APPROXIMATION METHODS

Kenneth L. Judd

Hoover Institution

July 17, 2012

Approximation Methods

- General Objective: Given data about $f(x)$ construct simpler $g(x)$ to approximate $f(x)$.
- Questions:
- What data should be produced and used?
- What family of "simpler" functions should be used?
- What notion of approximation do we use?
- Comparisons with statistical regression
- Both approximate an unknown function and use a finite amount of data
- Statistical data is noisy but we assume data errors are small
- Nature produces data for statistical analysis but we produce the data in function approximation

Interpolation Methods

- Interpolation: find $g(x)$ from an n-dimensional family of functions to exactly fit n data points
- Lagrange polynomial interpolation
- Data: $\left(x_{i}, y_{i}\right), i=1, . ., n$.
- Objective: Find a polynomial of degree $n-1, p_{n}(x)$, which agrees with the data, i.e.,

$$
y_{i}=f\left(x_{i}\right), i=1, . ., n
$$

- Result: If the x_{i} are distinct, there is a unique interpolating polynomial
- Does $p_{n}(x)$ converge to $f(x)$ as we use more points?
- No! Consider

$$
\begin{aligned}
f(x) & =\frac{1}{1+x^{2}} \\
x_{i} & =-5,-4, \ldots, 3,4,5
\end{aligned}
$$

- Why does this fail? because there are zero degrees of freedom? bad choice of points? bad function?
- Hermite polynomial interpolation
- Data: $\left(x_{i}, y_{i}, y_{i}^{\prime}\right), i=1, . ., n$.
- Objective: Find a polynomial of degree $2 n-1, p(x)$, which agrees with the data, i.e.,

$$
\begin{aligned}
y_{i} & =p\left(x_{i}\right), i=1, . ., n \\
y_{i}^{\prime} & =p^{\prime}\left(x_{i}\right), i=1, . ., n
\end{aligned}
$$

- Result: If the x_{i} are distinct, there is a unique interpolating polynomial
- Least squares approximation
- Data: A function, $f(x)$.
- Objective: Find a function $g(x)$ from a class G that best approximates $f(x)$, i.e.,

$$
g=\arg \min _{g \in G}\|f-g\|^{2}
$$

Orthogonal polynomials

- General orthogonal polynomials
- Space: polynomials over domain D
- Weighting function: $w(x)>0$
- Inner product: $\langle f, g\rangle=\int_{D} f(x) g(x) w(x) d x$
- Definition: $\left\{\phi_{i}\right\}$ is a family of orthogonal polynomials w.r.t $w(x)$ iff

$$
\left\langle\phi_{i}, \phi_{j}\right\rangle=0, i \neq j
$$

- We can compute orthogonal polynomials using recurrence formulas

$$
\begin{aligned}
\phi_{0}(x) & =1 \\
\phi_{1}(x) & =x \\
\phi_{k+1}(x) & =\left(a_{k+1} x+b_{k}\right) \phi_{k}(x)+c_{k+1} \phi_{k-1}(x)
\end{aligned}
$$

- Chebyshev polynomials
- $[a, b]=[-1,1]$ and $w(x)=\left(1-x^{2}\right)^{-1 / 2}$
- $T_{n}(x)=\cos \left(n \cos ^{-1} x\right)$
- Recursive definition

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=x \\
& T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
\end{aligned}
$$

- Graphs

- General intervals
- Few problems have the specific intervals and weights used in definitions
- One must adapt the polynomials to fit the domain through linear COV:
- Define the linear change of variables that maps the compact interval $[a, b]$ to $[-1,1]$

$$
y=-1+2 \frac{x-a}{b-a}
$$

- The polynomials $\phi_{i}^{*}(x) \equiv \phi_{i}\left(-1+2 \frac{x-a}{b-a}\right)$ are orthogonal over $x \in[a, b]$ with respect to the weight $w^{*}(x) \equiv\left(-1+2 \frac{x-a}{b-a}\right)$ iff the $\phi_{i}(y)$ are orthogonal over $y \in[-1,1]$ w.r.t. $w(y)$

Regression

- Data: $\left(x_{i}, y_{i}\right), i=1, . ., n$.
- Objective: Find a function $f(x ; \beta)$ with $\beta \in R^{m}, m \leq n$, with $y_{i} \doteq f\left(x_{i}\right), i=1, . ., n$.
- Least Squares regression:

$$
\min _{\beta \in R^{m}} \sum\left(y_{i}-f\left(x_{i} ; \beta\right)\right)^{2}
$$

Algorithm 6.4: Chebyshev Approximation Algorithm in \mathbb{R}^{1}

- Objective: Given $f(x)$ on $[a, b]$, find Chebyshev poly approx $p(x)$
- Step 1: Define $m \geq n+1$ Chebyshev interpolation nodes on $[-1,1]$:

$$
z_{k}=-\cos \left(\frac{2 k-1}{2 m} \pi\right), k=1, \cdots, m .
$$

- Step 2: Adjust nodes to $[a, b]$ interval:

$$
x_{k}=\left(z_{k}+1\right)\left(\frac{b-a}{2}\right)+a, k=1, \ldots, m .
$$

- Step 3: Evaluate f at approximation nodes:

$$
w_{k}=f\left(x_{k}\right), k=1, \cdots, m
$$

- Step 4: Compute Chebyshev coefficients, $a_{i}, i=0, \cdots, n$:

$$
\begin{gathered}
a_{i}=\frac{\sum_{k=1}^{m} w_{k} T_{i}\left(z_{k}\right)}{\sum_{k=1}^{m} T_{i}\left(z_{k}\right)^{2}} \\
p(x)=\sum_{i=0}^{n} a_{i} T_{i}\left(2 \frac{x-a}{b-a}-1\right)
\end{gathered}
$$

Minmax Approximation

- Data: $\left(x_{i}, y_{i}\right), i=1, . ., n$.
- Objective: L^{∞} fit

$$
\min _{\beta \in R^{m}} \max _{i}\left\|y_{i}-f\left(x_{i} ; \beta\right)\right\|
$$

- Problem: Difficult to compute
- Chebyshev minmax property

Suppose $f:[-1,1] \rightarrow R$ is C^{k} for some $k \geq 1$, and let I_{n} be the degree n polynomial interpolation of f based at the zeroes of $T_{n+1}(x)$. Then

$$
\begin{aligned}
\left\|f-I_{n}\right\|_{\infty} \leq & \left(\frac{2}{\pi} \log (n+1)+1\right) \\
& \times \frac{(n-k)!}{n!}\left(\frac{\pi}{2}\right)^{k}\left(\frac{b-a}{2}\right)^{k}\left\|f^{(k)}\right\|_{\infty}
\end{aligned}
$$

- Chebyshev interpolation:
- converges in L^{∞}; essentially achieves minmax approximation
- works even for C^{2} and C^{3} functions
- easy to compute
- does not necessarily approximate f^{\prime} well

Shape Issues

- Approximation methods and shape
- Concave (monotone) data may lead to nonconcave (nonmonotone) approximations.
- Shape problems destabilize value function iteration

Shape-preserving polynomial approximation

- Least squares Chebyshev approximation that preserves increasing concave shape with Lagrange data (x_{i}, v_{i})

$$
\begin{array}{ll}
\min _{c_{j}} & \sum_{i=1}^{m}\left(\sum_{j=0}^{n} c_{j} \phi_{j}\left(x_{i}\right)-v_{i}\right)^{2} \\
\text { s.t. } & \sum_{j=1}^{n} c_{j} \phi_{j}^{\prime}\left(x_{i}\right)>0, \\
& \sum_{j=1}^{n} c_{j} \phi_{j}^{\prime \prime}\left(x_{i}\right)<0, \quad i=1, \ldots, m .
\end{array}
$$

- Least squares Chebyshev approximation preserving increasing concave shape with Hermite data $\left(x_{i}, v_{i}, v_{i}^{\prime}\right)$

$$
\begin{aligned}
\min _{c_{j}} & \sum_{i=1}^{m}\left(\sum_{j=0}^{n} c_{j} \phi_{j}\left(x_{i}\right)-v_{i}\right)^{2}+\lambda \sum_{i=1}^{m}\left(\sum_{j=0}^{n} c_{j} \phi_{j}^{\prime}\left(x_{i}\right)-v_{i}^{\prime}\right)^{2} \\
\text { s.t. } & \sum_{j=1}^{n} c_{j} \phi_{j}^{\prime}\left(x_{i}\right)>0, \quad i=1, \ldots, m \\
& \sum_{j=1}^{n} c_{j} \phi_{j}^{\prime \prime}\left(x_{i}\right)<0, \quad i=1, \ldots, m
\end{aligned}
$$

where λ is some parameter.

L1 Shape-preserving approximation

- L1 increasing concave approximation

$$
\begin{array}{ll}
\min _{c_{j}} & \sum_{i=1}^{m}\left|\sum_{j=1}^{n} c_{j} \phi_{j}\left(x_{i}\right)-v_{i}\right| \\
\text { s.t. } & \sum_{j=1}^{n} c_{j} \phi_{j}^{\prime}\left(z_{k}\right) \geq 0, \quad k=1, \ldots, K \\
& \sum_{j=1}^{n} c_{j} \phi_{j}^{\prime \prime}\left(z_{k}\right) \leq 0, \quad k=1, \ldots, K
\end{array}
$$

- NOTE: We impose shape on a set of points, z_{k}, possibly different, and generally larger, from the approximation points, x_{i}.
- This looks like a nondifferentiable problem, but it is not when we rewrite it as

$$
\begin{aligned}
& \min _{c_{j}, \lambda_{i}} \\
& \text { s.t. } \quad \sum_{i=1}^{m} \lambda_{i} \\
& \sum_{j=1}^{n} c_{j} \phi_{j}^{\prime}\left(z_{k}\right) \geq 0, \quad k=1, \ldots, K \\
& \sum_{j=1}^{n} c_{j} \phi_{j}^{\prime \prime}\left(z_{k}\right) \leq 0, \quad k=1, \ldots, K \\
&-\lambda_{i} \leq \sum_{j=1}^{n} c_{j} \phi_{j}\left(x_{i}\right)-v_{i} \leq \lambda_{i}, \quad i=1, \ldots, m \\
& 0 \leq \lambda_{i}, \quad i=1, \ldots, m
\end{aligned}
$$

- Use possibly different points for shape constraints; generally you want more shape checking points than data points.
- Mathematical justification: semi-infinite programming
- Many other procedures exist for one-dimensional problems, but few procedures exist for two-dimensional problems

Multidimensional approximation methods

- Lagrange Interpolation
- Data: $D \equiv\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{N} \subset R^{n+m}$, where $x_{i} \in R^{n}$ and $z_{i} \in R^{m}$
- Objective: find $f: R^{n} \rightarrow R^{m}$ such that $z_{i}=f\left(x_{i}\right)$.
- Need to choose nodes carefully.
- Task: Find combinations of interpolation nodes and spanning functions to produce a nonsingular (well-conditioned) interpolation matrix.

Tensor products

- General Approach:
- If A and B are sets of functions over $x \in R^{n}, y \in R^{m}$, their tensor product is

$$
A \otimes B=\{\varphi(x) \psi(y) \mid \varphi \in A, \psi \in B\} .
$$

- Given a basis for functions of $x_{i}, \Phi^{i}=\left\{\varphi_{k}^{i}\left(x_{i}\right)\right\}_{k=0}^{\infty}$, the n-fold tensor product basis for functions of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is

$$
\Phi=\left\{\prod_{i=1}^{n} \varphi_{k_{i}}^{i}\left(x_{i}\right) \mid k_{i}=0,1, \cdots, i=1, \ldots, n\right\}
$$

- Orthogonal polynomials and Least-square approximation
- Suppose Φ^{i} are orthogonal with respect to $w_{i}\left(x_{i}\right)$ over $\left[a_{i}, b_{i}\right]$
- Least squares approximation of $f\left(x_{1}, \cdots, x_{n}\right)$ in Φ is

$$
\sum_{\varphi \in \Phi} \frac{\langle\varphi, f\rangle}{\langle\varphi, \varphi\rangle} \varphi
$$

where the product weighting function

$$
W\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\prod_{i=1}^{n} w_{i}\left(x_{i}\right)
$$

defines $\langle\cdot, \cdot\rangle$ over $D=\prod_{i}\left[a_{i}, b_{i}\right]$ in

$$
\langle f(x), g(x)\rangle=\int_{D} f(x) g(x) W(x) d x
$$

Algorithm 6.4: Chebyshev Approximation Algorithm in \mathbb{R}^{2}

- Objective: Given $f(x, y)$ defined on $[a, b] \times[c, d]$, find its Chebyshev polynomial approximation $p(x, y)$

$$
\begin{gathered}
z_{k}=-\cos \left(\frac{2 k-1}{2 m} \pi\right), k=1, \cdots, m . \\
x_{k}=\left(z_{k}+1\right)\left(\frac{b-a}{2}\right)+a, k=1, \ldots, m . \\
y_{k}=\left(z_{k}+1\right)\left(\frac{d-c}{2}\right)+c, k=1, \ldots, m . \\
w_{k, \ell}=f\left(x_{k}, y_{\ell}\right), k=1, \cdots, m ., \ell=1, \cdots, m . \\
p(x, y)=\sum_{i=0}^{n} \sum_{j=0}^{n} a_{i j} T_{i}\left(2 \frac{x-a}{b-a}-1\right) T_{j}\left(2 \frac{y-c}{d-c}-1\right)
\end{gathered}
$$

Polynomials

- Taylor's theorem for \mathbb{R}^{n} produces the approximation

$$
\begin{aligned}
f(x) \doteq & f\left(x^{0}\right)+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(x^{0}\right)\left(x_{i}-x_{i}^{0}\right) \\
& +\frac{1}{2} \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} \frac{\partial^{2} f}{\partial x_{i_{1}} \partial x_{i_{k}}}\left(x_{0}\right)\left(x_{i_{1}}-x_{i_{1}}^{0}\right)\left(x_{i_{k}}-x_{i_{k}}^{0}\right)+\ldots
\end{aligned}
$$

- For $k=1$, Taylor's theorem for n dimensions used the linear functions $\mathcal{P}_{1}^{n} \equiv\left\{1, x_{1}, x_{2}, \cdots, x_{n}\right\}$
- For $k=2$, Taylor's theorem uses

$$
\mathcal{P}_{2}^{n} \equiv \mathcal{P}_{1}^{n} \cup\left\{x_{1}^{2}, \cdots, x_{n}^{2}, x_{1} x_{2}, x_{1} x_{3}, \cdots, x_{n-1} x_{n}\right\} .
$$

- In general, the k th degree expansion uses the complete set of polynomials of total degree k in n variables.

$$
\mathcal{P}_{k}^{n} \equiv\left\{x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \mid \sum_{\ell=1}^{n} i_{\ell} \leq k, 0 \leq i_{1}, \cdots, i_{n}\right\}
$$

- Complete orthogonal basis includes only terms with total degree k or less.
- Sizes of alternative bases

degree k	\mathcal{P}_{k}^{n}	Tensor Prod.
2	$1+n+n(n+1) / 2$	3^{n}
3	$1+n+\frac{n(n+1)}{2}+n^{2}+\frac{n(n-1)(n-2)}{6}$	4^{n}

- Complete polynomial bases contains fewer elements than tensor products.
- Asymptotically, complete polynomial bases are as good as tensor products.
- For smooth n-dimensional functions, complete polynomials are more efficient approximations
- Construction
- Compute tensor product approximation, as in Algorithm 6.4
- Drop terms not in complete polynomial basis (or, just compute coefficients for polynomials in complete basis).
- Complete polynomial version is faster to compute since it involves fewer terms
- Almost as accurate as tensor product; in general, degree $k+1$ complete is better then degree k tensor product but uses far fewer terms.

Shape Issues

- Much harder in higher dimensions
- No general method
- The L2 and L1 methods generalize to higher dimensions.
- The constraints will be restrictions on directional derivatives in many directions
- There will be many constraints
- But, these will be linear constraints
- L1 reduces to linear programming; we can now solve huge LP problems, so don't worry.

