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Abstract

Static and dynamic games are important tools for the analysis of strategic in-

teractions among economic agents and have found many applications in economics.

In many games equilibria can be described as solutions of polynomial equations.

In this paper we describe state-of-the-art techniques for finding all solutions of

polynomial systems of equations and illustrate these techniques by computing all

equilibria of both static and dynamic games with continuous strategies. We com-

pute the equilibrium manifold for a Bertrand pricing game in which the number of

equilibria changes with the market size. Moreover, we apply these techniques to

two stochastic dynamic games of industry competition and check for equilibrium

uniqueness.

Keywords: Polynomial equations, multiple equilibria, Bertrand game, dynamic

games, Markov-perfect equilibria.

JEL codes: C63, C73, L13.
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1 Introduction

Static and dynamic games are important tools for the analysis of strategic interactions

among economic agents and have found many applications in economics. Such models are

used both for policy experiments as well as for structural estimation studies. It is well-

known that equilibrium multiplicity poses a serious threat to the validity of such analyses.

This threat is particularly acute if not all equilibria of the examined model are known.

Often equilibria can be described as solutions of polynomial equations (which perhaps

also must satisfy some additional inequalities). In this paper we describe state-of-the-art

techniques developed in algebraic geometry for finding all solutions of polynomial systems

of equations and illustrate these techniques by computing all equilibria of both static and

dynamic games with continuous strategies. We compute the equilibrium manifold for a

Bertrand pricing game in which the number of pure-strategy equilibria changes with

the market size. Moreover, we apply these techniques to two stochastic dynamic games

of industry competition and check for equilibrium uniqueness. Our examples show that

the all-solution methods can be applied to a variety of applied static and dynamic models.

Multiplicity of equilibria is a prevalent problem in equilibrium models with strategic

interactions. This problem has long been acknowledged in the theoretical literature but

has in the past been largely ignored in applied work even though simple examples of

multiple equilibria have been known for decades, see, for example, the model of strate-

gic investment in Fudenberg and Tirole (1983a). Until recently this criticism was also

true for one of the most prolific literatures of applied game-theoretic models, namely

the literature based on the framework for the study of industry evolution introduced

by Ericson and Pakes (1995). This framework builds the foundation for very active re-

search areas in industrial organization, marketing, and other fields, see the survey by

Doraszelski and Pakes (2007). Some recent work in this literature is a great example of

the growing interest in equilibrium multiplicity in active areas of modern applied eco-

nomic analysis. Besanko, Doraszelski, Kryukov, and Satterthwaite (2010) state that to

their knowledge “all applications of Ericson and Pakes’ (1995) framework have found a

single equilibrium.” They then show that multiple Markov-perfect equilibria can easily

arise in a prototypical model in this framework. Borkovsky, Doraszelski, and Kryukov

(2008) and Doraszelski and Satterthwaite (2010) present similar examples with multiple

Markov-perfect equilibria. But findings of multiple equilibria are not confined to stochas-

tic dynamic models. Bajari, Hong, Krainer, and Nekipelov (2010) show that multiple

equilibria may arise in static games with incomplete information and discuss a possible

approach to estimating such games. Clearly the difficulty of equilibrium multiplicity is
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not restricted to the cited papers. In fact, in many other economic applications we may

often suspect that there could be multiple equilibria.

In many economic models equilibria can be described as solutions of polynomial equa-

tions (which perhaps also must satisfy some additional inequalities). Recent advances in

computational algebraic geometry have led to several powerful methods and their easy-

to-use computer implementations that find all solutions to polynomial systems. Two

different solution approaches stand out, all-solution homotopy methods and Gröbner

basis methods, both of which have their advantages and disadvantages. The methods

using Gröbner bases (Cox, Little, and O’Shea (2007), Sturmfels (2002)) can solve only

rather small systems of polynomial equations but can analyze parameterized systems.

For an application of these methods to economics, see the analysis of parameterized gen-

eral equilibrium models in Kubler and Schmedders (2010). The all-solution homotopy

methods (Sommese and Wampler (2005)) are purely numerical methods that cannot han-

dle parameters but can solve much larger systems of polynomial equations. It is these

homotopy methods that are the focus of the present paper.

All-solution homotopy methods for solving polynomial systems derived from economic

models have been discussed previously in both the economics and mathematics literature

on finite games. McKelvey and McLennan (1996) mentions the initial work on the de-

velopment of all-solution homotopy methods such as Drexler (1977), Drexler (1978), and

Garcia and Zangwill (1977). Herings and Peeters (2005) outlines how to use all-solution

homotopies for finding all Nash equilibria of generic finite n-person games in normal form

but neither implements an algorithm nor solves any examples. Sturmfels (2002) surveys

methods for solving polynomial systems of equations and applies them to finding Nash

equilibria of finite games. Datta (2010) shows how to find all Nash equilibria of finite

games by polyhedral homotopy continuation. Turocy (2008) describes progress on a new

implementation of a polyhedral continuation method via the software package PHCpack

(Verschelde (1999)) in the software package Gambit (McKelvey, McLennan, and Turocy

(2007)). The literature on computing one, some, or all Nash equilibria in finite games

remains very active, see the introduction to a recent symposium by von Stengel (2010)

and the many citations therein. For a recent application of all-solution homotopy ideas

to calculate asymptotic approximations of all equilibria for static discrete games of in-

complete information see Bajari, Hong, Krainer, and Nekipelov (2010). In the present

paper we do not consider finite games but instead analyze static and dynamic games

with continuous strategies. Such games have many important economic applications. To

our knowledge, the present paper is the first application of state-of-the-art all-solution

homotopy methods to such games. In addition, this paper presents the first application of

advanced techniques such as the parameter continuation method or the system splitting

4



approach to economic models.1

The application of homotopy methods has a long history in economics, see Eaves

and Schmedders (1999). Kalaba and Tesfatsion (1991) proposes an adaptive homotopy

method to allow the continuation parameters to take on complex values to deal with

singular points along the homotopy path. Berry and Pakes (2007) uses a homotopy

approach for the estimation of demand systems. The homotopy approach was first ap-

plied to stochastic dynamic games by Besanko, Doraszelski, Kryukov, and Satterthwaite

(2010), Borkovsky, Doraszelski, and Kryukov (2008) and Borkovsky, Doraszelski, and

Kryukov (2009). These three papers report results from the application of a classical ho-

motopy approach to the computation of Markov-perfect equilibria in stochastic dynamic

games. They show how homotopy paths can be used to find multiple equilibria. When

the homotopy parameter is itself a parameter of the economic model then all points

along the path represent economic equilibria (if the equilibrium equations are necessary

and sufficient). Whenever the path bends back on itself there exist multiple equilibria.

While this approach can detect equilibrium multiplicity it is not guaranteed to find all

equilibria. Only the all-solution homotopy techniques presented in this paper allow for

the computation of all equilibria. However, the classical homotopy approach has the ad-

vantage that it can find (at least) one equilibrium of much larger economic models with

thousands of equations that do not have to be polynomial. Currently available computer

power does not allow us to solve systems with more than a few dozen equations depend-

ing on the degree of the polynomials. As we explain below, however, the all-solution

1In this paper we neither prove any new theorems nor present the most recent examples of frontier

applications. Instead we follow the traditional approach in computational papers and describe a numer-

ical method and apply it to examples that are familiar to most readers. This paper, as many previous

computational papers have done, aims to educate the reader about the key ideas underlying a useful

numerical method and illustrates these techniques in the context of familiar models. It does so in a way

that makes it easy for readers to see how to apply these methods to their own particular problems, and

points them to the appropriate software. To clarify what we mean by “traditional method,” we give a

few examples. First, the paper by Kloek and van Dijk (1978) introduced Monte Carlo methods to basic

econometrics using examples from the existing empirical literature and also focused on the methods as

opposed to examining breakthrough applications. Second, Fair and Taylor (1983) showed how to use

Gauss-Jacobi methods to solve rational expectation models. Again, the paper neither presented new

theorems nor used frontier applications as examples. Instead it focused on very simple examples that

made clear the mathematical structure of the algorithm and related it to the standard structure of ratio-

nal expectations models. Third, Pakes and McGuire (2001) showed how to use stochastic approximation

to accelerate the Gauss-Jacobi algorithm that they had previously introduced in Pakes and McGuire

(1994) for the solution of stochastic dynamic games. Again, the paper did not analyze new applications

and proved only one (convergence) theorem. Instead the paper educates the reader about stochastic

ideas and illustrates their value in a well-known example. In this paper we follow the tradition of this

literature.
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homotopy methods are ideally suited for parallel computations. Our initial experience

with an implementation on a computer cluster is very encouraging.

The remainder of this paper is organized as follows. Section 2 depicts a motivating

economic example. We both provide some intuition and describe the theoretical foun-

dation for the all-solution homotopy methods in Section 3. Section 4 briefly comments

on an implementation of such methods. In Section 5 we provide more details on the

computations for the motivating example. Section 6 provides a description of the general

set-up of dynamic stochastic games. In Section 7 we present an application of the all-

solution methods to a stochastic dynamic learning-by-doing model. Similarly, Section 8

examines a stochastic dynamic model of cost-reducing investment with the all-solution

homotopy. Finally, Section 9 concludes the paper and provides an outlook on future

developments. The Appendix provides more mathematical details on four advanced fea-

tures of all-solution homotopy methods.

2 Motivating Example: Duopoly Game with Two

Equilibria

Before we describe details of all-solution homotopy methods, we motivate the application

of such methods in economics by reporting results from applying such a method to a static

duopoly game. Depending on the value of a parameter, this game may have no, one, or

two pure-strategy equilibria. This example illustrates the various steps that are needed

to find all pure-strategy Nash equilibria in a simple game with continuous strategies.

2.1 Bertrand price game

We consider a Bertrand price game between two firms. There are two products, x and

y, two firms with firm x (y) producing good x (y), and three types of customers. Let px

(py) be the price of good x (y). Dx1, Dx2, and Dx3 are the demands for product x by

customer type 1, 2, and 3, respectively. Demands Dy1, etc. are similarly defined. Type

1 customers only want good x, and have a linear demand curve,

Dx1 = A− px; Dy1 = 0.

Type 3 customers only want good y and have a linear demand curve,

Dx3 = 0; Dy3 = A− py.
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Type 2 customers want some of both. Let n be the number of type 2 customers. We

assume that the two goods are imperfect substitutes for type 2 customers with a constant

elasticity of substitution between the two goods and a constant elasticity of demand for

a composite good. These assumption imply the demand functions

Dx2 = np−σ
x

(
p1−σ
x + p1−σ

y

) γ−σ
−1+σ ; Dy2 = np−σ

y

(
p1−σ
x + p1−σ

y

) γ−σ
−1+σ .

where σ is the elasticity of substitution between x and y, and γ is the elasticity of

demand for the composite good
(
q

σ−1
σ

1 + q
σ−1
σ

2

) σ
(σ−1)

. Total demand for good x (y) is

given by Dx = Dx1 +Dx2 +Dx3 (Dy = Dy1 +Dy2 +Dy3). Let m be the unit cost of

production for each firm. Profit for good x is Rx = (px −m)Dx; Ry is similarly defined.

Let MRx be marginal profits for good x; similarly for MRy. Equilibrium prices satisfy

the necessary conditions MRx = MRy = 0.

Firm x (y) is a monopolist for type 1 (3) customers. The two firms only compete

in the large market for type 2 customers. And so we may envision two different pricing

strategies for the firms. The mass market strategy chooses a low price so that the firm

can sell a large quantity to the large number of type 2 customers that would like to

buy both goods but are price sensitive. Such a low price leads to small profits from the

customers dedicated to the firm’s product. The niche strategy is to just sell at a high

price to the few customers that want only its good. Such a high price leads to small

demand for its product among the price-sensitive type 2 customers.

We want to demonstrate how we can find all solutions even when there are multiple

equilibria. The idea of our example is to find values for the parameters where each firm

has two possible strategies. We examine a case where one firm goes for the high-price,

small-sales (niche) strategy and the other firm goes after type 2 customers with a mass

market strategy. Let

σ = 3, γ = 2, n = 2700, m = 1, A = 50.

The marginal profit functions are as follows.

MRx = 50− px + (px − 1)

(
−1 +

2700

p6x
(
p−2
x + p−2

y

)3/2 − 8100

p4x
√
p−2
x + p−2

y

)
+

2700

p3x
√

p−2
x + p−2

y

MRy = 50− py + (py − 1)

(
−1 +

2700

p6y
(
p−2
x + p−2

y

)3/2 − 8100

p4y
√
p−2
x + p−2

y

)
+

2700

p3y
√
p−2
x + p−2

y

2.2 Polynomial equilibrium equations

We first construct a polynomial system. The system we construct must contain all the

equilibria, but it may have extraneous solutions. The extraneous solutions present no

problem because we can easily identify and discard them.
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We need to eliminate the radical terms. Let Z be the square root term

Z =
√

p−2
x + p−2

y ,

which implies

0 = Z2−
(
p−2
x + p−2

y

)
.

This is not a polynomial. We gather all terms into one fraction and extract the numerator,

which is the polynomial we include in our polynomial system to represent the variable

Z,

0 = −p2x − p2y + Z2p2xp
2
y. (1)

We next use the Z definition to eliminate radicals in MRx and MRy. Again we gather

terms into one fraction and extract the numerator. The second and third equation of our

polynomial are as follows:

0 = −2700 + 2700px + 8100Z2p2x − 5400Z2p3x + 51Z3p6x − 2Z3p7x, (2)

0 = −2700 + 2700py + 8100Z2p2y − 5400Z2p3y + 51Z3p6y − 2Z3p7y. (3)

Any pure-strategy Nash equilibrium is a solution of the polynomial system (1,2,3).

2.3 Solution

Solving the above system of polynomial equations (see Section 5.1 for details) we find

18 real and 44 complex solutions. Nine of the 18 real solutions contain at least one

variable with a negative value and are thus economically meaningless. Table 1 shows

the remaining 9 solutions. We next check the second-order conditions of each firm. This

px 1.757 8.076 22.987 2.036 5.631 2.168 25.157 7.698 24.259

py 1.757 8.076 22.987 5.631 2.036 25.157 2.168 24.259 7.698

Table 1: Real, positive solutions of (1,2,3)

check eliminates five more real solutions and reduces the set of possible equilibria to four,

namely (
p1x, p

1
y

)
= (1.757, 1.757) ,

(
p2x, p

2
y

)
= (22.987, 22.987) ,(

p3x, p
3
y

)
= (2.168, 25.157) ,

(
p4x, p

4
y

)
= (25.157, 2.168) .

We next need to check global optimality for each player in each potential equilibrium.

The key fact is that the global max must satisfy the first-order conditions given the other

8



player’s strategy. So, all we need to do is to find all solutions to a firm’s first-order

condition at the candidate equilibrium, and then find which one produces the highest

profits. We keep the candidate equilibrium only if it is the global maximum.

First consider
(
p1x, p

1
y

)
. We first check to see if player x’s choice is globally optimal

given py. Since we take py as given, the equilibrium system reduces to the Z equation

and the first-order condition for player x, giving us the polynomial system

0 = 0.32410568484991703p2x + 1− Z2p2x

0 = −2700 + 2700px + 8100Z2p2x − 5400Z2p3x + 51Z3p6x − 2Z3p7x

This system has 14 finite solutions, 8 complex and 6 real solutions. One of the solutions

is px = 25.2234 where profits equal 607.315. Since this exceeds 504.625, firm x’s profits at(
p1x, p1y

)
, we conclude that

(
p1x, p1y

)
is not an equilibrium. A similar approach shows that(

p2x, p
2
y

)
is not an equilibrium. Given p2y = 22.987, firm x would receive a higher profit

from a low price than from p2x. When we examine the remaining two candidate equilibria,

we find that these are two asymmetric equilibria,
(
p3x, p3y

)
and

(
p4x, p4y

)
. This may not

appear to be an important multiplicity since the two equilibria are mirror images of each

other. However, it is clear that if we slightly perturb the demand functions to eliminate

the symmetries that there will still be two equilibria that are not mirror images.

In the equilibrium
(
p3x, p3y

)
= (2.168, 25.157), firm x chooses a mass-market strategy

and firm y a niche strategy. The low price allows firm x to capture most of the market of

price-sensitive type 2 customers while it forgoes most of the possible (monopoly) profits

in its niche market of type 1 customers. Firm y instead charges a high price (just below

the monopoly price for the market of type 3 customers) to capture most of its niche

market. In the equilibrium
(
p4x, p

4
y

)
= (25.157, 2.168) the strategies of the two firms are

reversed.

This example demonstrates that the problem of finding all Nash equilibrium reduces

to solving a series of polynomial systems. The first system identifies a set of solutions for

the firms’ first-order conditions, which are only necessary but not sufficient. The second

step is to eliminate all candidate equilibria where some firm does not satisfy the local

second-order condition for optimization. The third step is to check the global optimality

of each firm’s reactions in each of the remaining candidate equilibria. This step reduces

to finding all solutions of a set of smaller polynomial systems.

Figure 1 displays the manifold of a firm’s equilibrium prices for values of the market

size parameter n between 500 and 3400. For 500 ≤ n ≤ 2470 there is a unique equilibrium.

The competitive market of type 2 customers is so small that each firm chooses a niche

strategy and charges a high price to focus on the few customers that only want its good.

For 3318 ≤ n ≤ 3400 there is again a unique equilibrium. The competitive market of type
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Figure 1: Equilibrium prices as a function of n

2 customers is now sufficiently large so that each firm chooses a mass market strategy

and charges a low price to sell a high quantity into the mass market of type 2 customers.

For 2481 ≤ n ≤ 3020 there are two equilibria. At these intermediate values of n, the two

firms prefer complementary strategies, one firm chooses a (high-price) niche strategy and

the other firm a (low-price) mass market strategy. And finally there are two regions with

no pure-strategy equilibria, namely for 2471 ≤ n ≤ 2480 and also for 3021 ≤ n ≤ 3317.

3 All-Solution Homotopy Methods

In this section we introduce the mathematical background of all-solution homotopy meth-

ods for polynomial systems of equations. Polynomial solution methods rely on results

from complex analysis and algebraic geometry. For this purpose we first review some

basic definitions.
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3.1 Mathematical background

We define a polynomial in complex variables.

Definition 1. A polynomial f over the variables z1, . . . , zn is defined as

f(z1, . . . , zn) =
d∑

j=0

( ∑
d1+...+dn=j

a(d1,...,dn)

n∏
k=1

zdkk

)
with a(d1,...,dn) ∈ C, d ∈ N.

For convenience we denote z = (z1, . . . , zn). The expression a(d1,...,dn)
∏n

k=1 z
dk
k for a(d1,...,dn) ̸=

0 is called a term of f . The degree of f is defined as deg f = maxa(d1,...,dn) ̸=0

∑n
k=1 dk.

The term
∑

d1+...+dn=j a(d1,...,dn)
∏n

k=1 z
dk
k is called the homogeneous part of degree j of f

and is denoted by f (j).

Note that f (j) being homogeneous of degree j means f (j)(cz) = cjf (j)(z) for any

complex scalar c ∈ C. We now regard a polynomial f in the variables z1, . . . , zn as a

function f : Cn → C. Then f belongs to the following class of functions.

Definition 2. Let U ⊂ Cn be an open subset and f : U → C a function. Then we call

f analytic at the point b = (b1, . . . , bn) ∈ U if and only if there exists a neighborhood V

of b such that

f(z) =
∞∑
j=0

( ∑
d1+...+dn=j

a(d1,...,dn)

n∏
k=1

(zk − bk)
dk

)
, ∀z ∈ V,

where a(d1,...,dn) ∈ C, i.e. the above power series converges to the function f on V . It is

called the Taylor series of f at b.

Obviously every function given by polynomials is analytic with one Taylor expansion

on all of Cn. However note that in general V $ U and that the power series is divergent

outside of V . For functions in complex space we can state the Implicit Function Theorem

analogously to the case of functions in real space.

Theorem 1 (Implicit Function Theorem). Let

H : C× Cn −→ Cn with (t, z1, . . . zn) 7−→ H(t, z1, . . . zn)

be an analytic function. Denote by DzH =
(

∂Hj

∂zi

)
i,j=1,...n

the submatrix of the Jacobian

of H containing the partial derivatives with respect to zi, i = 1, . . . , n. Furthermore

let (t0, x0) ∈ C × Cn such that H(t0, x0) = 0 and detDzH(t0, x0) ̸= 0. Then there

exist neighborhoods T of t0 and A of x0 and an analytic function x : T → A such that

H(t, x(t)) = 0 for all t ∈ T . Furthermore the chain rule implies that

∂x

∂t
(t0) = −DzH(t0, x0)

−1 · ∂H

∂t
(t0, x0).
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Next we define the notion of a path.

Definition 3. Let A ⊂ Cn be an open or closed subset. An analytic2 function x : [0, 1] →
A or x : [0, 1) → A is called a path in A.

Definition 4. Let H(t, z) : Cn+1 → Cn and x : [0, 1] → Cn an analytic function such

that H(t, x(t)) = 0 for all t. Then x defines a path in {(t, x) ∈ Cn+1 | H(t, x) = 0}. We

call the path regular, iff {t ∈ [0, 1) | H(t, x(t)) = 0, detDzH(t, x(t)) = 0} = ∅.3

Note that for general homotopy methods the regularity definition is less strict. One

usually only wants the Jacobian to have full rank. Here we also impose which part of it

has full rank. Such a definition is reasonable for polynomial homotopy methods since, as

we see later, we can ensure this property for our paths.

Definition 5. Let A ⊂ Cn. We call A pathwise connected, iff for all points a1, a2 ∈ A

there exists a continuous function x : [0, 1] → A such that x(0) = a1 and x(1) = a2.

Lastly we need the following notion from topology.

Definition 6. Let U, V ⊂ Cn be open subsets and h0 : U → V , h1 : U → V be continuous

functions. Let
H : [0, 1]× U −→ V

(t, z) 7−→ H(t, z)

be a continuous function such that H(0, z) = h0(z) and H(1, z) = h1(z). Then we call

H a homotopy from h0 to h1.

3.2 Building intuition from the univariate case

Homotopy methods have a long history in economics, see Eaves and Schmedders (1999),

for finding one solution to a system of nonlinear equations. Recent applications of such

homotopy methods in game-theoretic models include Besanko, Doraszelski, Kryukov,

and Satterthwaite (2010) and Borkovsky, Doraszelski, and Kryukov (2008). Homotopy

methods for finding all solutions of polynomial systems were first introduced by Garcia

and Zangwill (1977) and Drexler (1977). These papers initiated an active field of research

that is still advancing today, see Sommese and Wampler (2005) for an overview. In this

subsection, following Sommese and Wampler (2005) and the many cited works therein,

we provide some intuition for the theoretical foundation underlying all-solution homotopy

continuation methods.

2The usual definition of a path only requires continuity, but all paths we regard are automatically

given by analytic functions.
3We see below why we can exclude t = 1 from our regularity assumption.
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The basic idea of the homotopy approach is to find an easier system of equations and

continuously transform it into our target system. We first illustrate this for univariate

polynomials. Consider the univariate polynomial f(z) =
∑

i≤d aiz
i with ad ̸= 0 and

deg f = d. The Fundamental Theorem of Algebra states that f has precisely d com-

plex roots, counting multiplicities.4 A simple polynomial of degree d with d distinctive

complex roots is g(z) = zd − 1, whose roots are rk = e
2πik
d for k = 0, . . . , d − 1. (These

roots are called the d-th roots of unity.) Now we can define a homotopy H from g to f

by setting H = (1 − t)g + tf . Thus H is a polynomial in t, z and therefore an analytic

function. Under the assumption that ∂H
∂z

(t, z) ̸= 0 for all (t, z) satisfying H(t, z) = 0 and

t ∈ [0, 1] the Implicit Function Theorem (Theorem 1) states that each root rk of g gives

rise to a path that is described by an analytical function. The idea is now to start at

each solution z = rk of H(0, z) = 0 and to follow the resulting path until a solution z

of H(1, z) = 0 has been reached. The path-following can be done numerically using a

predictor-corrector method (see, for example, Allgower and Georg (2003)). For example,

Euler’s method is a so-called first-order predictor and obtains a first step along the path

by choosing an ε > 0 and calculating

x̃k(0 + ε) = xk(0) + ε
∂xk

∂t
(0),

where the ∂xk

∂t
(0) are implicitly given by Theorem 1. Then this first estimate is corrected

using Newton’s method with starting point x̃k(0+ ε). So the method solves the equation

H(ε, z) = 0 for z and sets xk(ε) = z.

Example 1. As a first example we look at the polynomial f(z) = z3 + z2 + z + 1.

The zeros are {−1,−i, i}. As a start polynomial we choose g(z) = z3 − 1. We define a

homotopy from g to f as follows,

H(t, z) = (1− t)(z3 − 1) + t(z3 + z2 + z + 1).

This homotopy generates the three solution paths shown in Figure 2. The starting points

of the three paths, −1
2
−

√
3
2
i, −1

2
+

√
3
2
i, 1, respectively, and are indicated by circles. The

respective end points, −i, i, and −1 are indicated by squares.

This admittedly rough outline captures the fundamental idea of the all-solution ho-

motopy methods. This method can potentially run into difficulties. First, the paths

might cross and, secondly, the paths might bend sideways and diverge. We illustrate

these problems with an example and also show how to circumvent them.

4Any univariate polynomial of degree d over the complex numbers can be written as f(z) = c(z −
b1)

r1(z − b2)
r2 · · · (z − bl)

rl with c ∈ C \ {0}, b1, b2, . . . , bl ∈ C, and r1, r2, . . . , rl ∈ N. The exponent rj

denotes the multiplicity of the root bj . For example, the polynomial z3 has the single root z = 0 with

multiplicity 3.
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Figure 2: Homotopy paths in Example 1 and the projection to C.

Example 2. Let f(z) = 5− z2 and g(z) = z2 − 1. Then a homotopy from g to f can be

defined as

H(t, z) = t(5− z2) + (1− t)(z2 − 1) = (1− 2t)z2 + 6t− 1. (4)

Now H(1
6
, z) = 2

3
z2 has the double root z = 0, so detDzH(1

6
, 0) = 0. Such points

are called non-regular and the assumption of the Implicit Function Theorem is not satis-

fied. Non-regular points are also problematic for the Newton corrector step in the path-

following algorithm. But matters are even worse for this homotopy since H(1
2
, z) = 2,

which has no zero at all, i.e. there can be no solution path from t = 0 to t = 1. The

coefficient of the leading term (1−2t)z2 has become 0 and so the degree of the polynomial

H drops at t = 1
2
. Figure 3 displays the set of zeros of the homotopy. The two paths

starting at
√
5 and −

√
5 diverge as t → 1

2
.

The general idea to resolve the technical problems illustrated in Example 2 is to

“walk around” the points that cause us trouble. For a description of this idea we need

the following theorem which describes one of the differences between complex and real

spaces.

Theorem 2. Let F = (f1, . . . , fk) = 0 be a system of polynomial equations in n variables,

with fi ̸= 0 for some i. Then Cn \ {F = 0} is a pathwise connected and dense subset of

Cn.5

5This is a simpler version of the theorem that is actually needed. But for simplicity we avoid the

general case.
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This statement does not hold true over the reals. Take for instance n = 2, k = 1 and

set f1(x1, x2) = x1. (Note that f1 is not identically zero.) Now we restrict ourselves to the

real numbers, (x1, x2) ∈ R2. If we remove the zero set {(x1, x2) ∈ R2 : f1(x1, x2) = 0},
which is the vertical axis, then the resulting set R2 \ {(x1, x2) ∈ R2 | x1 = 0} consists of

two disjoint components. Thus it is not pathwise connected.

Example 3. Returning to Example 2 we temporarily regard t also as a complex variable

and thus {(t, z)|H(t, z) = 0} ⊂ C2. Due to Theorem 1 we only have a path if locally

the determinant is nonzero. The points that are not regular are characterized by the

equations

(1− 2t)z2 + 6t− 1 = 0

detDzH = 2z(1− 2t) = 0.
(5)

Points at which our path is interrupted are given by

1− 2t = 0. (6)

In this case we can easily determine that the only solution to (5) is (1
6
, 0) and the solution

to (6) is {t = 1
2
}. The union of the solution sets to the two equations is exactly the

solution set of the following system of equations

((1− 2t)z2 + 6t− 1)(1− 2t) = 0

(2z(1− 2t))(1− 2t) = 0.
(7)

Theorem 2 now implies that the complement of the solution set to system (7) is pathwise

connected. In other words, we can find a path between any two points without running
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Figure 4: Homotopy paths in Example 3 after application of the gamma trick.

into problematic points. To walk around those problematic points we define a new

homotopy by multiplying the start polynomial z2 − 1 by eiγ for a random γ ∈ [0, 2π):

H(t, z) = t(5− z2) + eiγ(1− t)(z2 − 1) = (eiγ − t− teiγ)z2 + teiγ − eiγ + 5t. (8)

Now we obtain DzH = 2(eiγ− t− teiγ)z which has z = 0 as its only solution if eiγ /∈ R
and t ∈ [0, 1]. Furthermore if eiγ /∈ R then H(t, 0) = teiγ − eiγ + 5t ̸= 0 for all t ∈ [0, 1].

Additionally the coefficient of z2 in (8) does not vanish for t ∈ R and thus H(t, x) = 0 has

always two solutions for t ∈ [0, 1] due to the Fundamental Theorem of Algebra. Therefore

this so-called gamma trick yields only paths that are not interrupted and are regular.

Figure 4 displays the two paths; the left graph shows the paths in three dimensions, the

right graph shows a projection of the paths on C. It remains to check how strict the

condition eiγ /∈ R is. We know eiγ ∈ R ⇔ γ = kπ for k ∈ N. Since γ ∈ [0, 2π) these are

only two points. Thus for a random γ the paths exist and are regular with probability

one.

This example concludes our introductory discussion of the all-solution homotopy ap-

proach. In the next subsection we describe technical details of the general multivariate

homotopy approach. A reader who is mainly interested in the quick implementation of

homotopies as well as economic applications may want to skip this part and continue

with Section 4.
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3.3 The multivariate case

When we attempt to generalize the outlined approach from the univariate to the multi-

variate case we encounter a significant difficulty. The Fundamental Theorem of Algebra

does not generalize to multiple equations and so we do not know a priori the number

of complex solutions. However, we can determine upper bounds on the number of solu-

tions. For the sake of our discussion in this paper it suffices to introduce the simplest

such bound.

Definition 7. Let F = (f1, . . . fn) : Cn → Cn be a polynomial function. Then the

number

d =
∏
i

deg fi

is called the total degree or Bezout number of F .

Theorem 3 (Bezout’s Theorem). Let d be the Bezout number of F . Then the polynomial

system F = 0 has at most d isolated solutions counting multiplicities.

This bound is tight, in fact, Garćıa and Li (1980) show that generic polynomial

systems have exactly d distinct isolated solutions. But this result does not provide any

guidance for specific systems, since systems arising in economics and other applications

will typically be so special that the number of solutions is much smaller.

Next we address the difficulties we observed in Example 2 for the multivariate case.

Consider a square polynomial system F = (f1, . . . , fn) = 0 with di = deg fi. Construct a

start system G = (g1, . . . , gn) = 0 such that

gi(z) = zdii − 1. (9)

Note that the polynomial gi(z) only depends on the variable zi and has the same degree as

fi(z). The polynomial functions F and G have the same Bezout number. Now construct a

homotopy H = (h1, . . . , hn) : C×Cn → Cn from the square polynomial system F (z) = 0

and the start system G(z) = 0 that is linear in the homotopy parameter t. As a result

hi(z) is a polynomial of degree di in the variables z1, . . . , zn and coefficients that are linear

functions in t,

hi(z) =

di∑
j=0

( ∑
c1+...+cn=j

a(i,c1,...,cn)(t)
n∏

k=1

zckk

)
In a slight abuse of notation we denote by ai(t) the product of the coefficients of the

highest-degree monomials of hi(z). As before we need to rule out non-regular points

and values of the homotopy parameter for which the system H(t, z) = 0 may have no
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solution. Non-regular points are solutions to the following system of equations.

hi = 0 ∀i

detDzH = 0.
(10)

Additionally, values of the homotopy parameter for which one or more of our paths might

get interrupted are all t that satisfy the following equation,∏
i

ai(t) = 0. (11)

For a t′ satisfying the above equation it follows that the polynomial H(t′, z) has a lower

Bezout number than F (z).6 Analogously to example 3 we can cast (10) and (11) in one

system of equations,

hi

∏
j

aj(t) = 0 ∀i

det (DzH)
∏
i

ai(t) = 0.
(12)

Theorem 2 states that the complement of the solution set to this system of equations is

a pathwise connected set. So as before we can “walk around” those points that cause

difficulties for the path-following algorithm. In fact, if we choose our paths randomly

just as in Example 3 then we do not encounter those problematic points with probability

one.

Theorem 4 (Gamma trick). Let G(z) : Cn → Cn be our start system and F (z) :

Cn → Cn our target system. Then for almost all7 choices of the constant γ ∈ [0, 2π) the

homotopy

H(t, z) = eγi(1− t)G(z) + tF (z) (13)

has regular solution paths and |{z | H(t1, z) = 0}| = |{z | H(t2, z) = 0}| for all t1, t2 ∈
[0, 1).

We say that a path diverges to infinity at t = 1 if ∥z(t)∥ → ∞ for z(t) satisfying

H(t, z(t)) = 0 as t → 1 where ∥ · ∥ denotes the Euclidean norm. The Gamma trick leads

to the following theorem.

Theorem 5. Consider the homotopy H as in (13) with a start system as in (9). For

almost all parameters γ ∈ [0, 2π), the following properties hold.

6Note that after homogenization, which we introduce in Section A, this no longer poses any problem.
7Throughout this paper the terminology “almost all” means an open set of measure one. All stated

results in fact hold on so-called Zariski-open sets, but for simplicity we omit a proper definition of this

term.
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1. The preimage H−1(0) consists of d regular paths, i.e. no paths cross or bend back-

wards.

2. Each path either diverges to infinity or converges to a solution of F (z) = 0 as

t → 1.

3. If z̄ is an isolated solution with multiplicity8 m, then there are m paths converging

to it.

By construction the easy system G(z) = 0 has exactly d isolated solutions. Each

of these solutions is the starting point of a smooth path along which the parameter t

increases monotonically, that is, the Jacobian has full rank and the path does not bend

backwards. To find all solutions of F (z) = 0 we need to follow all d paths and check

whether they diverge or run into a solution of our system. In light of the aforementioned

result by Garćıa and Li (1980) that generic polynomial systems F (z) = 0 have d isolated

solutions, Theorem 5 implies that the homotopy H gives rise to d distinct paths that

terminate at the d isolated roots of F . So, generically the intuition of the univariate case

carries over to the multivariate case.

3.4 Advanced features

The described method is intuitive but has two major drawbacks that make it impractical.

First, the paths diverging to infinity are of no interest in economic applications. Second,

the number of paths grows exponentially in the number of nonlinear equations. A prac-

tical homotopy method needs to spend as little time as possible on diverging paths. In

addition, it will always be advantageous to keep the number of paths as small as possible.

Advanced all-solution homotopy methods address both these problems. In the appendix

we describe the underlying mathematical approaches.

The diverging paths are of no interest for finding economically meaningful solutions

to systems of equations derived from an economic model. The diverging paths typically

require much more computational effort than converging paths. And their potential

presence requires a computer program following the paths to decide whether a path

is diverging or only very long but converging. The decision when to declare that a

path is diverging cannot be made without the risk of actually truncating a very long

converging path. A reliable and robust computational method thus needs some feature

to handle diverging paths. It is possible to “compactify” the diverging path through a

homogenization of the polynomials. Appendix A describes this approach.

8Multiplicity of a root for a system of polynomial equations is similar to multiplicity in the univariate

case. We forgo any proper definition for the sake of simplicity.
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The number of paths d grows rapidly with the degree of individual equations. It

also grows exponentially in the number of equations (if the equations are not linear). For

many economic models we believe that there are only a few (if not unique) equilibria, that

is, our systems have few real solutions and usually even fewer economically meaningful

solutions. As a result we may have to follow a large number of paths that do not yield

useful solutions. Also, if there are only a few real and complex solutions then many paths

must converge to solutions at infinity. There may even be continua of solutions at infinity

which can cause numerical difficulties, see Example 4 in Appendix A below. Therefore

it would be very helpful to reduce the number of paths that must be followed as much

as possible. Appendices B and C describe two methods for a reduction of the number of

paths.

4 Implementation

We briefly describe the software package Bertini and the potential computational gains

from a parallel version of the software code.

4.1 Bertini

The software package Bertini, written in the programming language C, offers solvers for

a few different types of problems in numerical algebraic geometry, see Bates, Hauenstein,

Sommese, and Wampler (2005). The most important feature for our purpose is Bertini’s

homotopy continuation routine for finding all isolated solutions of a square system of

polynomial equations. In addition to an implementation of the advanced homotopy of

Theorem 7 (see Appendix A) it also allows for m-homogeneous start systems as well as

parameter-continuation homotopies as in Theorem 8, see Appendices B and C. Bertini

has an intuitive interface which allows the user to quickly implement systems of polyno-

mial equations, see Sections 5.1 and 5.2 for examples of code that a user must supply.

Bertini can be downloaded free of charge under http://www.nd.edu/~sommese/bertini/

.

All results in this paper were computed with Bertini on a laptop, namely an Intel

Core 2 Duo T9550 with 2.66 GHz and 4GB RAM.

4.2 Alternatives

Two other all-solution homotopy software packages are PHCpack (Verschelde (1999))

written in ADA and POLSYS PLP (Wise, Sommese, and Watson (2000)) written in
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FORTRAN90 and which is intended to be used in conjunction with HOMPACK90 (Wat-

son, Sosonkina, Melville, Morgan, and Walker (1997)), a popular homotopy path solver.

Because of its versatility, stable implementation, great potential for parallelization on

large computer clusters and its friendly user interface we use Bertini for all our calcula-

tions.

4.3 Parallelization

The overall complexity of the all-solution homotopy method is the same as for other

methods used for polynomial system solving. The major advantage of this method,

however, is that it is naturally parallelizable. Following each path is a distinct task,

i.e. the paths can be tracked independently from each other. Moreover, the information

gathered during the tracking process of a path cannot be used to help track other paths.

This advantage coincides with the recent developments in processing technology. The

performance of a single processor will no longer grow as in the years before, since power

consumption and the core temperature have become big issues in the production of

computer chips. The new strategy of computer manufactures is to use multiple cores

within a single machine to spread out the workload.

The software package Bertini is available in a parallel version. As of this writing,

we have already successfully computed examples via parallelization on 200 processors

at the CSCS cluster (Swiss Scientific Computing Center). In order to spread the work

across many more processors a modest revision of the Bertini code is necessary. We are

optimistic that we will soon be able to solve problems on clusters with thousands of

processors. Such a set-up will allow us to solve problems that are orders of magnitude

larger than those described below.

5 Bertrand Price Game Continued

We return to the duopoly price game from Section 2. We now show how to solve the

problem with Bertini. We also show how to use some of the advanced features from

Appendices A–C.

5.1 Solving the Bertrand price game with Bertini

To solve the system (1,2,3) in Bertini we write the following input file:

CONFIG

MPTYPE: 0;
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END;

INPUT

variable_group px,py,z;

function f1, f2, f3;

f1 = -(px^2)-py^2+z^2*px^2*py^2;

f2 = -(2700)+2700*px+8100*z^2*px^2-5400*z^2*px^3+51*z^3*px^6-2*z^3*px^7;

f3 = -(2700)+2700*py+8100*z^2*py^2-5400*z^2*py^3+51*z^3*py^6-2*z^3*py^7;

END;

The option MPTYPE:0 indicates that we are using standard path-tracking. The polyno-

mials f1,f2,f3 define the system of equations. The Bezout number is 6×10×10 = 600.

Thus, Bertini must track 600 paths. With the above code, we obtained 18 real solutions,

44 complex solutions, 270 truncated infinite paths and 268 failures.9 In Appendix A we

show that, if we homogenize the above equations, then we have continua of solutions at

infinity as illustrated in Example 4. Such solutions are responsible for the large num-

ber of failures since at these solutions the rank of the Jacobian drops. Of course, such

paths with convergence failures represent a serious concern. Fortunately, Bertini offers

the option MPTYPE: 2 for improved convergence. This command instructs Bertini to use

adaptive precision which handles singular solutions much better but needs more compu-

tation time. We then find the same 18 real and 44 complex solutions as before. But in

contrast to the previous run, we now have 538 truncated infinite paths and no failures.

Bertini lists the real solution in the file real_finite_solutions and all finite ones in

finite_solutions.

Next we show how to reduce the number of paths with m-homogenization (see Ap-

pendix B). Replace variable_group px,py,z; by

variable_group px;

variable_group py;

variable_group z;

By separating the variables in the different groups, we indicate how to group them for

the m-homogenization. As a result we have only 182 paths to track. However each

new variable group adds another variable to the computations10 and decreases numerical

9In those cases the path tracker failed to converge on a solution at infinity. Note that Bertini uses

random numbers to define the homotopy, so the number of failed paths varies.
10We repeatedly solve square systems of linear equations. Bertini performs this task with conventional

methods with a complexity of roughly 1
3n

3, where n is the number of variables. Thus increasing the

number of variables by m adds 1
3 (m

3 + 3m2n+ 3n2m) to the complexity for each iteration of Newton’s

method.
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stability. Therefore we always have to consider the problem of reducing the number of

paths versus increasing the number of variables.

A key point to note is that the number of solutions is much smaller than the Bezout

number. The Bezout number of the system (1,2,3) is 600 but there are only 62 finite

solutions. This fact may be surprising in the light of the theorem that says that systems

such as (1,2,3) would generically have 600 finite complex solutions, see Garcia and Li

(1980). However, (1,2,3) is not similar to the generic system since most monomials of

degree 6 are missing from (1), and most monomials of degree 10 are missing from (2,3).

The absence of so many monomials often implies a far smaller number of finite complex

solutions. For many games this fact makes our strategy much more practical than we

would initially think.

Another key point to note is that the all-solution methods can only be applied to

polynomial systems, that is, when all variables have exponents with non-negative integer

values. We cannot apply such a method to equations with irrational exponents. Such

systems would occur in the Bertrand game, for example, if an elasticity were an irrational

number such as π. In addition, an important prerequisite for Bertini to be able to

trace all paths is that the Bezout number remains relatively small. The conversion of

systems with rational exponents with large denominators to proper polynomial systems,

however, leads to polynomial systems with large exponents. For example, the conversion

of equations with exponents such as 54321/10000 will lead to very difficult systems that

require tracing a huge number of paths. In addition, such polynomial terms with very

large exponents will likely generate serious and perhaps fatal numerical difficulties for

the path tracker. Therefore, we face some practical constraints on the size of the rational

exponents appearing in our economic models.

5.2 Application of parameter continuation

To demonstrate parameter continuation, which we describe in Appendix C, we choose

n as the parameter and vary it from 2700 to 1000. Note that in Bertini the homotopy

parameter goes from 1 to 0. So to do this we define a homotopy just between those two

values

n = 2700t+ (0.22334546453233 + 0.974739352i)t(1− t) + 1000(1− t).

Thus for t = 1 we have n = 2700 and if t = 0 then n = 1000. The complex number in

the equation is the application of the gamma trick. We also have to provide the solutions

for our start system. We already solved this system. We just rename Bertini’s output

file finite_solutions to start which now provides Bertini with the starting points for

the homotopy paths. In addition, we must alter the input file as follows.
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CONFIG

USERHOMOTOPY: 1;

MPTYPE: 0;

END;

INPUT

variable px,py,z;

function f1, f2, f3;

pathvariable t;

parameter n;

n = t*2700 + (0.22334546453233 + 0.974739352*I)*t*(1-t)+(1-t)*1000;

f1 = -(px^2)-py^2+z^2*px^2*py^2;

f2 = -(n)+n*px+3*n*z^2*px^2-2*n*z^2*px^3+51*z^3*px^6-2*z^3*px^7;

f3 = -(n)+n*py+3*n*z^2*py^2-2*n*z^2*py^3+51*z^3*py^6-2*z^3*py^7;

END;

If we run Bertini we obtain 14 real and 48 complex solutions. Note that the number of real

solutions has dropped by 4. Thus if we had not used the gamma trick some of our paths

would have failed. There are only five positive real solutions. The first three solutions in

px 3.333 2.247 3.613 2.045 24.689

py 2.247 3.333 3.613 2.045 24.689

Table 2: Real, positive solutions for n = 1000

Table 2 fail the second-order conditions for at least one firm. The fourth solution fails

the global-optimality test. Only the last solution in Table 2 is an equilibrium for the

Bertrand game for n = 1000.

5.3 The manifold of real positive solutions

The parameter continuation approach allows us to compare solutions and thus equilibria

for two different (vectors of) parameter values q0 and q1 of our economic model. Ideally

we would like to push our analysis even further and, in fact, compute the equilibrium

manifold for all convex combinations sq1 + (1− s)q0 with s ∈ [0, 1].

Observe that Theorem 8 in Appendix C requires a path between q0 and q1 of the form

φ(s) = eiγs(s− 1) + sq1 + (1− s)q0

with a random γ ∈ [0, 2π). Note that for real values q0 and q1 the path φ(s) is not real

and so all solutions to F (z, φ(s)) = 0 are economically meaningless for s ∈ (0, 1). This
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problem would not occur if we could drop the first term of φ(s) and instead use the

convex combination

φ̃(s) = sq1 + (1− s)q0

in the definition of the parameter continuation homotopy. Now an examination of the

real solutions to F (z, φ̃(s)) = 0 would provide us with the equilibrium manifold for all

φ̃(s) with s ∈ [0, 1]. Unfortunately, such an approach does not always work. As we

have seen in the previous section, while the number of isolated finite solutions remains

constant with probability one, the number of real solutions may change. A parameter

continuation homotopy with φ̃(s) does not allow for this change.

To illustrate the described difficulty, we examine two parameter continuation homo-

topies in Bertini. We vary the parameter n first from 2700 to 3400 and then from 2700 to

500. Figure 5 displays the positive real solutions as a function of n over the entire range

from 500 to 3400. For a clear view of the different portions of the manifold we separate

it into two graphs.

For the first homotopy the number of positive real, other real, and complex (within

nonzero imaginary part) solutions does not change as n is increased from 2700 to 3400.

Therefore, in this case, the described approach to obtain the manifold of (positive) real

solutions encounters no difficulties. Things are quite different for the second homotopy

when n is decreased from 2700 to 500. As n approaches 1188.6 the paths for the two

largest production quantities converge and then, when n is decreased further, move into

complex space. The same is true for two paths in the lower graph of Figure 5. Bertini

reports an error message for all four paths and stops tracking them. At n = 1188.6 the

number of real solutions changes from 18 to 14, while the number of (truly) complex

solutions with nonzero imaginary part increases from 44 to 48. A similar change in the

number of real and complex solutions occurs for n = 813.8.

To determine the equilibrium manifold, we need to check the second-order and global

optimality conditions for all positive real solutions. Doing so yields the equilibrium

manifold in Figure 1 in Section 2.

In sum, we observe that a complete characterization of the equilibrium manifold is not

a simple exercise. When we employ the parameter continuation approach with a path of

parameters in real space then we have to allow for the possibility of path-tracking failures

whenever the number of real and complex solution changes. The determination of the

entire manifold of positive real solutions may, therefore, require numerous homotopy

runs. Despite these difficulties we believe that the parameter continuation approach is a

very helpful tool for the examination of equilibrium manifolds.

We can continue our analysis for larger values of the market size n. Figure 6 shows

the unique equilibrium price px = py for 3400 ≤ n ≤ 10000. The market of type 2
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Figure 5: Real positive solutions as a function of n
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Figure 6: Unique equilibrium for large values of n

customers is so large that both firms choose a mass market strategy and charge a low

price. While the number of equilibria remains constant for large values of n, the number

of real solutions changes twice in the examined region. Recall that there are 18 real

solutions for n = 3400. This number decreases to 16 at about n = 5104.5 and further to

14 at about n = 5140.8.

6 Equilibrium Equations for Dynamic Stochastic Games

In this section we first briefly describe a general set-up of dynamic stochastic games.

Such games date back to Shapley (1953), for a textbook treatment see Filar and Vrieze

(1997). Subsequently we explain how Markov-perfect equilibria (MPE) in these games

can be characterized by nonlinear systems of equations.

6.1 Dynamic stochastic games: general formulation

We consider discrete-time infinite-horizon dynamic stochastic games of complete infor-

mation with N players. In period t = 0, 1, 2, . . ., player i ∈ {1, 2, . . . , N} is characterized
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by its state ωi,t ∈ Ωi. The set of possible states, Ωi, is finite and without loss of generality

we thus define Ωi = {1, 2, . . . , ω̂i} for some number ω̂i ∈ N. The product Ω =
∏N

i=1Ωi is

the state space of the game; the vector ωt = (ω1,t, ω2,t, . . . , ωN,t) ∈ Ω denotes the state of

the game in period t.

Players choose actions simultaneously. Player i’s action in period t is ai,t ∈ Ai(ωt),

where Ai(ωt) is the set of feasible actions for player i in state ωt. In many economic

applications of dynamic stochastic games Ai(ωt) is a convex subset of RM , M ∈ N, and
we adopt this assumption here to employ standard first-order conditions in the analysis.

We denote the collection of all players’ actions in period t by at = (a1,t, a2,t, . . . , aN,t) and

the collection of all but player i’s actions by a−i,t = (a1,t, . . . , ai−1,t, ai+1,t, . . . , aN,t).

Players’ actions affect the probabilities of state-to-state transitions. If the state in

period t is ωt and the players choose actions at, then the probability that the state in

period t + 1 is ω+ is Pr(ω+|at;ωt). In many applications the transition probabilities for

player i’s state are assumed to depend on player i’s actions only and to be independent

of other players’ actions and transitions in their states. We follow this custom and

make the same assumption. Denoting the transition probability for player i’s state by

Pri ((ω
+)i |ai,t;ωi,t), the transition probability for the state of the game therefore satisfies

Pr
(
ω+|at;ωt

)
=

N∏
i=1

Pri
((
ω+
)
i
|ai,t;ωi,t

)
.

If the state of the game is ωt in period t and the players choose actions at then player

i receives a payoff πi(at, ωt). Players discount future payoffs using a discount factor

β ∈ (0, 1). The objective of player i is to maximize the expected net present value of all

its future cash flows,

E

{
∞∑
t=0

βtπi(at;ωt)

}
.

Economic applications of dynamic stochastic games typically rely on the equilibrium

notion of a pure strategy Markov-perfect equilibrium (MPE). That is, attention is re-

stricted to pure equilibrium strategies that depend only on the current state and are

independent of the history of the game. We can thus drop the time subscript. Player

i’s strategy Ai maps each state ω ∈ Ω into its set of feasible actions Ai(ω). The ac-

tions of all other players in state ω prescribed by their respective strategies are denoted

A−i(ω) = (A1(ω), . . . , Ai−1(ω), Ai+1(ω, . . . , AN(ω)). Finally, we denote by Vi(ω) the ex-

pected net present value of future cash flows to player i if the current state is ω. The

mapping Vi : Ω → R is player i’s value function.

For given Markovian strategies A−i of all other players, player i faces a discounted

infinite-horizon dynamic programming problem. As Doraszelski and Judd (2008) point
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out, Bellman’s principle of optimality implies that the optimal solution for this dynamic

programming problem is again a Markovian strategy Ai. That is, a Markov-perfect equi-

librium remains subgame perfect even without the restriction to Markovian strategies.

The Bellman equation for player i’s dynamic programming problem is

Vi(ω) = max
a∈Ai(ω)

{
πi(a,A−i(ω);ω) + βE

[
Vi(ω

+)|a,A−i(ω);ω
]}

(14)

where the expectation operator E[ · | · ] determines the conditional expectation of the

player’s continuation values Vi(ω
+) which are a function of next period’s state ω+, which

in turn depends on the players current action a, the other players’ actions A−i(ω), and

the current state ω. We denote by

hi(a,A−i(ω);ω;Vi) = πi(a,A−i(ω);ω) + βE
[
Vi(ω

+)|a,A−i(ω);ω
]

the maximand in the Bellman equation. Player i’s optimal action Ai(ω) ∈ Ai(ω) ⊂ RM

in state ω is given by

Ai(ω) = arg max
a∈Ai(ω)

hi(a,A−i(ω);ω;Vi). (15)

For each player i = 1, 2, . . . , N , equations (14) and (15) yield optimality conditions on

the unknowns Vi(ω) and Ai(ω) in each state ω ∈ Ω. A Markov-perfect equilibrium (in

pure strategies) is now a simultaneous solution to equations (14) and (15) for all players

and states.

6.2 Equilibrium conditions

Doraszelski and Satterthwaite (2010) develop sufficient conditions for the existence of a

Markov-perfect equilibrium for a class of dynamic stochastic games. A slightly modified

version of the existence result in their Proposition 2 holds in the described model under

the assumptions that both actions and payoffs are bounded and the maximand function

hi(·, A−i(ω);ω;Vi) is strictly concave for all ω ∈ Ω, other players ’ strategies A−i, and

value functions Vi satisfying the Bellman equation. Under these assumptions the max-

imand hi(·, A−i(ω);ω;Vi) has a unique maximizer Ai(ω). This unique maximizer could

lie on the boundary of or be an interior solution of the set of feasible actions Ai(ω). (As

Vi changes so will the maximizer and there could be several consistent solutions and thus

equilibria.)

For the purpose of this paper we restrict attention to models that satisfy two further

assumptions which are frequently made in economic applications. First, the function

hi(·, A−i(ω);ω;Vi) is continuously differentiable. Second, we assume that the maximizer

29



in equation (15) is always an interior solution. Under these assumptions we can equiva-

lently characterize players’ optimality conditions (14) and (15) by a set of necessary and

sufficient first-order conditions.

0 =
∂

∂a
{πi(a,A−i(ω);ω) + βE [Vi(ω+)|a,A−i(ω);ω]}

∣∣∣∣
a=Ai(ω)

(16)

Vi(ω) = πi(a,A−i(ω);ω) + βE [Vi(ω+)|a,A−i(ω);ω]
∣∣∣
a=Ai(ω)

(17)

Thus we have M + 1 equations for each state ω ∈ Ω and for each player i = 1, 2, . . . , N .

Any simultaneous solution of pure strategiesA1(ω), . . . , AN(ω) and values V1(ω), . . . , VN(ω)

for all states ω ∈ Ω yields an MPE.

If the payoff functions πi and the probability functions Pr(ω+|·;ω) are rational func-
tions then the nonlinear equilibrium equations can be transformed into a polynomial

system of equations. In the next two sections we examine two economic models that

satisfy these assumptions.

7 Learning Curve

In many industries the marginal cost of production decreases with the cumulative output,

this effect is often called learning-by-doing. The impact of learning-by-doing on market

equilibrium has been studied in the industrial organization literature for decades. Early

work in this area includes Spence (1981) and Fudenberg and Tirole (1983b). Besanko,

Doraszelski, Kryukov, and Satterthwaite (2010) analyze learning-by-doing and organiza-

tional forgetting within the framework of Ericson and Pakes (1995).

In this section we examine a basic learning-by-doing model in the Ericson and Pakes

(1995) framework. Although the functional forms for the price functions and transition

probabilities are not polynomial we can derive a system of polynomial equations such

that all positive real solutions of this system are Markov-perfect equilibria.

7.1 A learning-by-doing model

There are N = 2 firms and two goods. Firm i produces good i, i = 1, 2. The output of

firm i is denoted by qi which is the firm’s only action. (In the language of our general

formulation, ai = qi.) The state variable ωi for firm i is a parameter in the firm’s

production cost function ci(qi;ωi). In our numerical example we assume ci(qi;ωi) = ωiqi

implying that the state ωi is firm i’s unit cost of production. For simplicity we assume

w.l.o.g. that ωi ∈ Ωi = {1, 2, . . . , ω̂i}.
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In each period the two firms engage in Cournot competition. Customers’ utility

function over the two goods (and money M) is

u (q1, q2) = w
γ

γ − 1

(
q

σ−1
σ

1 + q
σ−1
σ

2

) (γ−1)σ
γ(σ−1)

+M

where σ is the elasticity of substitution between goods 1 and 2, γ is the elasticity of

demand for the composite good
(
q

σ−1
σ

1 + q
σ−1
σ

2

) σ
(σ−1)

, and w is a weighting factor. The

resulting market clearing prices for the two goods are then

P1(q1, q2) = wq
− 1

σ
1

(
q

σ−1
σ

1 + q
σ−1
σ

2

) γ−σ
γ(σ−1)

, P2(q1, q2) = wq
− 1

σ
2

(
q

σ−1
σ

1 + q
σ−1
σ

2

) γ−σ
γ(σ−1)

,

where Pi(q1, q2) = ∂
∂qi

u(q1, q2) denotes the price of good i if sales of the two goods are

(q1, q2). And so, if the two firms produce the quantities (q1, q2) in state ω = (ω1, ω2),

their resulting payoffs are

πi(qi, q−i;ω) = Pi(q1, q2)qi − ci(qi;ωi). (18)

Note that in this model firm i’s payoff does not explicitly depend on the other firm’s

state but only implicitly via the other firm’s production quantity.

The dynamic aspect of the model arises from changes in the unit cost ωi. Through

learning-by-doing the firms can reduce their unit cost. In our numerical example we use

the popular functional form (see Pakes and McGuire (1994), Borkovsky, Doraszelski, and

Kryukov (2009), and many other papers) for the transition probabilities

Pri[ωi − 1|qi;ωi] =
Fqi

1 + Fqi
, Pri[ωi|qi;ωi] =

1

1 + Fqi
, 0 otherwise (19)

with some constant F > 0 for ωi ≥ 2. The lowest-cost state ωi = 1 is an absorbing

state. Note that outside the absorbing state the higher a firm’s production quantity the

higher its probability to move to the next lower cost state. We assume that the transition

probability functions are independent across firms.

Substituting the expressions (18) and (19) into the equilibrium equations (16) and

(17) yields a system of equilibrium equations for the learning-by-doing model. This

system has 4 equations for each state ω = (ω1, ω2) and thus a total of 4|ω̂1||ω̂2| equations
and unknowns.

Solving the system of equations is greatly simplified by the observation that the nature

of the transitions in this model induces a partial order on the state space Ω. The unit cost

ωi can only decrease but never increase during the course of the game. Instead of solving

one large system of equations we can successively solve systems of 4 equations state by

state. For the lowest-cost state (1, 1) we only need to find the static Cournot equilibrium
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and calculate the values Vi(1, 1). Next we can successively solve the systems for the

states (ω1, 1) with ω1 = 2, 3, . . . , ω̂1 and for the states (1, ω2) with ω2 = 2, 3, . . . , ω̂2.

Next we can do the same for all (ω1, 2) with ω1 = 2, 3, . . . , ω̂1, for all nodes (2, ω2) with

ω2 = 3, . . . , ω̂1 and so on. For symmetric games we can further reduce the workload. We

only need to solve system of equations for the states (ω1, ω2) with ω2 ≤ ω1, that is, for

(1, 1), (ω1, 2) for ω1 = 2, 3, . . . , ω̂1, (ω1, 3) for ω1 = 3, . . . , ω̂1, and so on.

7.2 Solving the equilibrium equations with Bertini

We compute Markov-perfect equilibria for the learning-by-doing game for the following

parameter values. We consider a utility function with σ = 2, γ = 3/2, and w = 100/3.

The parameter for the transition probability function is F = 1/5. The firms use the

discount factor β = 0.95. We only examine symmetric cases with Ω1 = Ω2.

Similar to the static game in Section 5, the equilibrium equations in this model contain

fractions and radical terms. The transformation of the equations into polynomial form

forces us to introduce auxiliary variables Q1, Q2, Q3 that are defined as follows,

Q2
1 = q1, Q2

2 = q2, Q2
3 = Q1 +Q2.

The introduction of these new variables enables us to eliminate the value function terms

Vi(q1, q2) of both firms. For each state (ω1, ω2) we obtain a system of five equations in

the five unknowns q1, q2, Q1, Q2, Q3. There is a multiple root at 0. To remove it we add

another variable t and a normalization equation tQ1− 1 = 0, thereby obtaining a system

with six variables and six equations.

We solve four different types of polynomial systems. First, we solve the system of the

absorbing state (1, 1). The monomials with the highest degrees of the six equations are

tQ1, Q3
3, Q2

1, Q2
2, −Q1Q3(Q1 +Q2), −Q2Q3(Q1 +Q2),

respectively, resulting in a Bezout number of 23 · 33 = 216. Using m-homogeneity the

number of paths to track reduces to 44. Bertini tracks these 44 paths in just under 4

seconds.

Next we solve the equations for the states (1, ω2) for ω2 ≥ 2. The highest degree

terms of the six equations are

tQ1, Q3
3, Q2

1, Q2
2, −Q1Q3(Q1 +Q2), (9F 2ω2)Q1Q2Q3q

2
2 + (9F 2ω2)Q

2
2Q3q

2
2,

respectively, resulting in a Bezout number of 23 · 32 · 5 = 360. Thanks to m-homogeneity

we need to track 140 paths and this takes us with Bertini about 1 minute for each ω2.
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Then we solve the equations for state (2, 2), where the highest-degree terms are

tQ1, Q3
3, Q2

1, Q2
2, (9F 4ω1)Q

2
1Q3q

2
1q

2
2 + (9F 4ω1)Q1Q2Q3q

2
1q

2
2,

(9F 4ω2)Q1Q2Q3q
2
1q

2
2 + (9F 4ω2)Q

2
2Q3q

2
1q

2
2.

So the Bezout number is 23 · 3 · 72 = 1176. Exploiting m-homogeneity we have to track

364 paths which takes about 5 minutes. There are 152 real and complex (finite) solutions.

For the remaining states we can now use parameter continuation since the degree

structure of the systems is identical to that of the equations for state (2, 2). The Bezout

number remains the same as for state (2, 2), but now we only have to track 152 paths

since that was the number of solutions to the system at (2, 2). (To check whether 152

is indeed the maximal number k of isolated finite solutions as in Theorem 8 we solve

a few systems with randomly chosen coefficients but the same degree structure. In all

cases there are 152 isolated finite solutions.) Tracking these 152 paths takes about 25

seconds for each state. Again we observe that tracking paths ending at finite solutions

takes much less time than tracking paths that end at points at infinity. The reason is

again that some of the solutions at infinity lie within continua of solutions and thus cause

numerical difficulties.

We solved instances of the described learning-by-doing model with many states for

each firm. We wrote a C++ script that solved the problem by backwards induction by

calling Bertini at each state.11 To keep the presentation of the results manageable we

report here the results for a symmetric game with ω̂1 = 5. In all our systems there was

a unique real positive solution for all variables. Therefore, we found a unique Markov-

perfect equilibrium for the learning-by-doing model. Table 3 reports the production

quantities q1 and the values of the value function V1 of firm 1. For example, in state

(ω1, ω2) = (3, 4) firm 1 produces q1 = 11.385 and the game has a value of V1 = 982 for

the firm. By symmetry the corresponding values for firm 2 are (q2, V2) = (8.620, 913).

ω1 \ ω2 5 4 3 2 1

5 7.202 874 7.108 861 7.009 851 6.889 843 6.626 838

4 8.850 939 8.748 925 8.620 913 8.464 905 8.137 899

3 11.475 996 11.385 982 11.233 969 11.016 959 10.573 953

2 16.921 1042 16.840 1027 16.699 1014 16.401 1003 15.714 997

1 38.228 1072 38.171 1057 38.056 1043 37.773 1032 36.600 1025

Table 3: Production quantities q1 and value function V1 of firm 1

11The script is available on http://www.business.uzh.ch/professorships/qba/publications/Software.html.
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Table 4 reports running times on a laptop (Intel Core 2 Duo T9550 with 2.66 GHz

and 4GB RAM) for the learning-by-doing model. The running times grow approximately

ω̂1 = ω̂2 3 5 7 10

time (sec) 477 745 1359 2852

Table 4: Running Times

linearly in the number of states ω̂1 × ω̂2 and so we could easily solve games with many

more states per firm.

8 Cost-Reducing Investment and Depreciation

In models of cost-reducing investment, spending on investment reduces future produc-

tion cost, see, for example, Flaherty (1980) and Spence (1984). In models of irreversible

investment, current investment spending increases future production capacity, see Fu-

denberg and Tirole (1983a). Besanko and Doraszelski (2004) presents a model with both

capacity investments and depreciation within the Ericson and Pakes (1995) framework.

Depreciation tends to offset investment. In this section we describe a stochastic dynamic

game model in which the marginal cost of production may decrease through investment

or increase through depreciation.

8.1 A cost-reducing investment model

The model of Cournot competition is the same as in the learning-by-doing model with

the only exception that a firm’s production quantity does not affect its unit cost. The

dynamic aspect of the model arises again from changes in the unit cost ωi. Both increases

and decreases of the unit cost are possible. Firms may be hit by a depreciation shock

resulting in a cost increase but they can also make a cost-reducing investment. A depre-

ciation shock increases the unit cost from ωi to ωi + 1 and has probability δ > 0. If firm

i makes a cost-reducing investment yi at a cost cri(yi) then it achieves a probabilistic

reduction of its cost state. In our numerical examples we assume a quadratic investment

cost function, cri(y) = Diy
2. Total per-period payoff is then the difference of the Cournot

profit and the investment cost,

πi(qi, yi, q−i, y−i;ω) = πC
i (qi, q−i;ω)− cri(yi) = Pi(q1, q2)qi − ci(qi;ωi)−Diy

2
i .

We assume a transition function of the form (19) with the investment level yi replacing

the Cournot quantity. Assuming independence of the depreciation probabilities and
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the investment transition function then results in the transition probabilities (see also

Besanko and Doraszelski (2004))

Pri[ωi − 1|yi;ωi] =
Fyi

1+Fyi
(1− δ) for 2 ≤ ωi ≤ ω̂i (20)

Pri[ωi + 1|yi;ωi] =
1

1+Fyi
δ for 1 ≤ ωi ≤ ω̂i − 1(21)

Pri[ωi|yi;ωi] = 1− Pri[ωi − 1|yi;ωi]− Pri[ωi + 1|yi;ωi] for 2 ≤ ωi ≤ ω̂i − 1(22)

The remaining transition probabilities are

Pri[1|yi; 1] = 1− Pri[2|yi; 1] (23)

Pri[ω̂i|yi; ω̂i] = 1− Pri[ω̂i − 1|yi; ω̂i] (24)

Substituting the expressions for payoffs and transition probabilities into the equilib-

rium equations (16) and (17) yields a system of equilibrium equations for the model. The

static Cournot game played in each period does not affect the transition probabilities and

so we can solve the two equations at each state that are derived from differentiating with

respect to the production quantities q1 and q2 independently from the remaining equa-

tions. The remaining system consists of 4 equations for each state ω = (ω1, ω2) and thus

has a total of 4|ω̂1||ω̂2| equations and unknowns. The degree of each equation is 4.

8.2 Solving the equilibrium equations with Bertini

Since the unit cost ωi may increase or decrease we cannot solve the equations state by

state as in the learning-by-doing model. Instead we need to solve a single system of

equations.12

8.2.1 Two states for each firm

We describe the solution of the cost-reducing investment game with depreciation for the

following parameter values, β = 0.95, D1 = D2 = 1, F = 0.2, δ = 0.1. The parameters

for the utility functions are again σ = 2, γ = 3/2, and w = 100/3. Each firm can be in

one of two states. We set Ω1 = Ω2 = {1, 5} (in a slight abuse of previous notation).

We first solve the Cournot game for each state. The production quantities of firm 1

are

q1(5, 5) = 3.2736, q1(5, 1) = 2.4664, q1(1, 5) = 38.224, q1(1, 1) = 36.600.

For this model with 2 × 2 = 4 states there are 16 equations and variables. The

resulting Bezout number is 416 = 4, 294, 967, 296. By utilizing symmetry we simplified

12We perform all calculations and derive the final system in Mathematica. The Mathematica file is

available on http://www.business.uzh.ch/professorships/qba/publications/Software.html.
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our problem to 8 equations and variables with a total Bezout number of 48 = 65, 536.

Utilizing m-homogeneity we reduce the number of paths to 3328. It took us 1 hour 40

minutes to solve this problem. We found a total of 589 finite, i.e. complex and real,

solutions that lie in affine space, 44 of which are real. We had no path failures, when

using adaptive precision.13 Only one of those real solutions is economically relevant. The

investment levels of firm 1 are

y1(5, 5) = 3.306, y1(5, 1) = 3.223, y1(1, 5) = 0.763, y1(1, 1) = 0.736,

resulting in the following values of the value function,

V1(5, 5) = 816.313, V1(5, 1) = 794.329, V1(1, 5) = 926.059, V1(1, 1) = 895.570.

8.2.2 Three states for each firm

We choose Ω1 = Ω2 = {1, 5, 10} and our other parameters as in the two-state case. The

production quantities of firm 1 in the additional high-cost states are q1(10, 10) = 1.1574

and

q1(10, 5) = 1.0648, q1(10, 1) = 0.70015, q1(5, 10) = 3.3975, q1(1, 10) = 37.915.

Solving the system of equilibrium equations for the three-state model now poses signifi-

cantly more problems than the two-state case. The initial system has 36 equations and

unknowns. The Bezout number is 436 ≈ 4.72 · 1021. After exploiting symmetry and using

some algebraic operations to simplify some equations we obtain a system that has 21

equations and unknowns. Its Bezout number is 1, 528, 823, 808. This system, however,

is still unsolvable on a single laptop if we use the standard homotopy approach. For

this reason we now apply the splitting approach from Appendix D. We split the system

into two subsystems which are both small enough to be solvable. In our example the

first system has M1 = 358 nonsingular solutions. The second system has M2 = 4510

nonsingular solutions. Therefore, if we focus only on the nonsingular solutions we have

358 × 4510 = 1, 614, 580 paths to track when we combine the two subsystems via a pa-

rameter continuation homotopy. Note that this is an order of magnitude smaller than

taken the system as a whole. We obtain a unique nonsingular equilibrium, see Table 5.

The time to solve this on a single core is over a week.14

13If we do not use adaptive precision we can finish computations in just under 3 minutes. However,

then 396 paths fail to converge. Nevertheless we still obtain all finite solutions. Clearly, if we could

prove that all equilibria are regular solutions to the polynomial system of equilibrium equations then

we could relax the precision parameters in Bertini and thus significantly reduce both the computational

effort and running times.
14The files are available on http://www.business.uzh.ch/professorships/qba/publications/Software.html.
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ω1 \ ω2 10 5 1

10 3.42 705.00 3.31 680.31 3.24 663.01

5 3.78 820.36 3.70 789.73 3.62 765.53

1 0.86 945.48 0.83 911.76 0.80 878.89

Table 5: Equilibrium investment levels y1 and value function V1

9 Conclusion

We summarize the paper and discuss the current limitations of all-solution methods.

9.1 Summary

This paper describes state-of-the-art techniques for finding all solutions of polynomial

systems of equations and illustrates these techniques by computing all equilibria of both

static and dynamic games with continuous strategies. The requirement of polynomial

equations may, at first, appear very restrictive. In our first application, a static Bertrand

pricing game, we show how certain types of non-polynomial equilibrium conditions can be

transformed into polynomial equations. We also show how with repeated application of

the polynomial techniques we can deal with first-order conditions that are necessary but

not sufficient. Finally, this example also depicts the power of the parameter-continuation

homotopy approach. This approach greatly reduces the number of homotopy paths that

need to be traced and, therefore, increases the size of models that we can analyze. When

handled carefully, it even allows us to trace out the equilibrium manifold.

We also apply the all-solution techniques to two stochastic dynamic games of in-

dustry competition and check for equilibrium uniqueness. In the first application, a

learning-by-doing model of industry competition, the equilibrium system separates into

many small systems of equations which can be solved sequentially. As a result we can

solve specifications of this model with many states. In our second application, a model

with cost-reducing investment and cost-increasing depreciation, such a separation of the

equilibrium system is impossible. Solving the resulting equilibrium system requires the

tracing of a huge number of paths. On a single laptop we can solve specifications of the

model with only a small number of states.

9.2 Current Limitations and Future Work

For stochastic dynamic games, the number of equations grows exponentially in the num-

ber N of players and polynomially (with degree N) in the number of states. In turn, the
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Bezout number grows exponentially in the number of nonlinear equations. Additionally

the degree of the polynomials is essential which limits the parameter choice for the ex-

ponents in the utility functions. As a result, the number of paths that an all-solution

method must trace grows extremely fast in the size of the economic model. This growth

clearly limits the size of problems we can hope to solve.

Modern policy-relevant models quickly generate systems of polynomial equations with

thousands of equations. For example, the model in Besanko, Doraszelski, Kryukov, and

Satterthwaite (2010) has up to 900 states and 1800 equations. Finding all equilibria of

models of this size is impossible with the computer power available as of the writing of

this paper and it will remain out of reach for the foreseeable future. However, we will

likely be able to solve smaller models such as the dynamic model of capacity accumulation

of Besanko and Doraszelski (2004) with at most 100 states within a few years. Progress

will come on at least three frontiers. First, computer scientists have yet to optimize the

performance of software packages such as Bertini. Second, the all-solution homotopy

methods are ideally suited for parallel computations. Our initial experience has been

very promising. And so, as soon as the existing software will have been adapted to large

parallel computing systems, we will see great progress in the size of the models we can

analyze with the methods described in this paper. And third, methodological advances

such as the equation splitting approach will also help us to solve larger systems.

Appendix

A Homogenization

The all-solution homotopy method presented in Section 3.3 has the unattractive feature

that it must follow diverging paths. Homogenization of the polynomials greatly reduces

the computational effort to track such paths.

Definition 8. The homogenization f̂i(z0, z1, . . . , zn) of the polynomial fi(z1, . . . , zn) of

degree di is defined by

f̂i(z0, z1, . . . , zn) = zdi0 fi

(
z1
z0
, . . . ,

zn
z0

)
.

Effectively, each term of f̂i is obtained from multiplying the corresponding term of fi

by the power of z0 that leads to a new degree of that term of di. So, if the term originally

had degree dij then it is multiplied by z
di−dij
0 . Performing this homogenization for each

polynomial fi in the system

F (z1, . . . , zn) = 0 (25)
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leads to the transformed system

F̂ (z0, z1, . . . , zn) = 0. (26)

For convenience we use the notation ẑ = (z0, z1, . . . , zn) and write F̂ (ẑ) = 0. By con-

struction all polynomials f̂i, i = 1, . . . , n, are homogeneous and so for any solution b̂ of

F̂ (ẑ) = 0 it holds that F̂ (λb̂) = 0 for any complex scalar λ ∈ C. So, the solutions to

system (26) are complex lines through the origin in Cn+1.

Definition 9. The n-dimensional complex projective space CP n is the set of lines in

Cn+1 that go through the origin. The space Cn+1 is called the affine space.

A point in projective space CP n corresponds to a line through the origin of the

affine space Cn+1. Let [b̂] ∈ CP n denote a point in CP n then there is a point b̂ =

(b̂0, b̂1, . . . , b̂n) ∈ Cn+1 \ {0} that determines this line. We denote the line [b̂] by (b̂0 : b̂1 :

. . . : b̂n) to distinguish it from a single point. The notation (z0 : z1 : . . . : zn) is called the

homogeneous coordinates of CP n. Note however that this notation is not unique, we can

take any λb̂ with λ ∈ C \ {0} as a representative. Furthermore (0 : 0 : . . . : 0) is not a

valid point in projective space. Thus for any point (b̂0 : . . . : b̂n) there exists at least one

element b̂i ̸= 0.

There is a one-to-one relationship between the solutions of system (25) in Cn and

the solutions of system (26) in Cn+1 with b̂0 ̸= 0. If b is a solution to (25) then the

line through b̂ = (1, b), that is, [b̂] ∈ CP n, is a solution to (26). For the converse, if

(b̂0 : b̂1 : . . . : b̂n) with b̂0 ̸= 0 is a solution to (26) then the point ( b̂1
b̂0
, . . . , b̂n

b̂0
) is a solution

of (25).

One of the advantages of the homogenized system (26) is that it can model “infinite”

solutions. If we have a line {(λb) | λ ∈ C} ⊂ Cn, b ∈ Cn \ {0} and look at the

corresponding line {(1 : λb1 : . . . , λbn) | λ ∈ C} in projective space then for any λ,

( 1
λ
: b1 : . . . : bn) is also a valid representation of that point on the projective line. So

if ∥λ∥ → ∞ then ∥ 1
λ
∥ → 0 and we are left with the point (0 : b1 : . . . : bn). Note that

∥λ∥ → ∞ in the affine space means ∥λb∥ → ∞. Thus we traverse the line to “infinity”.

This observation leads to the following definition.

Definition 10. Consider the natural embedding of Cn with coordinates (z1, . . . , zn) in

the projective space CP n with homogeneous coordinates (z0 : . . . : zn). Then we call

points (0 : b1 : . . . : bn) ∈ CP n points at infinity.

The value b̂0 = 0 for a solution b̂ to F̂ implies f̂i(b̂0 : b̂1 : . . . : b̂n) = f
(di)
i (b̂1, . . . , b̂n) =

0. Therefore the solutions at infinity of F̂ (ẑ) = 0 correspond to the solutions to the

system (f
(d1)
1 , . . . , f

(dn)
n ) = 0. The fact that we now have a representation of solutions at

infinity leads to a new version of Bezout’s theorem for projective space.
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Theorem 6 (Bezout’s theorem in projective space CP n). If system (26) has only a finite

number of solutions in CP n and if d is the Bezout number of F , then it has exactly d

solutions (counting multiplicities) in CP n.

If we view the system of equation (26) in affine space Cn+1 instead of in complex pro-

jective space CP n then it is actually underdetermined because it consists of n equations

in n+1 unknowns. For a computer implementation of a homotopy method, however, we

need a determinate system of equations. For this purpose we add a simple normalization.

Using the described relationship between solutions of the two systems (25) and (26) we

can now introduce a third system to find the solutions of system (25). Define a new

linear function

u(z0, z1, . . . , zn) = ξ0z0 + ξ1z1 + . . .+ ξnzn

with random coefficients ξi ∈ C. (The nongeneric cases are where the normalization line

is parallel to a solution “line”.) Now define

f̃i(z0, z1, . . . , zn) := f̂i(z0, z1, . . . , zn), i = 1, . . . , n,

f̃0(z0, z1, . . . , zn) := u(z0, z1, . . . , zn)− 1.
(27)

The resulting system of equations

F̃ = (f̃0, f̃1, . . . , f̃n) = 0 (28)

has n + 1 equations in n + 1 variables. Note that the system F̃ (ẑ) has the same total

degree d as the system F (z) in the original system of equations (25). As a start system

we choose
Gi(z0, z1, . . . , zn) = zdii − zdi0 , i = 1, . . . , n,

G0(z0, z1, . . . , zn) = u(z0, z1, . . . , zn)− 1.
(29)

We write the resulting system as G(ẑ) = 0 and define the homotopy

H(t, ẑ) = tF̃ (ẑ) + eγi(1− t)G(ẑ) (30)

for a γ ∈ [0, 2π). To illustrate a possible difficulty with this approach we examine the

system of equations (1,2,3) that we derived for the Bertrand price game in Section 2.2.

Example 4. After homogenization of the equilibrium system (1,2,3) in the variables px,

py, and Z with the variable x0 we obtain the following polynomial equations.

0 = −p2xx
4
0 − p2yx

4
0 + Z2p2xp

2
y

0 = −2700x10
0 + 2700pxx

9
0 + 8100Z2p2xx

6
0 − 5400Z2p3xx

5
0 + 51Z3p6xx

1
0 − 2Z3p7x

0 = −2700x10
0 + 2700pyx

9
0 + 8100Z2p2yx

6
0 − 5400Z2p3yx

5
0 + 51Z3p6yx

1
0 − 2Z3p7y
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The solutions at infinity are those for which x0 = 0. In this case the system simplifies as

follows

Z2p2xp
2
y = 0, −2Z3p7x = 0, −2Z3p7y = 0.

After setting Z = 0 all equations hold for any values of px and py. There is a continuum of

solutions at infinity. Such continua can cause numerical difficulties for the path-following

procedure.

The following theorem now states that in spite of the previous example our paths

converge to the relevant isolated solutions.

Theorem 7. Let the homotopy H be as in (30) with Bezout number d. Then the following

statements hold for almost all γ ∈ [0, 2π):

1. The homotopy has d continuous solution paths.

2. Each path will either converge to an isolated nonsingular or to a singular15 solution,

i.e. one where the rank of the Jacobian drops.

3. If b is an isolated solution with multiplicity m, then there are m paths converging

to it.

4. Paths are monotonically increasing in t, i.e. the paths do not bend backwards.

Now we can apply the homotopy H as defined in equation (30) and find all solutions

of the system (28). There will be no diverging paths. From the solutions of (28) we

easily obtain the solutions of the original system (25).

An additional advantage of the above approach lies in the possibility to scale our

solutions via u. If a solution component zi becomes too large, then this will cause

numerical problems, e.g. the evaluation of polynomials at such a point becomes rather

difficult. Thus if something like this happens we pick a new set of ξi. Furthermore we

eliminated the special case of infinite paths and we do not have to check whether the

length of the path grows too large. Instead every diverging path has become a converging

one. So while tracking a path we do not need to check whether the length of the path

exceeds a certain bound.

Theoretically we have eliminated the problem of solutions at infinity. Note that the

problem of diverging paths still remains in practice. A solution b belongs to a diverging

path if b0 = 0. We still need to decide when b0 becomes zero numerically. Thus there

is no absolute certainty if a path converges to a solution at infinity or if the solution is

15This might be an isolated root with multiplicity higher than one, e.g. a double root of the system

F , or a non-isolated solution component as in Example 4.
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extremely large. However, we are in the convergence zone of Newton’s method and can

quickly sharpen our solutions to an arbitrary precision.

Remark. Here we attempt to give some intuition for the problem of infinite paths. Take

two lines L1 = {(x1, x2)|x1 + a12x2 + b1 = 0} and L2 = {(x1, x2)|x1 + a22x2 + b2 = 0}
with a12, a22 ∈ R. Then there are three possibilities for L1 ∩ L2. First L1 ∩ L2 = L1

so a12 = a22 and b1 = b2. Secondly L1 ∩ L2 = {p} for some point p ∈ R2. Lastly we

have L1 ∩ L2 = ∅, i.e. the lines are parallel and so a12 = a22 but b1 ̸= b2. By using

projective space we eliminate the last possibility by adding infinity where the two lines

can meet. So in projective space the lines are given by the zero sets of the two polynomials

x1 + a12x2 + b1x0 and x1 + a22x2 + b2x0. Clearly (0 : −a12 : 1) is a common zero for these

polynomials if a12 = a22. So in projective space CP n, n linear homogeneous polynomials

which are not pairwise identical intersect at exactly one point.

Bezout’s theorem generalizes this idea to n polynomials. However the theorem im-

plicitly embeds the system of polynomials in projective space. Therefore we have to

consider the possibility that solutions are at infinity and thus the paths that belong to

those diverge. The case that one of those intersection points lies at infinity is equivalent

to demanding that z0 = 0. This is clearly a non-generic case. But the systems that

interest us are highly non-generic, the reason being that they are sparse. That means

for a degree d polynomial in n variables there are
(
n+d
d

)
monomials of degree equal or

smaller than d but most of their coefficients are zero which is a non-generic condition.

Thus those systems tend to have many solutions at infinity.

B m-homogeneous Bezout number

The number of paths d grows rapidly with the degree of individual equations. For many

economic models we believe that there are only a few (if not unique) equilibria, that

is, our systems have few real solutions and usually even fewer economically meaningful

solutions. As a result we may have to follow a large number of paths that do not yield

useful solutions. As we have seen in Example 4, there may be continua of solutions at

infinity which can cause numerical difficulties. Therefore it would be very helpful to

reduce the number of paths that must be followed as much as possible.

Two approaches for a reduction in the number of paths exist. The first approach

sets the homogenized polynomial system not into CP n but in a product of m projective

spaces CP n1 × . . .× CP nm . For this purpose the set of variables is split into m groups.

In the homogenization of the original polynomial F each group of variables receives a

separate additional variable, thus this process is called m-homogenization. The resulting
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bound on the number of solutions, called the m-homogeneous Bezout number, is often

much smaller than the original bound and thus leads to the elimination of paths tending

to solutions at infinity. In this paper we do not provide details on this approach but

only show its impact in our computational examples. We refer the interested reader to

Sommese and Wampler (2005) and the citations therein. The first paper to introduce

m-homogeneity appears to be Morgan and Sommese (1987).

The second approach to reduce the number of paths is the use of parameter con-

tinuation homotopies. We believe that this approach is perfectly suited for economic

applications.

C Parameter Continuation Homotopy

Economic models typically make use of exogenous parameters such as risk aversion coef-

ficients, price elasticities, cost coefficients, or many other pre-specified constants. Often

we do not know the exact values of those parameters and so would like to solve the model

for a variety of different parameter values. Clearly solving the model each time “from

scratch” will prove impractical whenever the number of solution paths is very large. The

parameter continuation homotopy approach enables us to greatly accelerate the repeated

solution of an economic model for different parameter values. After solving one instance

of the economic model we can construct a homotopy that alters the parameters from

their previous to their new values and allows us to track solutions paths from the pre-

vious solutions to new solutions. Therefore, the number of paths we need to follow is

greatly reduced.

The parameter continuation approach rests on the following theorem which is a special

case of a more general result, see Sommese and Wampler (2005, Theorem 7.1.1).

Theorem 8 (Parameter Continuation). Let F (z, q) = (f1(z, q), . . . , fn(z, q)) be a system

of polynomials in the variables z ∈ Cn with parameters q ∈ Cm,

F (z, q) : Cn × Cm → Cn.

Additionally let q0 ∈ Cm be a point in the parameter space, where k = maxq |{z | F (z, q) =

0; det
(
∂F
∂z
(z, q0)

)
̸= 0}| is the number of nonsingular isolated solutions. For any other

set of parameters q1 and a random γ ∈ [0, 2π) define

φ(s) = eiγs(s− 1) + sq1 + (1− s)q0

Then the following statements hold.

1. k = |{z | F (z, q) = 0; det
(
∂F
∂z
(z, q)

)
̸= 0}| for almost all q ∈ Cm.
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2. The homotopy F (z, φ(s)) = 0 has k nonsingular solution paths for almost all γ ∈
[0, 2π).

3. All solution paths converge to all isolated nonsingular solutions of F (z, φ(1)) = 0

for almost all γ ∈ [0, 2π).

The theorem has an immediate practical implication. Suppose we already solved the

system F (z, q0) = 0 for some parameter vector q0. Under the assumption that this system

has the maximal number k of locally isolated solutions across all parameter values, we

can use this system as a start system for solving the system F (z, q1) = 0 for another

parameter vector q1. The number of paths that need to be tracked is k instead of the

Bezout number d or some m-homogeneous Bezout number. In our applications k is

much smaller (sometimes orders of magnitude smaller) than these upper bounds. As a

result the parameter continuation homotopy drastically reduces the number of paths that

we must track. More importantly, no path ends at a solution at infinity for almost all

q1 ∈ Cn. As we observe in our examples, exactly these solutions often create numerical

problems for the path-tracking software, in particular if there are continua of solutions

at infinity as in Example 4. And due to those numerical difficulties the running times

for tracking these paths is often significantly larger than for tracking paths that end at

finite solutions. In sum, we believe that the parameter continuation homotopy approach

is of great importance for finding all equilibria of economic models.

A statement similar to that of Theorem 8 holds if we regard isolated solutions of some

fixed multiplicity. But we then have to track paths which have the same multiplicity.

Tracking such paths requires a lot more computational effort than non-singular paths.

The homotopy continuation software Bertini enables the user to track such paths since

it allows for user-defined parameter continuation homotopies.

D A splitting approach for solving larger systems

In our application of the all-solutions methods to dynamic stochastic games we quickly

run into problems that are too large to be solved on a single computer. We now briefly

describe an approach that enables us to increase the size of problems we can solve.

A splitting approach16 breaks the square system

F (z1, z2, . . . , zn) = (f1, f2, . . . , fn) (z1, z2, . . . , zn) = 0

of polynomial equations into two sub-systems F1 = (f1, . . . , fp) and F2 = (fp+1, . . . , fn).

16We thank Jonathan Hauenstein for suggesting this method to us.
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Similarly, the variables are grouped

(z1, z2, . . . , zn) = (x, y) = (x1, . . . , xp, y1, . . . yn−p).

Thus, we can write the entire system as follows,

F1(x1, . . . , xp, y1, . . . yn−p) = (f1, . . . fp)(x1, . . . , xn, y1, . . . yn−p) = 0

F2(y1, . . . , yn−p, x1, . . . xp) = (fp+1, . . . fn)(y1, . . . , yn−p, x1, . . . xp) = 0.

Clearly, F1 and F2 are not square systems of polynomial equations. We now solve the

systems

F1(x1, . . . , xp, y1, . . . yn−p) = 0

yi = ai, i = 1, . . . , n− p,

and

F2(y1, . . . , yn−p, x1, . . . xp) = 0

xj = bj, j = 1, . . . , p,

where a ∈ Cn−p and b ∈ Cp are random complex numbers. Each of these two new square

systems has a smaller (m-homogeneous) Bezout number than the original system.

Now suppose that we obtain finite solution setsM1 andM2 for each of the two systems,

respectively. Any pair (x∗, a, y∗, b) ∈ M1 × M2 is a solution to the following square

system of polynomial equations in the unknowns x1, . . . , xp, y1, . . . , yn−p, r1, . . . , rn−p,

and s1, . . . , sp,

F1(x1, . . . , xp, r1, . . . rn−p) = 0

ri − ai = 0, i = 1, . . . , n− p,

F2(y1, . . . , yn−p, s1, . . . sp) = 0

sj − bj = 0, j = 1, . . . , p.

This system is now the start system for the following parameter continuation homotopy,

where r and s are the parameters,

F1(x1, . . . , xp, r1, . . . rn−p) = 0

(1− t)(ri − ai) + t(ri − yi) + (1− t)teiγ = 0, i = 1, . . . , n− p,

F2(y1, . . . , yn−p, s1, . . . sp) = 0

(1− t)(sj − bj) + t(sj − xj) + (1− t)teiγ = 0, j = 1, . . . , p,
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with all elements in M1 × M2 being start points. Thus there are |M1| · |M2| paths to

track. Observe that for t = 1 we obtain a system that is equivalent to the original system

F (z) = 0.

To see why this approach works, note that our parameters r and s have been chosen

randomly. Statement (1) of Theorem 8 states that for almost all choices of those param-

eters we have the maximal number of isolated roots. Thus all the requirements of the

theorem are met and our homotopy converges to all isolated solutions.

A judicious separation of the original equations produces two subsystems with respec-

tive Bezout numbers that are roughly equal to the square root of the Bezout number of

the original system. This significant reduction in the number of paths to be tracked may

make it feasible to solve the subsystems even if the complete system cannot be solved in

reasonable time. And if the number of finite solutions of the subsystems is also not too

large, then the parameter continuation homotopy will generate all finite solutions of the

original system of equations.

In Section 8.2.2 this splitting approach enables us to solve a system of polynomial

equations that otherwise would have been too large to be solvable on a single laptop.
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