APPROXIMATION METHODS

Kenneth L. Judd
Hoover Institution

July 17, 2012

Approximation Methods

» General Objective: Given data about f(x) construct simpler g(x) to
approximate f(x).

» Questions:

» What data should be produced and used?
» What family of “simpler” functions should be used?
» What notion of approximation do we use?

» Comparisons with statistical regression

» Both approximate an unknown function and use a finite amount of
data

> Statistical data is noisy but we assume data errors are small

» Nature produces data for statistical analysis but we produce the data
in function approximation

Interpolation Methods

» Interpolation: find g (x) from an n-dimensional family of functions
to exactly fit n data points
» Lagrange polynomial interpolation
» Data: (x;,yi),i=1,..,n.
> Objective: Find a polynomial of degree n — 1, pn(x), which agrees
with the data, i.e.,
yi=f(x), i=1,.,n

» Result: If the x; are distinct, there is a unique interpolating
polynomial

> Does p,(x) converge to f (x) as we use more points?

» No! Consider

1
f(x) = 1.2

x; = —5,—4,..3,4,5

\ 1l-point
interpolation

» Why does this fail? because there are zero degrees of freedom? bad
choice of points? bad function?

» Hermite polynomial interpolation

» Data: (xi,yi,¥),i=1,..,n.
> Objective: Find a polynomial of degree 2n — 1, p(x), which agrees
with the data, i.e.,

yio = plxi), i=1.,n
yi = p(x), i=1,.,n
» Result: If the x; are distinct, there is a unique interpolating
polynomial
» Least squares approximation

» Data: A function, f(x).
> Objective: Find a function g(x) from a class G that best
approximates f(x), i.e.,

= in|lf — gl
g =argmin|[f — g

Orthogonal polynomials

» General orthogonal polynomials

» Space: polynomials over domain D
> Weighting function W()>0
> Inner product: { = [f(x)g(x)w(x)dx
» Definition: {qb,} is a fam||y of orthogonal polynomials w.r.t w (x) iff
<¢i7¢j> =0, ’7&./
» We can compute orthogonal polynomials using recurrence formulas
po(x) = 1
Pr(x) = x
drs1(x) = (Aks1x + bi) dr(x) + crp1d—1(x)

» Chebyshev polynomials

> [a,b]) =[-1,1] and w(x) = (1 —x*)"

> Th(x) = cos(n cos™?! x)

» Recursive definition
To(X) =1
Ti(x) =x
Tat1(x) = 2x Th(x)

» Graphs

T 1
» 2 Tl
Vol P
I
-1 1

1/2

» General intervals

» Few problems have the specific intervals and weights used in
definitions
» One must adapt the polynomials to fit the domain through linear
Cov:
> Define the linear change of variables that maps the compact interval

[a, b] to [—1,1]
x—a

b—a
> The polynomials ¢} (x) = ¢; <71 + 2’;:;) are orthogonal over

y=—-1+42

x € [a, b] with respect to the weight w* (x) = (71 + 22:;) iff the

@i (y) are orthogonal over y € [—1,1] w.r.t. w(y)

Regression

» Data: (x;,yi),i=1,..,n.

» Objective: Find a function f(x; 8) with 3 € R™, m < n, with
Yi = f(X,'),I. = 17 .y N

» Least Squares regression:

min (i — f (xi: B))°

BeR™

Algorithm 6.4: Chebyshev Approximation Algorithm in R}

v

Objective: Given f(x) on [a, b], find Chebyshev poly approx p(x)
Step 1: Define m > n+ 1 Chebyshev interpolation nodes on [—1, 1]:

2k —1
zk_cos< 7T>,k—l,~~~,m.
2m

Step 2: Adjust nodes to [a, b] interval:

v

v

xk = (zx + 1) (b23> +a k=1 ..m.

v

Step 3: Evaluate f at approximation nodes:

wig = f(xk), k=1,--+,m.

v

Step 4: Compute Chebyshev coefficients, a;,i =0,--- ,n:

_Tr wTi(z)
ZT:I Ti(zx)?

n X —a
p(x) = E aiT; <2b—a — 1)
i=0

aj

Minmax Approximation

» Data: (X,',y,') ,i=1,..,n.
» Objective: L fit

. e
Jmin max [ly; — £ (xi; B)]

» Problem: Difficult to compute
» Chebyshev minmax property

Suppose f : [~1,1] — R is Ck for some k > 1, and let I, be the degree n
polynomial interpolation of f based at the zeroes of T, 1(x). Then

Pty s (2 togn+1)+1)

X(n;fﬂ(g)k<b§a)knﬂ@nm

» Chebyshev interpolation:

» converges in L*; essentially achieves minmax approximation
» works even for C? and C3 functions

> easy to compute

» does not necessarily approximate f’ well

Shape Issues

» Approximation methods and shape

» Concave (monotone) data may lead to nonconcave (nonmonotone)
approximations.
» Shape problems destabilize value function iteration

Shape-preserving polynomial approximation

» Least squares Chebyshev approximation that preserves increasing
concave shape with Lagrange data (x;, v;)

m n 2
min > | D (a) — v
! i=1 \ j=0
n
s.t. Z ¢#; (xi) > 0,
j=1
n
=1,...,m

> G () <0, i

Jj=1

» Least squares Chebyshev approximation preserving increasing
concave shape with Hermite data (x;, vj, v/)

2
g 35 (Sanr v) 3 (Sast) -
i=1 \ j=0 i=1 \ j=0
s.t. ch¢} (X,') >0, i=1....m,
j=1
ZCj¢}/(X;)<O, i=1,....m.
j=1

where) is some parameter.

L1 Shape-preserving approximation

» L1 increasing concave approximation

min D i) —vi
T =1 =1
st. Y Goj(z) =0, k=1,....K
=1
S ol (z) <0, k=1,....K

j=1

» NOTE: We impose shape on a set of points, zx, possibly different,
and generally larger, from the approximation points, x;.

» This looks like a nondifferentiable problem, but it is not when we
rewrite it as

m
min g Ai
C',A'

D=1

n

st. Y Géi(z) >0, k=1,....K

j=1
S el (z) <0, k=1,...,K
j=1

—Ai < ZCjébj(Xi)*Viﬁ/\;, i=1,....m

Jj=1
0 <)\,’, i:l,...,m

» Use possibly different points for shape constraints; generally you
want more shape checking points than data points.

» Mathematical justification: semi-infinite programming

» Many other procedures exist for one-dimensional problems, but few
procedures exist for two-dimensional problems

Multidimensional approximation methods

» Lagrange Interpolation

vvyy

Data: D = {(x,-,z,-)},’\il C R™™ where x; € R" and z; € R™
Objective: find f : R" — R™ such that z; = f(x;).

Need to choose nodes carefully.

Task: Find combinations of interpolation nodes and spanning
functions to produce a nonsingular (well-conditioned) interpolation
matrix.

Tensor products

» General Approach:

> If A and B are sets of functions over x € R", y € R™, their tensor
product is

A®B={p(x)¥(y) | ¢ € A ¢ € B}.

» Given a basis for functions of x;, ®' = {0} (x;)}22, the n-fold tensor
product basis for functions of (xi,x2,...,%n) is

¢={H¢Li(x,~)k,-=o,1,..., i=1,...,n}

i=1

» Orthogonal polynomials and Least-square approximation

» Suppose o' are orthogonal with respect to w;(x;) over [a;, b;]
> Least squares approximation of f(x1, -+, xn) in ® is

Z <907 f> 0,

‘oo (we)

where the product weighting function

n

W(x1, X2,y Xa) = H wi(xi)

i=1

defines (-,-) over D = TJ,[a;, bi] in

(F(x), £(3)) / F()g(x) W (x)dx

Algorithm 6.4: Chebyshev Approximation Algorithm in R?

» Objective: Given f(x,y) defined on [a, b] x [c, d], find its Chebyshev
polynomial approximation p(x, y)

2k —1
zk:—cos(7r> L k=1,--- . m.
2m

xk = (zk + 1) <b23) +a,k=1,..m.

}/k:(Zk+1)<d;C>—|—c,k:1,...,m.

Wk,ZZf(kayE)a k:]-,"'am'agzla"'am'
n

“ Xx—a y—c
pen) =Y oy (22 -1) 7 (2525 1)

i=0 j=0

Polynomials
» Taylor's theorem for R" produces the approximation
f(X): ()+Ellax(o)(x’._xlp)

+3 01 i Bxllaxlk (x0) (i — X)) (xi, — X)) + ...

» For k =1, Taylor's theorem for n dimensions used the linear
functions Pf = {1, x1, %2, , Xn}
» For k =2, Taylor's theorem uses
Py =PI U{XE, -+, X2, X1X2, X1X3, " * , Xn—1Xn}.
» In general, the kth degree expansion uses the complete set of
polynomials of total degree k in n variables.

n
E{X]i.l"'xriy"|z i@Skv 0§”13”’7in}
=1

» Complete orthogonal basis includes only terms with total degree k or
less.

> Sizes of alternative bases

degree k Py Tensor Prod.
2 1+n+n(n+1)/2 3n
3 14+ 2ol 2y nln=1)(n=2) an

» Complete polynomial bases contains fewer elements than tensor
products.

» Asymptotically, complete polynomial bases are as good as tensor
products.

» For smooth n-dimensional functions, complete polynomials are more
efficient approximations

» Construction

» Compute tensor product approximation, as in Algorithm 6.4

> Drop terms not in complete polynomial basis (or, just compute
coefficients for polynomials in complete basis).

» Complete polynomial version is faster to compute since it involves
fewer terms

» Almost as accurate as tensor product; in general, degree k + 1
complete is better then degree k tensor product but uses far fewer
terms.

Shape Issues

» Much harder in higher dimensions
» No general method
» The L2 and L1 methods generalize to higher dimensions.

» The constraints will be restrictions on directional derivatives in many
directions

» There will be many constraints

» But, these will be linear constraints

» L1 reduces to linear programming; we can now solve huge LP
problems, so don’t worry.

