
APPROXIMATION METHODS

Kenneth L. Judd

Hoover Institution

July 17, 2012



Approximation Methods

I General Objective: Given data about f (x) construct simpler g(x) to
approximate f (x).

I Questions:
I What data should be produced and used?
I What family of “simpler” functions should be used?
I What notion of approximation do we use?

I Comparisons with statistical regression
I Both approximate an unknown function and use a finite amount of

data
I Statistical data is noisy but we assume data errors are small
I Nature produces data for statistical analysis but we produce the data

in function approximation



Interpolation Methods

I Interpolation: find g (x) from an n-dimensional family of functions
to exactly fit n data points

I Lagrange polynomial interpolation
I Data: (xi , yi ) , i = 1, .., n.
I Objective: Find a polynomial of degree n − 1, pn(x), which agrees

with the data, i.e.,
yi = f (xi ), i = 1, .., n

I Result: If the xi are distinct, there is a unique interpolating
polynomial



I Does pn(x) converge to f (x) as we use more points?
I No! Consider

f (x) =
1

1+ x2

xi = −5,−4, ..., 3, 4, 5

• Does pn(x) converge to f (x) as we use more points?

— No! Consider

f(x)=
1

1 + x2
xi=−5,−4, ..., 3, 4, 5

Figure 1:

— Why does this fail? because there are zero degrees of freedom? bad choice of points? bad

function?

4

I Why does this fail? because there are zero degrees of freedom? bad
choice of points? bad function?



I Hermite polynomial interpolation
I Data: (xi , yi , y ′i ) , i = 1, .., n.
I Objective: Find a polynomial of degree 2n − 1, p(x), which agrees

with the data, i.e.,

yi = p(xi ), i = 1, .., n

y ′i = p′(xi ), i = 1, .., n

I Result: If the xi are distinct, there is a unique interpolating
polynomial

I Least squares approximation
I Data: A function, f (x).
I Objective: Find a function g(x) from a class G that best

approximates f (x), i.e.,

g = arg min
g∈G
‖f − g‖2



Orthogonal polynomials

I General orthogonal polynomials
I Space: polynomials over domain D
I Weighting function: w(x) > 0
I Inner product: 〈f , g〉 =

´
D f (x)g(x)w(x)dx

I Definition: {φi} is a family of orthogonal polynomials w.r.t w (x) iff

〈φi , φj 〉 = 0, i 6= j

I We can compute orthogonal polynomials using recurrence formulas

φ0(x) = 1

φ1(x) = x

φk+1(x) = (ak+1x + bk)φk(x) + ck+1φk−1(x)



I Chebyshev polynomials
I [a, b] = [−1, 1] and w(x) =

(
1− x2)−1/2

I Tn(x) = cos(n cos−1 x)
I Recursive definition

T0(x) = 1
T1(x) = x
Tn+1(x) = 2x Tn(x)− Tn−1(x),

I Graphs

• Chebyshev polynomials

— [a, b] = [−1, 1] and w(x) =
(
1− x2

)
−1/2

— Tn(x) = cos(n cos−1 x)

— Recursive definition
T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x),

— Graphs

7



I General intervals
I Few problems have the specific intervals and weights used in

definitions
I One must adapt the polynomials to fit the domain through linear

COV:
I Define the linear change of variables that maps the compact interval

[a, b] to [−1, 1]

y = −1 + 2
x − a
b − a

I The polynomials φ∗i (x) ≡ φi

(
−1 + 2 x−a

b−a

)
are orthogonal over

x ∈ [a, b] with respect to the weight w∗ (x) ≡
(
−1 + 2 x−a

b−a

)
iff the

φi (y) are orthogonal over y ∈ [−1, 1] w.r.t. w (y)



Regression

I Data: (xi , yi ) , i = 1, .., n.
I Objective: Find a function f (x ;β) with β ∈ Rm, m ≤ n, with

yi
.
= f (xi ), i = 1, .., n.

I Least Squares regression:

min
β∈Rm

∑
(yi − f (xi ;β))

2



Algorithm 6.4: Chebyshev Approximation Algorithm in R1

I Objective: Given f (x) on [a, b], find Chebyshev poly approx p(x)
I Step 1: Define m ≥ n + 1 Chebyshev interpolation nodes on [−1, 1]:

zk = −cos
(
2k − 1
2m

π

)
, k = 1, · · · ,m.

I Step 2: Adjust nodes to [a, b] interval:

xk = (zk + 1)
(

b − a
2

)
+ a, k = 1, ...,m.

I Step 3: Evaluate f at approximation nodes:

wk = f (xk) , k = 1, · · · ,m.
I Step 4: Compute Chebyshev coefficients, ai , i = 0, · · · , n :

ai =

∑m
k=1 wkTi (zk)∑m
k=1 Ti (zk)2

p(x) =
n∑

i=0

aiTi

(
2
x − a
b − a

− 1
)



Minmax Approximation
I Data: (xi , yi ) , i = 1, .., n.
I Objective: L∞ fit

min
β∈Rm

max
i
‖yi − f (xi ;β)‖

I Problem: Difficult to compute
I Chebyshev minmax property

Suppose f : [−1, 1]→ R is C k for some k ≥ 1, and let In be the degree n
polynomial interpolation of f based at the zeroes of Tn+1(x). Then

‖ f − In ‖∞≤
(
2
π

log(n + 1) + 1
)

× (n − k)!
n!

(π
2

)k
(

b − a
2

)k

‖ f (k) ‖∞

I Chebyshev interpolation:
I converges in L∞; essentially achieves minmax approximation
I works even for C 2 and C 3 functions
I easy to compute
I does not necessarily approximate f ′ well



Shape Issues

I Approximation methods and shape
I Concave (monotone) data may lead to nonconcave (nonmonotone)

approximations.
I Shape problems destabilize value function iteration

Shape Issues

• Approximation methods and shape

— Concave (monotone) data may lead to nonconcave (nonmonotone) approximations.

— Example

— Shape problems destabilize value function iteration

14



Shape-preserving polynomial approximation

I Least squares Chebyshev approximation that preserves increasing
concave shape with Lagrange data (xi , vi )

min
cj

m∑
i=1

 n∑
j=0

cjφj (xi )− vi

2

s.t.
n∑

j=1

cjφ
′
j (xi ) > 0,

n∑
j=1

cjφ
′′
j (xi ) < 0, i = 1, . . . ,m.



I Least squares Chebyshev approximation preserving increasing
concave shape with Hermite data (xi , vi , v ′i )

mincj

m∑
i=1

 n∑
j=0

cjφj (xi )− vi

2

+ λ

m∑
i=1

 n∑
j=0

cjφ
′
j (xi )− v ′i

2

s.t.
n∑

j=1

cjφ
′
j (xi ) > 0, i = 1, . . . ,m,

n∑
j=1

cjφ
′′
j (xi ) < 0, i = 1, . . . ,m.

where λ is some parameter.



L1 Shape-preserving approximation

I L1 increasing concave approximation

min
cj

m∑
i=1

∣∣∣∣∣∣
n∑

j=1

cjφj (xi )− vi

∣∣∣∣∣∣
s.t.

n∑
j=1

cjφ
′
j (zk) ≥ 0, k = 1, . . . ,K

n∑
j=1

cjφ
′′
j (zk) ≤ 0, k = 1, . . . ,K

I NOTE: We impose shape on a set of points, zk , possibly different,
and generally larger, from the approximation points, xi .



I This looks like a nondifferentiable problem, but it is not when we
rewrite it as

min
cj ,λi

m∑
i=1

λi

s.t.
n∑

j=1

cjφ
′
j (zk) ≥ 0, k = 1, . . . ,K

n∑
j=1

cjφ
′′
j (zk) ≤ 0, k = 1, . . . ,K

−λi ≤
n∑

j=1

cjφj (xi )− vi ≤ λi , i = 1, . . . ,m

0 ≤ λi , i = 1, . . . ,m

I Use possibly different points for shape constraints; generally you
want more shape checking points than data points.

I Mathematical justification: semi-infinite programming
I Many other procedures exist for one-dimensional problems, but few

procedures exist for two-dimensional problems



Multidimensional approximation methods

I Lagrange Interpolation
I Data: D ≡ {(xi , zi )}Ni=1 ⊂ Rn+m, where xi ∈ Rn and zi ∈ Rm

I Objective: find f : Rn → Rm such that zi = f (xi ).
I Need to choose nodes carefully.
I Task: Find combinations of interpolation nodes and spanning

functions to produce a nonsingular (well-conditioned) interpolation
matrix.



Tensor products

I General Approach:
I If A and B are sets of functions over x ∈ Rn, y ∈ Rm, their tensor

product is
A⊗ B = {ϕ(x)ψ(y) | ϕ ∈ A, ψ ∈ B}.

I Given a basis for functions of xi , Φi = {ϕi
k(xi )}∞k=0, the n-fold tensor

product basis for functions of (x1, x2, . . . , xn) is

Φ =

{
n∏

i=1

ϕi
ki (xi ) | ki = 0, 1, · · · , i = 1, . . . , n

}



I Orthogonal polynomials and Least-square approximation
I Suppose Φi are orthogonal with respect to wi (xi ) over [ai , bi ]
I Least squares approximation of f (x1, · · · , xn) in Φ is∑

ϕ∈Φ

〈ϕ, f 〉
〈ϕ,ϕ〉 ϕ,

where the product weighting function

W (x1, x2, · · · , xn) =
n∏

i=1

wi (xi )

defines 〈·, ·〉 over D =
∏

i [ai , bi ] in

〈f (x), g(x)〉 =

ˆ
D

f (x)g(x)W (x)dx .



Algorithm 6.4: Chebyshev Approximation Algorithm in R2

I Objective: Given f (x , y) defined on [a, b]× [c , d ], find its Chebyshev
polynomial approximation p(x , y)

zk = −cos
(
2k − 1
2m

π

)
, k = 1, · · · ,m.

xk = (zk + 1)
(

b − a
2

)
+ a, k = 1, ...,m.

yk = (zk + 1)
(

d − c
2

)
+ c , k = 1, ...,m.

wk,` = f (xk , y`) , k = 1, · · · ,m. , ` = 1, · · · ,m.

p(x , y) =
n∑

i=0

n∑
j=0

aijTi

(
2
x − a
b − a

− 1
)

Tj

(
2
y − c
d − c

− 1
)



Polynomials

I Taylor’s theorem for Rn produces the approximation

f (x) .= f (x0) +
∑n

i=1
∂f
∂xi

(x0) (xi − x0
i )

+ 1
2

∑n
i1=1

∑n
i2=1

∂2f
∂xi1∂xik

(x0)(xi1 − x0
i1)(xik − x0

ik
) + ...

I For k = 1, Taylor’s theorem for n dimensions used the linear
functions Pn

1 ≡ {1, x1, x2, · · · , xn}
I For k = 2, Taylor’s theorem uses
Pn

2 ≡ Pn
1 ∪ {x2

1 , · · · , x2
n , x1x2, x1x3, · · · , xn−1xn}.

I In general, the kth degree expansion uses the complete set of
polynomials of total degree k in n variables.

Pn
k ≡ {x

i1
1 · · · x

in
n |

n∑
`=1

i` ≤ k, 0 ≤ i1, · · · , in}

I Complete orthogonal basis includes only terms with total degree k or
less.



I Sizes of alternative bases

degree k Pn
k Tensor Prod.

2 1+ n + n(n + 1)/2 3n

3 1+ n + n(n+1)
2 + n2 + n(n−1)(n−2)

6 4n

I Complete polynomial bases contains fewer elements than tensor
products.

I Asymptotically, complete polynomial bases are as good as tensor
products.

I For smooth n-dimensional functions, complete polynomials are more
efficient approximations

I Construction
I Compute tensor product approximation, as in Algorithm 6.4
I Drop terms not in complete polynomial basis (or, just compute

coefficients for polynomials in complete basis).
I Complete polynomial version is faster to compute since it involves

fewer terms
I Almost as accurate as tensor product; in general, degree k + 1

complete is better then degree k tensor product but uses far fewer
terms.



Shape Issues

I Much harder in higher dimensions
I No general method
I The L2 and L1 methods generalize to higher dimensions.

I The constraints will be restrictions on directional derivatives in many
directions

I There will be many constraints
I But, these will be linear constraints
I L1 reduces to linear programming; we can now solve huge LP

problems, so don’t worry.


