paper is organized as follows. Section 2 describes the basic ideas of GPU

parallelization. Section 3 presents our RBC model and the calibration. Section 4 reports

our numerical results. Section 5 concludes with some final remarks and directions for future

research.

2. Parallelization in GPUs

It is well known that, conceptually, it is trivial to parallelize a value function iteration. The

extension to GPUs is also straightforward. A simple parallelization scheme for GPUs would

be as follows:

1. Determine the number of processors available, P , in the GPU.

4At the same time, we must remember that both perturbation and projection methods are also easily
parallelizable. Hence, even these more advanced method have much to gain from CUDA.

4



2. Select a number of grid points, N , and allocate them over the state space. For example,

if the state variables are capital and productivity, pick Nk discrete points for capital

and Nz points for productivity with N = Nk ×Nz.

3. Divide the N grid points among the P processors of the GPU.

4. Make an initial guess V 0. Under standard assumptions any guess will converge, but

additional information such as concavity may generate a good guess that will lead to a

faster solution.

5. Copy V 0 to the shared memory of the GPU.

6. Each processor computes V 1, given V 0, for its designated subset of grid points. Since

the memory is shared, at the end of this step, all processors “see”V 1.

7. Repeat step 6 until convergence: ‖V i+1 − V i‖ < ε.

8. Copy V i from the GPU memory to the main memory.

While the previous algorithm is transparent, its practical coding requires some care. For

example, as has been repeatedly pointed out in the parallel programming literature, we want

to avoid branch instructions such as “if”statements, because they may throw the processors

out of synchronization and force the code to be executed serially. In addition, to obtain

a superior performance, one needs to spend a bit of time learning the details of memory

management on the GPU. Since those are specific to each architecture, we avoid further

discussion. Suffi ce it to say that, as the GPU computing technology matures, these details

will become irrelevant for the average user (as they are nowadays for CPUs).

Also, it is important to highlight that CUDA uses both device (GPU) and host (CPU)

memory, with the type of memory used depending on the structure of the problem and how

the economist chooses to initialize and store variables. That is, typically variables that are

global to the problem will reside in host memory, whereas the device memory is used to

store variables of a more local (short-lived) nature while looping through a basic sequence

of instructions on each of the GPU cores. A well designed problem will keep the number

of instructions (and variables) per core to a minimum. However, while optimal memory

usage is an important issue for CUDA (in terms of speeding computations), memory capacity

limitations are unlikely to be a serious concern for most problems that economists usually

encounter.

The interested reader can find the code for our application, a step-by-step tutorial for

downloading and installing CUDA, and further implementation details at a companion web

page: http://www.ealdrich.com/Research/GPUVFI/.

5



3. An Application: An RBC Model

For reasons of simplicity and generality that we outlined in the introduction, we choose a basic

RBC model to illustrate the potentialities of graphics processors. A representative household

chooses a sequence of consumption ct and capital kt to maximize the utility function

E0
∞∑
t=0

βt
c1−ηt

1− η ,

where E0 is the conditional expectation operation, β the discount factor, and η risk aversion,
subject to a budget constraint

ct + it = wt + rtkt,

where wt is the wage paid for the unit of labor that the household (inelastically) supplies to

the market, rt is the rental rate of capital, and it is investment. Capital is accumulated given

a law of motion

kt+1 = (1− δ) kt + it,

where δ is the depreciation factor.

Finally, there is a representative firm with technology yt = ztk
α
t , where productivity zt

evolves as an AR(1) in logs:

log zt = ρ log zt−1 + εt, where εt ∼ N (0, σ2).

Therefore, the resource constraint of the economy is given by

kt+1 + ct = ztk
α
t + (1− δ)kt.

Given that the welfare theorems hold in this economy, we concentrate on solving the social

planner’s problem. This problem can be equivalently stated in terms of a value function V (·, ·)
and a Bellman operator

V (k, z) = max
c

c1−η

1− η + βE [V (k′, z′)|z] (1)

s.t. k′ = zkα + (1− δ)k − c

that can be found with value function iteration. While, in the interest of space, we directly

jump into the problem of a social planner, this is not required. The important point is that

we are handling a task such as value function iteration that is inherently straightforward to

6



paralellize. Dozens of other models, from macroeconomics to industrial organization or game

theory, generate similar formulations in terms of Bellman operators. Therefore, the lessons

from our application carry forward to all of these situations nearly unchanged.

Before proceeding further, we need to select values for the six parameters of our model.

We pick standard numbers for a quarterly calibration. The discount factor, β = 0.984, yields

a return on capital of around 6.6 percent and the capital income share, α = 0.35, matches the

observations in the data. Depreciation, δ = 0.01, and risk aversion, η = 2, are conventional

choices. The parameters of the AR process for productivity, ρ = 0.95, and σ = 0.005, match

the properties of the Solow residual of the U.S. economy. Table 2 summarizes the calibration

of the model.

Table 2: Calibration

β η α δ ρ σ

0.984 2 0.35 0.01 0.95 0.005

4. Results

We coded the value function iteration that solves equation (1) in C++ (with the GNU compiler)

to implement the traditional approach on a CPU with double precision. We then coded the

same problem in CUDA C to solve it on a GPU also with double precision. The test machine

was a DELL Precision Workstation R5400 with two 2.66 GHz quad core Intel Xeon CPUs

and one NVIDIA GeForce GTX 280 GPU. The GeForce GTX 280 has 30 multiprocessors,

each composed of 8 processors, for a total of 240 cores.

We discretized the productivity process with four quadrature points following Tauchen’s

(1986) procedure. With respect to capital, we discretized its values using a sequence of

increasingly fine grids. This helped us gauge how CUDA works with different grid sizes and

to extrapolate for asymptotically large grids. We stopped at 65,536 grid points because by

that time the Euler equation errors of the approximation are suffi ciently small. All of the

capital grids were uniform and we picked future capital points from within the grid (we also

computed the case where we relax this choice by allowing interpolation outside the grid —

more details below). In all of our exercises, we started with the utility of the representative

household in the deterministic steady state as our V 0 and the convergence criterion was

‖V i+1 − V i‖ < (1− β) 1−8, where ‖·‖ is the sup norm.
For maximization, we implemented two procedures. First, as a benchmark, we employed

a binary search. Binary search takes advantage of the concavity on the objective function

as follows. It starts by comparing the value of the function in the middle of the grid with

the value in the next point. If the function is higher at the middle point, we know that the

7



maximum is in the first half of the grid and we can disregard the second half. Otherwise,

the maximum is in the second half and we can eliminate the first half. Then, we repeat

the procedure in the remaining half of the grid and iterate until we reach the maximum. A

simple description of the algorithm can be found in Heer and Maussner (2005), page 26, who

emphasize that binary search requires at most log2 n+3 evaluations of the objective function

in an n-element grid. The CPU version exploited the monotonicity of the value function to

place constraints on the grid of future capital over which the maximization is performed. This

is not possible under the GPU version, as it creates dependencies that are not parallelizable.

Our second maximization procedure was a grid search with a Howard improvement step:

we maximized the value function only every n-th iteration of the algorithm, where n is

decided by the user (we did not rely on a Howard step for binary search since it does not

preserve concavity in the steps where no maximization is performed). In our case, after some

fine-tuning to optimize the performance of the algorithm, we selected n = 20.

Our main results appear in table 3, where we report GPU and CPU solution times (in

seconds) for an increasing sequence of capital grid sizes (row Nk), using binary search for

maximization. We start with 16 points for capital and multiply the number by two until we

have 65,536 points. The GPU method generates a timing overhead cost of approximately 1.13

seconds for memory allocation. This is the fixed cost of starting CUDA memory allocation

and, hence, roughly independent of the size and quantity of objects to be allocated. For this

reason, the GPU times are separated into memory allocation (second row) and solution (third

row) components. The last two rows report the ratios of GPU solution time to CPU solution

time and total GPU time to CPU solution time, respectively.

For coarse grids, the fixed cost of parallel programming overcomes the advantages of the

GPU, but by the time there are 128 grid points of capital, the GPU starts to dominate. With

65,536 capital grid points the GPU is roughly 509 times faster than the CPU when including

CUDAmemory allocation and 521 times faster without it. The key for this result is that, while

the GPU computation time grows linearly in the number of grid points thanks to its massively

parallel structure, the increase is exponential for the CPU, yet another manifestation of the

curse of dimensionality.

8



Table 3: Time to solve an RBC model using value function iteration, case 1

Observed Times (seconds)

Nk 16 32 64 128 256 512 1,024

GPU Memory Allocation 1.13 1.13 1.13 1.12 1.13 1.12 1.12

GPU Solution 0.29 0.32 0.36 0.4 0.44 0.57 0.81

GPU Total 1.42 1.45 1.49 1.52 1.57 1.69 1.93

CPU 0.03 0.08 0.19 0.5 1.36 3.68 10.77

Ratio (solution) 9.667 4.00 1.895 0.80 0.324 0.115 0.075

Ratio (total) 47.333 18.125 7.842 3.04 1.154 0.459 0.179

Observed Times (seconds)

Nk 2,048 4,096 8,192 16,384 32,768 65,536

GPU Memory Allocation 1.12 1.12 1.13 1.12 1.13 1.13

GPU Solution 1.33 2.53 5.24 10.74 22.43 47.19

GPU Total 2.45 3.65 6.37 11.86 23.56 48.32

CPU 34.27 117.32 427.50 1,615.40 6,270.37 24,588.50

Ratio (solution) 0.039 0.022 0.012 0.007 0.004 0.002

Ratio (total) 0.071 0.031 0.015 0.007 0.004 0.002

After solving the model, we checked the accuracy of our results. We used the policy func-

tion to obtain a simulation of 10,000 periods (after discarding 1,000 ‘burn-in’observations).

At each period, we computed the Euler equation error in the spirit of Judd (1992). As a

summary statistic, we report the mean of their absolute values in table 4. As it is conven-

tional in the literature, we express these errors as log10 of their absolute value. In that way,

a value of -3 means a $1 mistake for each $1,000 consumed, a value of -4 means a $1 mistake

for each $10,000, and so on. Note that the Euler equation errors from the computation on

the GPU and on the CPU are identical because we are solving the same algorithm with the

same tolerance level: we are simply using different processors for the implementation.

Table 4: Mean absolute Euler equation errors

Nk 16 32 64 128 256 512 1024

Euler Equation Error -3.79 -4.15 -4.31 -4.35 -4.59 -4.77 -4.92

Nk 2048 4096 8192 16,384 32,768 65,536

Euler Equation Error -5.01 -5.08 -5.17 -5.36 -5.58 -5.82

In table 4, we see that the average Euler equation error goes from -3.79 ($1 for each

$6,166 spent) when we have 16 points in the capital grid to -5.82 ($1 for each $660,693

9



spent). Those are conventionally considered as showing good accuracy (for example, the

average Euler equation error for the simple RBC model in Aruoba, Fernández-Villaverde,

and Rubio-Ramírez (2006) was -4.2 with a log-linear solution).

Figure 1: Euler Equation Errors

In the interest of thoroughness, we also computed the Euler equation error for each possible

pair of state variables (k and z). As an illustration of the results, figure 1 shows the errors

for a capital grid of 16,384 points, holding z constant at each of its four quadrature points.

We can see how, for this grid, the Euler equation errors are already rather small across the

whole set of values of the state variables.

In table 5, we extrapolate computation times in table 3 for more dense grids. This practice,

common in scientific computing, indicates how the methods would work asymptotically as

we increase the number of grid points. By adjusting a simple linear regression of the square

root of computation time on Nk, we guess that, for large grids, the ratio stabilizes around

0.002, or that our RBC model would take around 500 times as long to solve on the CPU as

on the GPU. The adjusted R2 values of the regressions are 0.999 (GPU) and 0.999 (CPU).

10



Table 5: Time to solve an RBC model using value function iteration, case 1

Extrapolated Times (seconds)

Nk 131,072 262,144 524,288 1,048,576 2,097,152 4,194,304

GPU Solution 195.767 734.498 2,843.185 11,185.46 44,369.609 176,736.311

CPU 98,362.384 392,621.758 1,568,832.79 6,272,023.978 25,081,482.86 100,312,706.6

Ratio 0.002 0.002 0.002 0.002 0.002 0.002

It is important, however, to remember that some algorithms yield a lower return to par-

allelization. Table 6 reports the results of our same exercise using grid search with Howard

improvement. This step notably reduces the length of computation time on the CPU, but

not on the GPU (which actually becomes worse for large grids). Consequently, now the im-

provements are only 3 times. As before, we run a regression of the square of computation

time on Nk to gauge the asymptotic behavior of each processor. We omit those results in the

interest of space, but suffi ce it to say that the ratio stabilizes around 0.343.

Table 6: Time to solve an RBC model using value function iteration, case 2

Observed Times (seconds)

Nk 16 32 64 128 256 512 1,024

GPU Memory Allocation 1.13 1.13 1.13 1.13 1.13 1.13 1.12

GPU Solution 0.14 0.16 0.20 0.25 0.24 0.53 1.50

GPU Total 1.27 1.29 1.33 1.38 1.37 1.66 2.62

CPU 0.02 0.03 0.07 0.17 0.40 1.11 3.52

Ratio (solution) 7.00 5.33 2.857 1.471 0.600 0.477 0.426

Ratio (total) 63.50 43.00 19.00 8.118 3.425 1.495 0.744

Observed Times (seconds)

Nk 2,048 4,096 8,192 16,384 32,768 65,536

GPU Memory Allocation 1.13 1.13 1.11 1.13 1.12 1.13

GPU Solution 4.29 15.12 57.83 222.46 875.26 3,469.78

GPU Total 5.42 16.25 58.94 223.59 876.38 3,470.91

CPU 12.52 42.85 166.43 639.89 2,527.32 10,056.00

Ratio (solution) 0.343 0.353 0.347 0.348 0.346 0.345

Ratio (total) 0.433 0.379 0.354 0.349 0.347 0.345

Finally, in table 7 we compare the ratio of times for the GPU solution with binary search

and the CPU solution with grid search and Howard improvement. This gives us an idea of

the speed differences when each processing unit is working with the method to which it is

11



comparatively best suited (since the convergence criterion is very tight, the results in terms

of value and policy functions are nearly identical). The ratio gives the GPU an advantage of

208 times for 65,536 capital grid points.

Table 7: Ratios of Computing Time

Observed Times (seconds)

Nk 16 32 64 128 256 512 1,024

Ratio 14.50 10.667 5.143 2.353 1.100 0.514 0.230

Observed Times (seconds)

Nk 2,048 4,096 8,192 16,384 32,768 65,536

Ratio 0.106 0.059 0.031 0.017 0.009 0.005

As we mentioned before, the results reported in tables 4-7 correspond to a solution method

that constrains the values of future capital to the same grid as present capital; that is, it does

not allow for interpolation. As such, the grid-based maximization procedure must evaluate

the value function Nk times in order to determine a maximum. When Nk is very large, the

grid-based maximization can be quite slow, especially for the GPU (relative to the CPU). An

alternative solution method that we implement (results are not reported for consideration

of space) fixes the grid of future capital values, independent of the grid of current capital,

and evaluates the value function using piecewise linear interpolation. In our implementation,

we chose the grid of future capital to have both 100 and 1,000 points, and found that the

GPU was now roughly 30 times faster (in both cases) than the CPU when Nk =65,536 and

roughly 40 times faster (in both cases) asymptotically. We can compare this result to the

non-interpolation method, where the GPU is only about 3 times faster than the CPU.

The reason for the relatively poor performance of the GPU using the non-interpolation

solution method in conjunction with a grid search is that the GPU loses its power as the num-

ber of serial operations on each processing unit increases. That is, for the non-interpolation

method, each of the 240 GPU processors is performing roughly 65,536 serial operations for

the largest grid at each step of the VFI. Compare this to the interpolation solutions, where

the number of serial operations is only 100 and 1,000. Intuitively, as we increase the number

of serial operations on each of the GPU processors, we are using them more and more like

traditional CPUs —something for which they are not optimized. Hence, one way to improve

the performance of the GPU when using a grid search for large grids is to allow for interpo-

lation. The results may not be as striking for smaller grids, where the cost of interpolation

may outweigh the benefit gained by evaluating the value function at fewer points. For the

cases that we implemented (100 and 1,000 point grids for future capital), interpolation was

12



only beneficial for the GPU when the grids for current capital had 512 and 4,096 points,

respectively. The same was true for the CPU when the grids for current capital had 2,048

and 32,768 points, respectively. We note that the binary search method is not likely to en-

joy the same benefits of interpolation, since the number of value function evaluations in the

maximization is low and more or less fixed, independent of Nk (which also explains why it

favors the GPU).

We would like to emphasize that we interpret our results as a lower bound on the capabil-

ities of graphics processors. Our GPU, a GeForce GTX 280 with Tesla (GT200) architecture,

is an off-the-shelf product primarily geared to consumer graphics applications. In comparison:

1. Nowadays, there are PCs with up to eight NVIDIA Tesla C1060 cards. Each Tesla

card packs 240 processors and a much larger memory (up to 4 Gb against the 1 Gb of

the GeForce). Our reading of the CUDA documentation makes us forecast that using

a eight-card machine (with 1,920 processors instead of 240) would divide computation

time by eight. If our estimate turns out to be correct, the basic RBC model would take

around 1,600 times as long to solve (with value function iteration) on the CPU as on

eight Tesla GPUs.

2. NVIDIA released a new CUDA architecture (codename: “Fermi”) in March 2010. The

GeForce 400 series of graphics processors, based on this architecture, display 512 cores,

deliver up to 8 times as many double precision operations per clock cycle relative to the

older Tesla architecture, and allow concurrent kernel execution. The amount of shared

memory per multiprocessor is 4 times as large, which can greatly minimize data transfer

and speed computations (in fact, we suspect data transfer is a binding constraint for our

code right now). This will produce substantial gains. More important, it demonstrates

that researchers are demanding faster GPUs and that the industry will satisfy them.

3. Our version of the algorithm in the GPU is elementary, and experts in other fields have

learned much about how to adapt their algorithms to achieve optimal performance from

the GPUs. As economists catch up with this expertise, we foresee further improvements

in speed.

5. Concluding Remarks

This paper does not add any theoretical machinery to economics, but rather is intended to

introduce readers to a computational methodology that will improve the effi ciency of research.

Computations that have traditionally taken hours can be completed in seconds now. This is

13



significant because it allows researchers to calculate results to a higher level of precision or

explore state spaces that were previously intractable.

There are many directions for future research. First, our intent is to rewrite our code

in OpenCL (Open Computing Language), a close relative of CUDA C that works in a similar

manner and which is also supported by NVIDIA. OpenCL is a framework for cross-platform,

parallel programming, which includes both a language, C99, a modern dialect of C, plus APIs

to define and control platforms.5 Although, unfortunately, the current version of OpenCL

is not object oriented, this exercise is interesting because the new programming language is

quickly expanding within the industry. A second avenue for research is to test how GPUs work

for other types of algorithms commonly used in economics, such as projection or perturbation

methods. We hope additional findings regarding these questions will be forthcoming soon.

References

[1] Aruoba, S.B., J. Fernández-Villaverde, and J. Rubio-Ramírez (2006). “Comparing Solu-

tion Methods for Dynamic Equilibrium Economies.”Journal of Economic Dynamics and

Control 30, 2477-2508.

[2] Herr, B. and A. Maussner (2005). Dynamic General Equilibrium Modelling: Computa-

tional Methods and Applications. Springer-Verlag.

[3] Judd, K.L. (1992). “Projection Methods for Solving Aggregate Growth Models”. Journal

of Economic Theory 58, 410-452.

[4] Lee, A., C. Yau, M.B. Giles, A. Doucet, and C.C. Holmes (2008). “On the Utility of

Graphic Cards to Perform Massively Parallel Simulation with Advanced Monte Carlo

Methods.”Mimeo, Oxford University.

[5] Tauchen, G. (1986), “Finite State Markov-chain Approximations to Univariate and Vector

Autoregressions.”Economics Letters 20, 177-181.

5See http://www.khronos.org/opencl/.

14


