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Cluster-grid algorithm (CGA)

A novel accurate method for solving dynamic economic models:
works for problems with high dimensionality, intractable for earlier
solution methods:

we solve models with hundreds of state variables using a laptop.

Related literature focuses on much lower dimensionality: a
special JEDC 2011�s issue compares solution methods (including our
CGA) using models with 20 state variables at most.
Examples of potential CGA applications:

macroeconomics (many heterogeneous agents);
international economics (many countries);
industrial organization (many �rms);
�nance (many assets);
climate change (many sectors and countries); etc.

CGA is a global method: can handle strong non-linearities and
inequality constraints.

we solve a new Keynesian model with the zero lower bound.
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Ingredients of CGA

Endogenous solution domain: our grid is constructed by clustering
methods to surround the ergodic set - we avoid costs of �nding a
solution in the areas of state space that are never visited in
equilibrium.
Low-cost integration: non-product monomial and one-point
quadrature integration rules.
E¢ cient solver for �nding the polynomial coe¢ cients:
�xed-point iteration.
Vectorized approaches for �nding the control variables:
precomputation and iteration-on-allocation by Maliar, Maliar and
Judd (2011).

+

Taken together, these ingredients allow us to meet challenges
of high-dimensional problems.
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Standard projection methods, Judd (1992)

Characteristic features

Solve a model on a prespeci�ed grid of points.

Use quadrature integration for approximating conditional
expectations.

Compute polynomial coe¢ cients of policy functions using Newton�s
type solver.
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Projection methods: curse of dimensionality

Very accurate and fast with few state variables but cost grows
exponentially with dimensionality!
(a) Product hypercube domain =) Curse of dimensionality!
(b) Product quadrature integration =) Curse of dimensionality!
(c) Newton�s solver (Jacobian, Hessian) =) Curse of dimensionality!

a4
a3
a2
a1

k1 k2 k3 k4

- 2 state variables with 4 grid
points ) 4� 4 = 42 = 16
- 3 state variables with 4 grid
points ) 43 = 64
- 10 state variables with 4 grid
points ) 410 = 1, 048, 576
(With 100 grid points
) 10010 = 1020).

Kruger and Kubler (2004): Smolyak�s sparse grid - reduces the
number of points within the multidimensional hypercube domain but
not the size of the hypercube domain itself.
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Ergodic-set domain

Ergodic set �area of the state space that is visited in simulation.
Example: time-series solution to the standard stochastic growth model
with two state variables, capital and productivity
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Ratio of hypersphere volume to hypercube volume

2-dimensional case: a circle inscribed within a square occupies
about 79% of the area of the square.

n-dimensional case: the ratio of a hypersphere�s volume Ωs
n to a

hypercube�s volume Ωc
n

Ωs
n

Ωc
n
=

8>><>>:
(π/2)

n�1
2

1�3�...�n for n = 1, 3, 5...

(π/2)
n
2

2�4�...�n for n = 2, 4, 6...

.

Ratio Ωs
n

Ωc
n
declines rapidly with the dimension of the state space:

when n = 10, the ratio Ωs
n

Ωc
n
= 3 � 10�3;

when n = 30, the ratio Ωs
n

Ωc
n
= 2 � 10�14.
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Ergodic set versus tensor-product grid: estimated
reduction in cost
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Projection method on the ergodic set

The hypersphere ergodic set is just a tiny fraction of the hypercube
tensor-product grid.

We will develop a projection method operating on the ergodic set.

We will construct a grid of points surrounding the ergodic set using
clustering methods.
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A grid of points surrounding the ergodic set

A grid of clusters�centers

1 Simulate time series solution to the model (the ergodic set),
fkt , atgTt=1.

2 Construct M clusters using methods from clustering analysis, e.g.,
hierarchical agglomerative or K-means clustering algorithms.

3 Compute the centers of the constructed clusters.
4 Use the clusters�centers as a grid points in multi-dimensional space.
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The ergodic set and 4 clusters
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Steps of the agglomerative hierarchical clustering algorithm

The zero-order partition P0 is the set of singletons �each observation
represents a cluster.

Initialization. Choose clustering linkage (we use Ward�s linkage). Choose
the number of clusters to be created M.
Step 1. On iteration i , compute all pairwise distances between the clusters
in the partition Pi .
Step 2. Merge a pair of clusters with the smallest distance into a new
cluster. The resulting partition is Pi+1.

Iterate on Steps 1 and 2. Stop when the number of clusters in the
partition is M.
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Clusters on principal components of the ergodic set
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Properties of the cluster grid

The model is solved on the ergodic set (as is done under
stochastic simulation).

The cluster grid is more e¢ cient than stochastic simulation: a
large number of closely-situated simulated points is replaced with a
smaller number of "representative" points.

The cluster grid is (mostly) �xed, while stochastic simulation
algorithms redraw the simulated points on each iteration (numerical
stability).

The cluster grid is cheap: constructing 300 clusters on simulated
series of 10,000 observations takes:

9 seconds with 2 state variables
just 66 seconds with 200 state variables!

However, the cluster-grid alone does not prevent the course of
dimensionality.
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Example: a representative-agent model

The representative-agent neoclassical growth model:

max
fkt+1,ctg∞

t=0

E0
∞

∑
t=0

βtu (ct )

s.t. ct + kt+1 = (1� δ) kt + at f (kt ) ,

ln at+1 = ρ ln at + εt+1, εt+1 � N
�
0, σ2

�
where initial condition (k0, a0) is given;
u (�) = utility function; f (�) = production function;
ct = consumption; kt+1 = capital; at = productivity;
β = discount factor; δ = depreciation rate of capital;
ρ = autocorrelation coe¢ cient of the productivity level;
σ = standard deviation of the productivity shock.
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Description of CGA

Parameterize the RHS of the Euler equation by a polynomial Ψ (km , am ; b),

k 0m = E
�

β
u0 (c 0m)
u0 (cm)

�
1� δ+ a0m f

0 �k 0m�� k 0m�
� Ψ (km , am ; b) = b0 + b1km + b2am + ....

Step 1. Simulate time series fkt , atgT+1t=1 and construct M clusters. Use
clusters�centers fkm , amgMm=1 as a grid.
Step 2. Fix b � (b0, b1, b2, ...). Given fkm , amgMm=1 solve for fcmg

M
m=1.

Step 3. Compute the expectation using numerical integration (quadrature
integration or monomial rules)

bk 0m � E �β
u0 (c 0m)
u0 (cm)

�
1� δ+ a0m f

0 �k 0m�� k 0m� .
Regress bk 0m on �1, km , am , k2m , a2m , ...� =) get bb.
Step 4. Solve for the coe¢ cients using �xed-point iteration with damping,

b(j+1) = (1� ξ) b(j) + ξbb, ξ 2 (0, 1) .
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Representative-agent model: parameter choice

Production function: f (kt ) = kα
t with α = 0.36.

Utility function: u (ct ) =
c1�γ
t �1
1�γ with γ 2 f0.2, 1, 5g.

Process for shocks: ln at+1 = ρ ln at + εt+1, with ρ 2 f0.95, 0.99g
and σ 2 f0.01, 0.03g.
Discount factor: β = 0.99.

Depreciation rate: δ = 0.025.

Accuracy is measured by an Euler-equation error,

E (kt , at ) � Et

"
β
c�γ
t+1

c�γ
t

�
1� δ+ αat+1kα�1

t+1

�#
� 1
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Table 1. Accuracy and speed in the representative-agent
model

Polynomial degree Mean error Max error CPU (sec)

1st degree �4.32 �3.68 11.59
2nd degree �6.12 �5.46 0.30
3rd degree �7.58 �6.93 0.26
4th degree �8.91 �7.87 0.14
5th degree �9.99 �8.85 0.24

Mean and Max are unit-free Euler equation errors in log10 units, e.g.,

�4 means 10�4 = 0.0001 (0.01%);
�4.5 means 10�4.5 = 0.0000316 (0.00316%).

Benchmark parameters: δ = 0.025, γ = 1, ρ = 0.95, σ = 0.01.
In the paper, many parameterizations are explored:

low risk aversion: γ = 1/5;
high risk aversion: γ = 5;
highly persistent shocks: ρ = 0.99;
highly volatile shocks: σ = 0.03.

For these cases, accuracy and speed are similar.
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Multi-country model

The planner maximizes a weighted sum of N countries�utility functions:

maxn
fcht ,kht+1gNh=1

o∞

t=0

E0
N

∑
h=1

vh
 

∞

∑
t=0

βtuh
�
cht
�!

subject to

N

∑
h=1

cht +
N

∑
h=1

kht+1 =
N

∑
h=1

kht (1� δ) +
N

∑
h=1

aht f
h
�
kht
�
,

where vh is country h�s welfare weight.
Productivity of country h follows the process

ln aht+1 = ρ ln aht + εht+1,

where εht+1 � ςt+1 + ςht+1 with ςt+1 � N
�
0, σ2

�
is identical for all

countries and ςht+1 � N
�
0, σ2

�
is country-speci�c.
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Table 2. Accuracy and speed in the multi-country model

Polyn. M1 Q(1)
degree Mean Max CPU Mean Max CPU

N=2 1st �4.09 �3.19 44 sec �4.07 �3.19 45 sec
2nd �5.45 �4.51 2 min �5.06 �4.41 1 min
3rd �6.51 �5.29 4 min �5.17 �4.92 2 min

N=20 1st �4.21 �3.29 20 min �4.17 �3.28 3 min
2nd �5.08 �4.17 5 hours �4.83 �4.10 32 min

N=40 1st �4.23 �3.31 5 hours �4.19 �3.29 2 hours
2nd � � - �4.86 �4.48 24 hours

N=100 1st �4.09 �3.24 10 hours �4.06 �3.23 36 min
N=200 1st � � - �3.97 �3.20 2 hours

M1 means monomial integration with 2N nodes; Q(1) means quadrature
integration with one node in each dimension; Mean and Max are mean and
maximum unit-free Euler equation errors in log10 units, respectively; CPU
is running time.
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JEDC�s (2011) special issue: a comparison of six methods.

30 Multi-country models with up to 10 countries:

Accuracy on a stochastic simulation:

1-st order perturbation method of Kollmann, Kim and Kim (2011):
max error = 6.310%

2-nd order perturbation method of Kollmann, Kim and Kim (2011):
max error = 1.349%

Stochastic simulation algorithm of Maliar, Maliar and Judd (2011):
max error = 0.145%

Cluster-grid algorithms of Maliar, Maliar and Judd (2011):
max error = 0.009%

Smolyak�s collocation method of Malin, Krueger and Kubler (2011):
max error = 0.030%

Monomial rule Galerkin method of Pichler (2011):
max error = 0.115%
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A new Keynesian model

Households choose consumption and labor.

Perfectly competitive �nal-good �rms produce goods using
intermediate goods.

Monopolistic intermediate-good �rms produce goods using labor and
are subject to sticky price (á la Calvo, 1983).

Monetary authority obeys a Taylor rule with zero lower bound (ZLB).

Government �nances a stochastic stream of public consumption by
levying lump-sum taxes and by issuing nominal debt.

Six exogenous shocks:
(i) preference shock that scales the overall momentary utility eut
(ii) preference shock that a¤ects marginal disutility of labor eLt
(iii) premium in the return to bonds eBt
(iv) shock to productivity of intermediate-good �rms eat
(v) monetary-policy shock eRt
(vi) government-spending shock eGt .
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Equilibrium conditions

FOCs of the intermediate-good �rms

St =
1

exp (eat )
� exp

�
eut + e

L
t

�
Lϕ
t Yt + βθEt fπε

t+1St+1g

Ft = C
�γ
t Yt + βθEt

�
πε�1
t+1Ft+1

	
St
Ft
=

�
1� θπε�1

t

1� θ

� 1
1�ε

where β = discount factor; St and Ft = some constructed variables;
θ = fraction of intermediate-good �rms that cannot change price;
ε � 1 = elasticity of substitution across di¤erent intermediate goods;
Ct and Yt = consumption and output; γ and ϕ = inverse of intertemporal
elasticity of substitution of consumption and labor supply;
πt = gross in�ation rate between t � 1 and t.
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Equilibrium conditions

Law of motion for the price distortion Dt

Dt =

"
(1� θ)

�
1� θπε�1

t

1� θ

� ε
ε�1

+ θ
πε
t

Dt�1

#�1
Euler equation from the household�s problem

exp (eut )C
�γ
t = β exp

�
eBt
�
RtEt

"
exp

�
eut+1

�
C�γ
t+1

πt+1

#
where Rt is the gross nominal interest rate.
Aggregate production

Yt = exp (eat ) LtDt

Aggregate resource constraint

Ct + Gt = Yt

where Gt = G
exp(eGt )

Yt is government spending.
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Equilibrium conditions

Taylor rule with ZLB on the net nominal interest rate

Rt = max

8<:1, R�

�
Rt�1
R�

�µ
"�

πt
π�

�φπ
�
Yt
YN ,t

�φy
#1�µ

exp
�
eRt
�9=;

where R� is the long-run gross nominal interest rate; π� is the
in�ation target; YN ,t is the natural level of output.
Stochastic processes for shocks

eut = ρueut�1 + u
u
t , uut � N

�
0, σ2u

�
eLt = ρLeLt�1 + u

L
t , uLt � N

�
0, σ2L

�
eBt = ρB eBt�1 + u

B
t , uBt � N

�
0, σ2B

�
eat = ρaeat�1 + u

a
t , uat � N

�
0, σ2a

�
eRt = ρR eRt�1 + u

R
t , uRt � N

�
0, σ2R

�
eGt = ρG eGt�1 + u

G
t , uGt � N

�
0, σ2G

�
8 equations & 8 unknowns. 2 endogenous state variables, Dt�1, Rt�1.
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Parameter values

We calibrate the model using the results in Smets and Wouters (2003,
2007), and Del Negro, Smets and Wouters (2007).

Preferences: γ = 1; ϕ = 2.09; β = 0.99
Intermediate-good production: ε = 4.45
Fraction of �rms that cannot change price: θ = 0.83
Taylor rule: φy = 0.07; φπ = 2.21; µ = 0.82
In�ation target: π� 2 f1, 1.0598g
Government to output ratio: G = 0.23
Stochastic processes for shocks:
ρu = 0.92; ρL = 0.881; ρB = 0.23; ρa = 0.2; ρR = 0.15; ρG = 0.95
σu = 0.0054; σL = 0.006; σB = 0.0022; σa = 0.0082; σR = 0.0024;
σG = 0.0038

We compute 1st and 2nd order perturbation solutions using Dynare, and
we compute 2nd and 3rd degree CGA solutions.
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Table 3. Accuracy and speed in the new Keynesian model

0% in�ation target 0% in�ation target and ZLB
PER1 PER2 CGA2 CGA3 PER1 PER2 CGA2 CGA3

CPU 9 363 664 9 445 914
Mean -3.05 -3.81 -4.15 -4.26 -2.99 -3.40 -3.98 -4.05
Max -0.89 -1.75 -1.85 -3.14 -0.90 -1.05 -1.93 -2.06
Rmin 0.983 0.981 0.980 0.980 1.0 1.0 1.0 1.0
Rmax 1.040 1.038 1.039 1.038 1.040 1.038 1.039 1.039
Fr (R�1) 8.20 8.13 8.27 8.46 6.78 6.66 8.63 8.34
4R 0.23 0.05 0.11 � 0.90 0.94 0.14 �
4C 1.35 0.18 0.17 � 3.22 3.58 1.06 �
4Y 1.36 0.18 0.17 � 3.25 3.59 1.06 �
4L 3.22 0.14 0.24 � 4.66 3.61 1.04 �
4π 0.56 0.06 0.21 � 0.98 0.86 0.19 �

PER 1 and PER 2 = 1st and 2nd order Dynare solutions; CGA2 and CGA3 = 2nd
and 3rd degree CGA; Mean and Max = average and maximum absolute errors (in
log10 units); Rmin and Rmax = minimum and maximum R ; Freq(R�1) =
number of periods in which R � 1 ( in %); 4X = max di¤erence from CGA3.
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A stochastic simulation of time series solution for a new
Keynesian economy
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Conclusion

CGA accurately solves models that were considered to be unfeasible
until now.

A mix of techniques taken together allows us to address the
challenges of high-dimensional problems:

cluster-grid domain - a tiny fraction of the standard hypercube domain;
monomial and one-node integration rules;
�xed-point iteration for �nding policy functions;
iteration-on-allocation and precomputation approaches for solving for
intratemporal choice.

A proper coordination of the above techniques is crucial for accuracy
and speed.

Parallelization and supercomputer (Condor).
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